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Abstract. In this paper, we consider two dimensional nonlinear elliptic
equations of the form −div(a(u,∇u)) = f . Then, in order to solve these
equations on rectangular domains, we propose a numerical method based
on Sinc-Galerkin method. Finally, the presented method is tested on some
examples. Numerical results show the accuracy and reliability of the pro-
posed method.
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1 Introduction

Sinc methods have been increasingly used for finding a numerical solution
of ordinary and partial differential equations. Using these methods in com-
putational mathematics are similar to polynomials, splines, and Fourier
polynomials. Each existing method excels in some particular class of prob-
lems. For example, polynomials excel in the approximation of analytic func-
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tions without singularities, splines are particularly good for approximating
measured, or noisy data, while Fourier polynomials excel in the approxi-
mation of functions that are both smooth and periodic over the whole real
line. Sinc methods excel for problems with singularities, for boundary-layer
problems and for problems over infinite or semi-infinite ranges. They are
typified by exponentially decaying errors and in special cases by optimal
convergence rate [6, 15]. In addition, the run time of computer programs
based on Sinc methods are usually considerably shorter than the corre-
sponding ones based on classical methods of approximation [6, 15]. The
Sinc-Galerkin method utilizes a modified Galerkin scheme to discretize or-
dinary and partial differential equations. The basis elements used in this
approach are Sinc functions composed with a suitable conformal map [15].
The books [6] and [15] provide overviews of existing methods based on Sinc
functions for solving ordinary differential equations (ODEs), partial differ-
ential equations (PDEs), and integral equations [9]. These methods have
also been employed for some inverse problems [7, 10,14].

The main aim of this paper is to use Sinc-Galerkin method to find an
approximate solution of the following nonlinear elliptic problem

ℵu(x, y) = −div (a (u,∇u)) = f(x, y), (x, y) ∈ Ω,
u(x, y) = 0, (x, y) ∈ ∂Ω, (1)

where a(u,∇u) =
→
∇u+

→
F (u) and Ω := {(x, y) | 0 6 x 6 1, 0 6 y 6 1}.

The method consists of reducing the problem (1) to a system of nonlin-
ear equations by approximating u = u(x, y) based on Sinc functions with
unknown coefficients. In this approach, no mesh generation is required.
Moreover, due to the well-posedness of the problem (1) and rapid conver-
gence rate of Sinc-Galerkin method, the method does not suffer from the
usual instability issues that typically occur in different methods (see [6,15]).
In other words, we use a stabilized, mesh-free method to solve these kinds
of nonlinear elliptic problems. As a special case, in finite element method,
if we need a solution in H2(Ω)∩C1(Ω), we have to choose the standard full
quintic finite element approximation for each triangle. Consequently, we
obtain 21 unknown coefficients for the polynomials of degree 5 for each tri-
angle. Although this method is convergent, we have to solve a large linear
system of equations. But the proposed method without mesh generation
provides an approximate solution which is analytic.

The paper is organized as follows. Section 2 is devoted to some existence
and uniqueness theorems related to nonlinear elliptic problems. In Section
3, the basic formulation of the Sinc function required for our subsequent
development is provided and Sinc-Galerkin method is used to approximate
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the solution of nonlinear elliptic problems. In Section 4, parameter se-
lections are given to guarantee the exponential convergence. Finally, in
Section 5, some numerical examples are given to show the efficiency and
accuracy of the proposed numerical scheme.

2 Existence and uniqueness theorems

In this section, some existence and uniqueness theorems are given related
to nonlinear elliptic partial differential equations. To do so, we consider
the nonlinear elliptic problem (1) in a general form

− div(a(x, u,∇u)) = f(x), x in Ω,
u(x) = 0, x on ∂Ω, (2)

where Ω is a bounded open set in RN , N ≥ 2, f ∈ L1(Ω) and a : Ω× R×
RN → RN is a Caratheodory function such that

a(x, s, ξ) > α|ξ|p, α > 0, (3)

|a(x, s, ξ)| 6
[
|ξ|p−1 + |s|p−1 + a0(x)

]
, a0(x) ∈ Lp′(Ω), (4)

(a(x, s, ξ)− a(x, s, η), ξ − η) > 0, ξ 6= η, (5)

a.e. x ∈ Ω, ∀ s ∈ R, ∀ ξ, η ∈ RN . The existence and uniqueness of solution
to nonlinear elliptic problem (2) can be analyzed in different methods such
as weak solution methods, duality methods, entropy solution and renor-
malized solution [1,4]. In this paper, we only consider entropy solution and
renormalized solution.

In order to define the entropy solution, first the truncature operator
Tk(s) for a given constant k > 0 is introduced [4]

Tk(s) =

{
s, if |s| 6 k,
k sign(s), if |s| > k.

A measurable function u : Ω→ R satisfying the condition Tk(u) ∈W 1,p
0 (Ω)

for every k > 0 is an entropy solution for (2) if we have∫
Ω
a(x,∇u)∇Tk(u− ϕ)dx 6

∫
Ω
Tk(u− ϕ)fdx.

Theorem 1. [2, 4] Let f ∈ L1(Ω) and assume that the conditions (3)-(5)
are satisfied. Then there exists a unique entropy solution to problem (2).
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An equivalent notion of solution for (2) is so-called the renormalized
solution. A function u is a renormalized solution if it satisfies the following
conditions

(1) u is a measurable function, almost everywhere finite in Ω,

(2) Tk(u) belongs to W 1,p
0 (Ω), for every k and p > 1,

(3)
1

n
lim
n→∞

∫
{n6|u|62n}

a(x,∇u).∇udx = 0,

(4)

∫
Ω
h(u)a(x,∇u)∇udx +

∫
Ω
h′(u)a(x,∇u)∇u vdx =

∫
Ω
f h(u)vdx,

for every h ∈ W 1,∞(R) with compact support in R and v ∈ W 1,p
0 (Ω) ∩

L∞(Ω).

Theorem 2. [3, 4] Let f ∈ L1(Ω) and assume that the conditions (3)-(5)
are satisfied. Then there exists a unique renormalized solution to problem
(2).

3 Mathematical formulations

3.1 Sinc function

The Sinc function is defined on the whole real line −∞ < x <∞ by

Sinc(x) =

{
sin(π x)
π x , x 6= 0,

1, x = 0.

For hx and hy, the translated Sinc functions with evenly spaced nodes for
space variables are given as

S(k, hx)(x) = Sinc(
x− khx
hx

), k = 0,±1,±2, . . . ,

S(k, hy)(y) = Sinc(
y − khy
hy

), k = 0,±1,±2, . . . .

In order to construct approximations on the interval (0, 1), which are

used in this paper, we should apply the conformal map ϕ(z) = ln
(

z
1−z

)
.

In other words, the compositions Sk(x) = S(k, hx)oϕ(x) and Sk(y) =
S(k, hy)oϕ(y) define the basis elements on the interval (0, 1), (see [6, 12,
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13, 15]). Consequently, using tensor product, two dimensional Sinc basis
functions are considered as follows

Sk,`(x, y) ≡ {S(k, hx)oϕ(x)} {S(`, hy)oϕ(x)} = Sk(x)S`(y).

In what follows, we apply these functions as a basis function in Sinc-
Galerkin method.

3.2 The Sinc-Galerkin method

Let

umxmy(x, y) =

Ny∑
`=−My

Nx∑
k=−Mx

u(xk, y`)Sk`(x, y), (6)

be an approximate solution of (1) in which mx = Mx + Nx + 1, my =
My +Ny + 1, xk = ϕ−1(khx) and y` = ϕ−1(`hy). The unknown coefficients
uk` = u(xk, y`), k = −Mx, . . . , Nx, ` = −My, . . . , Ny in (6) are determined
by orthogonalizing the residual with respect to the functions Sk`, [15, 16].
This yields the discrete system〈

ℵumxmy , Sk`
〉

= 〈f, Sk`〉 , k = −Mx, . . . Nx, ` = −My, . . . Ny,

where the weighted inner product is defined by

〈f, g〉 =

∫ 1

0

∫ 1

0
f(x, y)g(x, y)v(x)w(y)dxdy,

in which v(x)w(y) is a product weight function. Consequently, we will have

I =
〈
−div

(
a
(
x, y, umxmy ,∇umxmy

))
, Sk`

〉
=

∫ 1

0

∫ 1

0
−div

(
a
(
x, y, umxmy ,∇umxmy

))
Sk`(x, y)v(x)w(y)dxdy

=

∫ 1

0

∫ 1

0

(
−
∂2umxmy(x, y)

∂x2
−
∂2umxmy(x, y)

∂y2
−
∂F1

(
umxmy(x, y)

)
∂x

−
∂F2

(
umxmy(x, y)

)
∂y

)
Sk`(x, y)v(x)w(y)dxdy,

where
→

F (u) = (F1(u), F2(u))T . Using integrating by parts, all derivatives
transfer from umxmy to Sk`. Then by choosing v(x) = 1

ϕ′(x) and w(y) =
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1
ϕ′(y) , we conclude that

I =

∫ 1

0

∫ 1

0
−umxmy(x, y)

∂2

∂x2
(Sk(x)v(x))S`(y)w(y)dxdy

+

∫ 1

0

∫ 1

0
−umxmy(x, y)

∂2

∂y2
(S`(y)w(y))Sk(x)v(x)dxdy

+

∫ 1

0

∫ 1

0
F1(umxmy)

∂

∂x
(Sk(x)v(x))S`(y)w(y)dxdy

+

∫ 1

0

∫ 1

0
F2(umxmy)

∂

∂y
(S`(y)w(y))Sk(x)v(x)dxdy.

In the Sinc-Galerkin method, in order to approximate integrals [6], the
following Sinc quadrature rules are used

∫ 1

0
u(x)dx ' hx

Nx∑
p=−Mx

u(xp)

ϕ′(xp)
,

and

∫ 1

0

∫ 1

0
u(x, y)dxdy ' hxhy

Ny∑
q=−My

Nx∑
p=−Mx

u(xp, yq)

ϕ′(xp)ϕ′(yq)
.

This yields

I ' hxhy

Ny∑
q=−My

Nx∑
p=−Mx

(
umxmy(xp, yq)

−1

ϕ′(xp)

∂2

∂x2
(Sk(x)v(x))

∣∣
x=xp

× 1

ϕ′(yq)
S`(yq)w(yq)

+umxmy(xp, yq)
−1

ϕ′(yq)

∂2

∂x2
(S`(y)w(y))

∣∣
y=yq

1

ϕ′(xp)
Sk(xp)v(xp)

+F1

(
umxmy(xp, yq)

) −1

ϕ′(xp)

∂

∂x
(Sk(x)v(x))

∣∣
x=xp

1

ϕ′(yq)
S`(yq)w(yq)

+ F2

(
umxmy(xp, yq)

) −1

ϕ′(yq)

∂

∂x
(S`(y)w(y))

∣∣
y=yq

1

ϕ′(xp)
Sk(xp)v(xp)

)
,
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and

〈f, Sk`〉 =

∫ 1

0

∫ 1

0
f(x, y)Sk(x)S`(y)v(x)w(y)dxdy

' hxhy

Ny∑
q=−My

Nx∑
p=−Mx

δ
(0)
kp δ

(0)
`q f(xp, yq)v(xp)w(yq)

ϕ′(xp)ϕ′(yq)

=
f(xk, y`)v(xk)w(y`)

ϕ′(xk)ϕ′(y`)
,

where δ
(0)
kp = Sk(xp) and δ

(0)
`q = S`(yq). Now, we have a nonlinear system

of mx × my equations of the mx × my unknown coefficients uk`. These
coefficients are obtained by using Newton’s method or many other dif-
ferent methods such as, conjugate gradient method, genetic algorithms,
Steffensen’s methods and so on (see [5, 11]).

In particular, if we consider a linear partial differential equation of the
form

Lu(x, y) = f(x, y), (x, y) ∈ Ω = (0, 1)× (0, 1) ,

u(x, y) = 0, (x, y) ∈ ∂Ω,

where

Lu(x, y) = a1(x)b1(y)
∂2u(x, y)

∂x2
+ a2(x)b2(y)

∂2u(x, y)

∂x∂y

+a3(x)b3(y)
∂2u(x, y)

∂y2
+ a4(x)b4(y)

∂u(x, y)

∂x

+a5(x)b5(y)
∂u(x, y)

∂y
+ a6(x)b6(y)u(x, y),

we will get the following system of linear algebraic equations

A1UB
T
1 +A2UB

T
2 + . . .+A6UB

T
6 = G, (7)

such that

U = [Up,q]mx×my
, An =

[
(An)k,p

]
mx×mx

,

Bn =
[
(Bn)`,q

]
my×my

, G = [Gk,`]mx×my
,

and for p, k = −Mx, . . . , Nx and q, ` = −My, . . . , Ny,

Up,q = umxmy(xp, yq),
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Table 1: Values of sn and tn.

n 1 2 3 4 5 6

sn 2 1 0 1 0 0
tn 0 1 2 0 1 1

(An)k,p =
(−1)sn

ϕ′(xp)

∂sn

∂xsn
(an(x)Sk(x)v(x))

∣∣
x=xp ,

(Bn)`,q =
(−1)tn

ϕ′(yq)

∂tn

∂ytn
(bn(y)S`(y)w(y))

∣∣
y=yq ,

Gk,` =
f(xk, y`)v(xk)w(y`)

ϕ′(xk)ϕ′(y`)
,

in which sn and tn are set to be 0, 1 and 2 according to Table 1. To solve
(7), we refer to [16] which has proposed a computational method based on
Kronecker product and vec-function.

4 Parameter selections for the Sinc-Galerkin method

The step sizes hx, and hy, and summation limits Mx, Nx, My, and Ny, are
selected so that guarantee the exponential convergence [8, 15, 16]. Due to
this, if the exact solution satisfies the condition

|u(x, y)| 6 Cxαs+ 1
2 (1− x)βs+ 1

2 yζs+ 1
2 (1− y)ηs+ 1

2 ,

we should make the following selections

hx = hy =

√
πd

αsMx
,

and

Nx =

[∣∣∣∣αsMx

βs
+ 1

∣∣∣∣] , My =

[∣∣∣∣αsMx

ζs
+ 1

∣∣∣∣] , Ny =

[∣∣∣∣αsMx

ηs
+ 1

∣∣∣∣] .
Here [| . |] denotes the greatest integer operation and C is a positive con-
stant. Hence, we will have∥∥u− umxmy

∥∥
∞ 6 CsM

2
x exp

(
−
√
πdαsMx

)
,

where Cs is a constant depending on u, p, and d.
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5 Numerical results

In this section, two nonlinear problems are tested by using the Sinc-Galerkin
method. All the experiments are performed in MATLAB by a system with
this specification: Intel(R) Core(TM) i5-2430M CPU @ 2.40GHz.

Example 1. Consider the nonlinear elliptic problem of the form

− uxx − uyy + u2 = f(x, y), (x, y) ∈ Ω = (0, 1)× (0, 1) ,
u(x, y) = 0, (x, y) ∈ ∂Ω, (8)

where

f(x, y) = −2x2(1− x)2(1− 6y + 6y2)− 2y2(1− y)2(1− 6x+ 6x2)
+x4y4(1− x)4(1− y)4.

The exact solution is u(x, y) = x2y2(1− x)2(1− y)2. Using Sinc-Galerkin
method, the problem (8) is converted into a system of nonlinear equations.
To find the solution of these equations, Newton’s method is used. In Table
2, the absolute errors between the exact and approximate solutions are
given for

hx = hy =
π√
3Mx

,

and different values of M = Mx = Nx = My = Ny (M = 2, 3, 6, 8, 16). In
addition, run time (CPU time) and the maximum of condition numbers of
Jacobian matrices appeared in Newton’s iterations are provided in Table
2. Also, Figures 1 and 2 show the exact and approximate solutions of
the problem (8) for M = 16 and Figure 3 demonstrates the plot of these
solutions for y = 0.5 and M = 2, 3, 6, 8, 16. As we observe in Figure
3, the solution of nonlinear system of equations, which is obtained from
Newton’s method, does not influence the convergence rate of Sinc-Galerkin
method, since the Jacobian matrices appeared in Newton’s iterations are
well-conditioned.

Note that, for M = 16 we have a nonlinear system of 33 × 33 = 1089
equations of the 33 × 33 = 1089 unknown coefficients. Run time and the
condition number show the efficiency and accuracy of the method.

Example 2. For second example we consider the following problem

−uxx − uyy + sin(u) = f(x, y), (x, y) ∈ Ω = (0, 1)× (0, 1) ,

u(x, y) = 0, (x, y) ∈ ∂Ω,
(9)

where

f(x, y) = −x ln(x)

y
− y ln(y)

x
+ sin(xy ln(x) ln(y)).
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Table 2: Numerical results of Sinc-Galerkin method for Example 1.

Mx = Nx My = Ny hx ‖ES(hs)(x, y)‖ Condition number Run Time (Sec)

2 2 1.2825 5.0852e− 05 13.0 0.33
3 3 1.0472 1.4804e− 05 24.9 0.64
6 6 0.7405 2.2436e− 06 98.2 2.99
8 8 0.6413 6.8924e− 07 191.1 5.06
16 16 0.4534 1.3993e− 08 1203.9 23.09

Figure 1: The exact solution
u(x, y) = x2y2(1− x)2(1− y)2.

Figure 2: The approximate solu-
tion umxmy(x, y) with M = 16.

The exact solution is u(x, y) = xy ln(x) ln(y). The numerical results are
reported in Table 3 for

hx = hy =
π√
Mx

,

and different values of M = Mx = Nx = My = Ny (M = 2, 3, 6, 8, 16)),
that are the absolute error of exact and approximate solution, condition
number of Jacobian matrix and run time (CPU time). Also, Figures 4 and
5 show the exact and approximate solutions of the problem (9) for M = 16
and Figure 6 demonstrates the plot of these solutions for y = 0.5 and
M = 2, 3, 6, 8, 16. Similar to Example 1, the solution of nonlinear system
of equations, which is obtained from Newton’s method, does not influence
the convergence rate of Sinc-Galerkin method.

6 Conclusion

In this paper, using Sinc-Galerkin method an approximate solution is de-
rived for a two dimensional nonlinear elliptic problem on a rectangular
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Figure 3: The approximate solution umxmy (x, 0.5) and exact solution u(x, 0.5)
for M = 2, 3, 6, 8, 16.

Table 3: Numerical results of Sinc-Galerkin method for Example 2.

Mx = Nx My = Ny hx ‖ES(hs)(x, y)‖ Condition number Run Time (Sec)

2 2 2.2214 3.9000e− 03 11.7 0.28
3 3 1.8138 2.3000e− 03 26.6 0.41
6 6 1.2825 4.6597e− 04 158.7 2.16
8 8 1.1107 1.8299e− 04 387.8 3.72
16 16 0.7854 8.5640e− 06 5137 21.83

domain. The features of Sinc-Galerkin method, i.e., being mesh free and
stability, provide us a suitable solutions with short run time on the rect-
angular domain. Numerical examples revealed the efficiency and accuracy
of the proposed method. The method can also be extended to solve some
inverse problems, since Sinc methods can be employed as forward solvers
in the solution of inverse problems.
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Figure 4: The exact solution
u(x, y) = xy ln(x) ln(y).

Figure 5: The approximate solu-
tion umxmy(x, y) with M = 16.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

X

o
u
tp

u
t,
y=

0
.5

 

 
M=N=2
M=N=3
M=N=6
M=N=8
M=N=16
Exact

Figure 6: The approximate solution umxmy
(x, 0.5) and exact solution u(x, 0.5)

for M = 2, 3, 6, 8, 16.
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