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Abstract. Steady hydromagnetic Couette flow of class-II of a viscous, in-
compressible and electrically conducting fluid through a porous medium in
a rotating system taking Hall current into account is investigated. Heat
transfer characteristics of the fluid flow are considered taking viscous and
Joule dissipations into account. It is noticed that there exists flow sepa-
ration at the moving plate in the secondary flow direction on increasing
either rotation parameter K2 when Hall current parameter m = 0.5 or m

when K2 = 7. Also there exists flow separation at the moving plate in the
secondary flow direction on increasing either magnetic parameter M2 for
every value of porosity parameter K1 or K1 when M2 = 15.
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1 Introduction

Theoretical/Experimental investigation of hydromagnetic Couette flow of a
viscous, incompressible and electrically conducting fluid in a rotating sys-
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tem in the presence of an applied magnetic field has drawn attention of
several researchers during past decades due to its wide range of application
in natural phenomena and in a number of MHD devices viz. generators,
accelerators, pumps, flow meters, nuclear reactors utilizing liquid metals
etc. An order of magnitude analysis shows that, in the basic field equa-
tions, the effect of Coriolis force is more significant as compared to that
of inertial and viscous forces. Furthermore, Coriolis and magnetic forces
are comparable in magnitude and Coriolis force induces secondary flow in
the flow-field. It is well known that the theory of Couette flow is used
for the measurement of viscosity and estimating drag force in many wall
driven devices. It may be noted that there exist two types of MHD Cou-
ette flows [35–37, 39] viz. (i) MHD Couette flow of class-I and (ii) MHD
Couette flow of class-II. The fluid flow induced due to the movement of a
plate when the fluid above the plate is bounded by stationary plate, placed
at a finite distance from the moving plate, is recognized as MHD Cou-
ette flow of class-I [23, 34]. This fluid flow is similar to the flow induced
by movement of a plate when the fluid at infinity i.e. fluid outside the
boundary layer region (free stream) is stationary [8]. The fluid flow past
a stationary plate which is induced due to movement of a plate, placed at
a finite distance from the stationary plate, is identified as MHD Couette
flow of class-II [35–37, 39]. This fluid flow is similar to the flow past a
stationary plate due to moving free stream [8]. Mazumder [27] initiated
the study of unsteady hydrodynamic Couette flow of class-II in a rotating
system. Subsequently this problem is investigated by Ganapathy [18] and
Das et al. [15] by considering different aspects of the problem. Seth and
Singh [37, 39], Singh [40], Hayat et al. [19, 20], Seth et al. [38] and Das et
al. [17] investigated MHD Couette flow of class-II in a rotating system in
the presence of transverse magnetic field considering different aspects of the
problem. In all these investigations, induced magnetic field produced by
fluid motion is neglected in comparison to the applied magnetic field. This
assumption is valid because magnetic Reynolds number is very small for
liquid metals and partially ionized fluids [10]. Moreover, for the problems
of geophysical and astrophysical interest and in so many MHD devices,
namely, MHD energy generators, MHD pumps, plasma accelerators etc.
magnetic Reynolds number is not very small so induced magnetic field can-
not be neglected. Taking into consideration of this fact, Jana et al. [23]
and Seth and Maiti [34] investigated steady hydromagnetic Couette flow of
class-I of a viscous, incompressible and electrically conducting fluid in a ro-
tating system under different conditions whereas Seth and Singh [36], Seth
et al. [31, 32, 35] and Seth and Hussain [33] studied steady MHD Couette
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flow of class-II of a viscous, incompressible and electrically conducting fluid
in a rotating system taking induced magnetic field into account considering
different aspects of the problem.

It is worthy to note that, in an ionized fluid whose density is low and/or
applied magnetic field is strong, the effects of Hall current become signif-
icant [45]. Both Hall current and rotation induce secondary flow in the
flow-field. Therefore, it seems to be important to compare and contrast
the effects of these two agencies and also to study their combined effects.
Hall current and rotation are likely to be important in many engineering
applications viz. MHD power generators, MHD pumps and plasma flow in
accelerators, geophysical and astrophysical problems of interest as well as
in flows of plasmas in laboratory. Keeping in view the importance of such
study, Jana and Datta [22], Seth and Ahmad [30] and Mandal et al. [26]
investigated effects of Hall current on steady hydromagnetic Couette flow
of class-I in a rotating system under different conditions whereas Seth et
al. [31,32], Seth and Hussain [33], Sarkar et al. [29] and Das et al. [16] stud-
ied effects of Hall current and rotation on steady hydromagnetic Couette
flow of class-II in a rotating system. Ahmed and Zueco [6] investigated
oscillatory hydromagnetic free convection flow with heat and mass transfer
in a rotating vertical porous channel taking Hall current into account.

Hydromagnetic flow through porous medium is of considerable impor-
tance because it is very much prevalent in nature and it may find applica-
tions in many biological and engineering problems such as the movement of
natural gases, oil and water through the oil reservoirs, in chemical engineer-
ing for the filtration and water purification processes, to study underground
water resources and seepage of water in river beds etc. Keeping in view the
importance of such study, Chamkha [13] investigated non-Darcy fully de-
veloped hydromagnetic mixed convection flow through a porous medium in
a channel with heat generation/absorption. In the same year Chamkha [11]
also considered unsteady hydromagnetic free convection flow through a fluid
saturated porous medium in a vertical channel. Alagoa et al. [7] analyzed
the effects of radiation on hydromagnetic natural convection flow through
a porous medium between two infinite parallel plates with time-dependent
suction. Chamkha [12] discussed steady laminar flow of two viscous, in-
compressible, electrically conducting and heat generating/absorbing im-
miscible fluids in porous and non-porous channels filled with a uniform
porous medium. Subsequently Chamkha [14] also investigated unsteady
hydromagnetic flow and heat transfer of an electrically conducting and heat
generating/absorbing fluid in a horizontal porous channel filled with uni-
form porous medium in the presence of electric and magnetic fields. Fluid
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flow within the channel is induced due to the constant pressure gradient.
Singh et al. [43] studied oscillatory Couette flow through a porous medium
in rotating system. Makinde and Mhone [25] investigated the combined
effects of transverse magnetic field and radiative heat transfer on unsteady
flow of an optically thin radiating fluid through a channel filled with porous
medium. Israel-Cookey et al. [21] presented MHD oscillatory Couette flow
of a radiating viscous fluid in a porous medium with periodic wall tem-
perature. Singh [41] analysed the effects of suction/injection on oscillatory
free convection flow through a porous medium bounded by two vertical
porous plates. Singh [42] obtained an exact solution of oscillatory MHD
flow in a channel filled with porous medium. Prasad and Kumar [28] inves-
tigated unsteady hydromagnetic Couette flow through a porous medium in
a rotating system. Jana et al. [24] discussed unsteady Couette flow of a
viscous and incompressible fluid through a porous medium within porous
horizontal channel in a rotating system. Singh and Mathew [44] investi-
gated the effects of permeability and suction/injection on an oscillatory free
convection flow of viscous and incompressible fluid through highly porous
medium within two infinite vertical porous plates when the entire system
rotates about an axis normal to the plane of the plates with uniform angu-
lar velocity Ω. Chand et al. [9] considered oscillatory free convection flow
of a viscous and incompressible fluid through porous medium in a rotating
vertical channel. Ahmed and Chamkha [1] investigated Hartmann Newto-
nian radiating MHD flow in a rotating vertical porous channel immersed in
a Darcian porous regime. The research studies on fluid flow through porous
medium are also due to Umavathi et al. [46, 47], Ahmed and Kalita [2–4]
and Ahmed [5].

The aim of the present investigation is to study steady hydromagnetic
Couette flow of class-II and heat transfer of a viscous, incompressible and
electrically conducting fluid through a uniform porous medium in the pres-
ence of a uniform transverse magnetic field taking Hall current into account.
Both the fluid and channel rotate in unison with uniform angular velocity
Ω about an axis perpendicular to the plane of the plates. Fluid flow within
the channel is induced due to movement of upper plate in its own plane.
The moving plate of the channel is considered electrically non-conducting
whereas the stationary plate is considered perfectly conducting. Exact so-
lution of the governing equations is obtained in closed form. Expressions for
the shear stress at the plates due to primary and secondary flows and mass
flow rates in the primary and secondary flow directions are also derived.
Asymptotic behaviour of the solution is analysed for large values of K2 and
M2 to gain some physical insight into the flow pattern. Numerical values
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of fluid velocity, induced magnetic field and fluid temperature, computed
with the help of MATLAB software, are depicted graphically versus chan-
nel width variable η whereas those of shear stress and rate of heat transfer
at the plates and mass flow rates are presented in tabular form for various
values of pertinent flow parameters. This study may find applications in sci-
ence and engineering, namely, thermonuclear engineering, geophysical and
astrophysical fluid dynamics, geothermal power extraction, plasma aerody-
namics, extraction of oil and gases from reservoirs, MHD power generation
and manufacturing processes.

2 Formulation of the problem and its solution

Consider steady hydromagnetic Couette flow of class-II of a viscous, incom-
pressible and electrically conducting fluid within two parallel plates z = 0
and z = L, embedded in a uniform porous medium, in the presence of a
uniform transverse magnetic field H0 which is applied in a direction par-
allel to z - axis. Both the fluid and channel are in a state of rigid body
rotation with uniform angular velocity Ω about z - axis. Lower plate of
the channel is considered perfectly conducting whereas upper plate of the
channel is assumed as electrically non-conducting. Fluid flow within the
channel is induced due to the movement of the upper plate of the channel
z = L with uniform velocity U0 in x - direction whereas lower plate of the
channel z = 0 is kept fixed. The schematic diagram of the physical problem
is presented in Figure 1.

Figure 1: Schematic diagram of the physical problem
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Since plates of the channel are of infinite extent in x and y directions
and flow is steady, so all physical quantities, except pressure, depend on z

only. Therefore, fluid velocity ~q and induced magnetic field ~H are assumed
as

~q = (ux, uy, 0) and ~H =
(

Hx
′,Hy

′,H0

)

, (1)

which are in agreement with the fundamental equations of Magnetohydro-
dynamics in a rotating system.
Under the assumptions made above, the governing equations for the flow
of a viscous, incompressible and electrically conducting fluid in a rotating
system are given by

− 2Ωuy = −1

ρ

∂p∗

∂x
+ ν

d2ux

dz2
+

µeH0

ρ

dHx
′

dz
− ν

K ′ux, (2)

2Ωux = −1

ρ

∂p∗

∂y
+ ν

d2uy

dz2
+

µeH0

ρ

dHy
′

dz
− ν

K ′uy, (3)

0 = −1

ρ

∂p∗

∂z
, (4)

0 = H0
dux

dz
+ νm

d2Hx
′

dz2
+mνm

d2Hy
′

dz2
, (5)

0 = H0
duy

dz
+ νm

d2Hy
′

dz2
−mνm

d2Hx
′

dz2
, (6)

where m = ωeτe is Hall current parameter. ux, uy, H
′
x, H

′
y, ρ, ν, νm, µe,

σ, K ′, p∗, ωe and τe are, respectively, fluid velocity in x - direction, fluid
velocity in y - direction, induced magnetic field in x - direction, induced
magnetic field in y - direction, fluid density, kinematic coefficient of vis-
cosity, coefficient of magnetic diffusivity, magnetic permeability, electrical
conductivity of the fluid, permeability of the medium, modified pressure
including centrifugal force, cyclotron frequency and electron collision time.
The upper plate of the channel is considered electrically non-conducting
whereas lower plate of the channel is assumed as perfectly conducting.
Thus the boundary conditions for the velocity and induced magnetic field
are given by

ux = uy = 0;
dhx

dz
=

dhy

dz
at z = 0, (7a)

ux = U0, uy = 0; Hx
′ = Hy

′ = 0 at z = L. (7b)

Equation (4) shows that modified pressure p∗ is independent of z, so the
values of the pressure gradient terms −1

ρ
∂p∗

∂x
and −1

ρ
∂p∗

∂y
, which are present
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in the equations (2) and (3), are evaluated using boundary conditions (7b)
for MHD Couette flow of class-II [35–37,39]. However, the values of pressure
gradient terms −1

ρ
∂p∗

∂x
and −1

ρ
∂p∗

∂y
are zero for MHD Couette flow of class-

I [23, 34], which are evaluated with the help of boundary conditions (7a).
Therefore, the values of pressure gradient terms for MHD Couette flow of
Class-II are given by

− 1

ρ

∂p∗

∂x
=

ν

K ′U0 and − 1

ρ

∂p∗

∂y
= 2ΩU0. (8)

Making use of (8), equations (2) and (3) reduce to

− 2Ωuy = ν
d2ux

dz2
+

µeH0

ρ

dHx
′

dz
− ν

K ′ (ux − U0) , (9)

2Ω (ux − U0) = ν
d2uy

dz2
+

µeH0

ρ

dHy
′

dz
− ν

K ′uy. (10)

To present equations (5), (6), (9) and (10) along with the boundary condi-
tions (7a) and (7b) in non-dimensional form, the following non-dimensional
variables are introduced.

η =
z

L
, u =

ux

U0
, v =

uy

U0
,Hx =

Hx
′

H0
,Hy =

Hy
′

H0
. (11)

Equations (5), (6), (9) and (10) with the use of (11) assume the following
form

− 2K2v =
d2u

dη2
+

M2

Rm

dHx

dη
− 1

K1
(u− 1) , (12)

2K2 (u− 1) =
d2v

dη2
+

M2

Rm

dHy

dη
− 1

K1
v, (13)

0 =
du

dη
+

1

Rm

d2Hx

dη2
+

m

Rm

d2Hy

dη2
, (14)

0 =
dv

dη
+

1

Rm

d2Hy

dη2
− m

Rm

d2Hx

dη2
, (15)

where K2 = ΩL2

ν
is rotation parameter (reciprocal of Ekman number),

M2 = µeH0
2L2

ρννm
is magnetic parameter (square of Hartmann number), Rm =

U0L
νm

is magnetic Reynolds number and K1 = K ′

L2 is porosity parameter.
Boundary conditions (7a) and (7b), in non-dimensional form, become

u = v = 0;
dHx

dη
=

dHy

dη
= 0 at η = 0, (16a)

u = 1, v = 0; Hx = Hy = 0 at η = 1. (16b)
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Equations (12) to (15) are presented in compact form which are given by

2iK2f =
d2f

dη2
+M2 db

dη
− f

K1
, (17)

0 =
df

dη
+

d2b

dη2
−mi

d2b

dη2
, (18)

where
f = u+ iv − 1, b = hx + ihy, hx = Hx

Rm
and hy =

Hy

Rm
.

Boundary conditions (16a) and (16b), in compact form, are

f = −1;
db

dη
= 0 at η = 0, (19a)

f = 0; b = 0 at η = 1. (19b)

Equations (17) and (18) subject to the boundary conditions (19a) and (19b)
are solved and the solution for fluid velocity and induced magnetic field are
expressed in the following form

F (η) = − (1− im) [A {coshλη − 1}+B sinhλη] , (20)

b (η) =
1

λ
[A {sinhλη − sinhλ}+B{cosh λη − coshλ}] +A (1− η) , (21)

where
F (η) = u+ iv, λ = α+ iβ,

α, β = 1√
2

[

{

(

M2

1+m2 + 1
K1

)2
+

(

2K2 + M2m
1+m2

)2
}

1

2

±
(

M2

1+m2 + 1
K1

)

]

1

2

,

A = 1
λ2

[

(2iK1K
2+1)(1+im)

K1(1+m2)

]

B = 1
λ2

[

{(2iK1K
2+1)(1−coshλ)−λ2K1}(1+im)

K1(1+m2) sinhλ

]

.

2.1 Non-dimensional shear stress at the plates

Non-dimensional shear stress components τx and τy due to primary and
secondary flows at the stationary and moving plates of the channel are
given by

τx + iτy |η=0= − (1− im)λB, (22)

τx + iτy |η=1= − (1− im)λ [A sinhλ+B coshλ] . (23)
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where τx |η=0 and τx |η=1 are non-dimensional shear stress at the stationary
and moving plates of the channel respectively due to primary flow. τy |η=o

and τy |η=1 are non-dimensional shear stress at the stationary and moving
plates of the channel respectively due to secondary flow.

2.2 Non-dimensional mass flow rates

Non-dimensional mass flow rates Qx and Qy in the primary and secondary
flow directions respectively are given by

Qx + iQy = − (1− im)

[

1

λ
{A (sinhλ− λ) +B (cosh λ− 1)}

]

. (24)

3 Asymptotic behaviour of the solution

We shall now analyse the asymptotic behaviour of the solutions prescribed
by (20) and (21) for large values of K2 and M2 to gain some physical in-
sight into the flow pattern.

Case I: When K2 ≫ 1 and M2 ∼ O(1).

In this case, fluid flow becomes boundary layer type. For the boundary
layer flow near the stationary plate η = 0, the expressions of fluid velocity
and induced magnetic field, given by (20) and (21), assume the following
form

u =1− e−α1η cos (β1η) +
M2

2K2 (1 +m2)

[

m
{

e−α1η cos (β1η)− 1
}

−e−α1η sin (β1η)
]

, (25)

v =e−α1η sin (β1η)−
M2

2K2 (1 +m2)

[{

e−α1η cos (β1η)− 1
}

+me−α1η sin (β1η)
]

, (26)

hx =
1

1 +m2

[{

1− M2m

K2 (1 +m2)

}{

(1− η)− e−α1η

α2
1 + β2

1

(α1 cos (β1η)

−β1 sin (β1η))} −
{

m− M2
(

m2 − 1
)

2K2 (1 +m2)

}

e−α1η

α2
1 + β2

1

×

(α1 sin (β1η) + β1 cos (β1η))] , (27)
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hy =
1

1 +m2

[{

m− M2
(

m2 − 1
)

2K2 (1 +m2)

}

{

(1− η)− e−α1η

α2
1 + β2

1

(α1 cos (β1η)

−β1 sin (β1η))}+
{

1− M2m

K2 (1 +m2)

}

e−α1η

α2
1 + β2

1

×

(α1 sin (β1η) + β1 cos (β1η))] , (28)

where

α1, β1 = K

[

1± 1

4K1K2
± M2 (1±m)

4 (1 +m2)K2

]

. (29)

It is evident from the expressions (25) to (28) that there arises a thin
boundary layer of thickness O(α−1

1 ) near stationary plate of the channel.
This boundary layer may be identified as modified Ekman boundary layer
and can be viewed as classical Ekman boundary layer modified by Hall
current, magnetic field and permeability of the medium. The numerical
values for the thickness of the boundary layer are calculated for various
values of m and K1, and are presented in Table 1.

Table 1: Thickness of the boundary layer near the stationary plate of chan-
nel when K2 = 7 and M2 = 10.

1
α1

1
α2

K1 ↓ m → 0.5 1 1.5 0.5 1 1.5

0.2 0.2352 0.2461 0.2601 0.2346 0.2308 0.2265

0.4 0.2490 0.2613 0.2771 0.2594 0.2565 0.2534

0.6 0.2540 0.2668 0.2833 0.2688 0.2664 0.2638

Expressions in (29) and Table 1 reveal that an increase in K2 and
M2 leads to a decrease in 1

α1
whereas an increase in m and K1 leads to an

increase in 1
α1
. This implies that rotation and magnetic field tend to reduce

the thickness of the boundary layer whereas Hall current and permeability
of the medium tend to enhance the thickness of the boundary layer. Similar
type of boundary layer arises near the moving plate of the channel. The
exponential terms in the expressions (25) to (28) damp out quickly as η

increases.
When η ≥ 1

α1
i.e. outside the boundary layer region, expressions (25) to

(28) assume the following form

u ≈ 1− mM2

2K2(1 +m2)
, v ≈ M2

2K2(1 +m2)
, (30)
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hx ≈ (1− η)

1 +m2

{

1− M2m

K2(1 +m2)

}

, hy ≈ (1− η)

1 +m2

{

m− M2(m2 − 1)

2K2(1 +m2)

}

(31)

Expressions in (30) and (31) reveal that, in the central core region, i.e.
outside the boundary layer region, fluid flows in both the primary and
secondary flow directions. Primary as well as secondary fluid velocity is af-
fected by Hall current, magnetic field and rotation. Also induced magnetic
field persist in both the primary and secondary flow directions and vary
linearly with η . Both the primary and secondary induced magnetic fields
have considerable effects of Hall current, magnetic field and rotation.

Case II: When M2 ≫ 1 and K2 ∼ O(1).

In this case also boundary layer type flow is expected. For the bound-
ary layer flow near the stationary plate η = 0 , the expressions of fluid
velocity and induced magnetic field, presented by (20) and (21), reduce to

u =
1

M2

[(

1

K1
+ 2K2m

)

{

1− e−α2η cos (β2η)
}

+

(

m

K1
− 2K2

)

× e−α2η sin (β2η)
]

, (32)

v =
1

M2

[(

2K2 − m

K1

)

{

1− e−α2η cos(β2η)
}

+

(

1

K1
+ 2K2m

)

× e−α2η sin(β2η)
]

, (33)

hx =
1

K1M2

[

(1− η)− e−α2η

α2
2 + β2

2

{α2 cos (β2η)− β2 sin (β2η)}
]

− 2K2

M2

[

e−α2η

α2
2 + β2

2

{α2 sin (β2η) + β2 cos (β2η)}
]

, (34)

hy =
2K2

M2

[

(1− η)− e−α2η

α2
2 + β2

2

{α2 cos (β2η)− β2 sin (β2η)}
]

+
1

K1M2

[

e−α2η

α2
2 + β2

2

{α2 sin (β2η) + β2 cos (β2η)}
]

, (35)

where

α2 =
M

1 +m2
(α∗ +mβ∗) +

1

2K1M
α∗ +

K2

M
β∗, (36)

β2 =
M

1 +m2
(mα∗ − β∗) +

K2

M
α∗ − 1

2K1M
β∗,
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α∗ =
1√
2
{(1 +m2)

1

2 + 1} 1

2 ,

β∗ =
1√
2
{(1 +m2)

1

2 − 1} 1

2 .

It is evident from the expressions (32) to (35) that there arises a thin
boundary layer of thickness O

(

α−1
2

)

near stationary plate of the channel.
This boundary layer may be identified as modified Hartmann boundary
layer and can be viewed as classical Hartman boundary layer modified by
Hall current, rotation and permeability of the medium. The numerical
values for the thickness of the boundary layer are calculated for various
values of m and K1, and are displayed in Table 1.
Expressions in (36) and Table 1 reveal that an increase in m, K2 and M2

leads to a decrease in 1
α2

whereas an increase in K1 leads to an increase

in 1
α2
. This implies that Hall current, rotation and magnetic field tend

to reduce the thickness of the boundary layer whereas permeability of the
medium tends to enhance the thickness of the boundary layer. Similar type
of boundary layer arises near the moving plate of the channel.
In the central core region, expressions (32) to (35) take the following form

u ≈ 1

M2

(

1

K1
+ 2K2m

)

, v ≈ 1

M2

(

2K2 − m

K1

)

, (37)

hx ≈ 1

K1M2
(1− η) , hy ≈ 2K2

M2
(1− η) . (38)

Expressions in (37) and (38) reveal that, in the central core region, fluid
flows in both the primary and secondary flow directions and both the pri-
mary and secondary velocities are affected by Hall current, magnetic field,
rotation and permeability of the medium. Also both the primary and sec-
ondary induced magnetic fields persist in the central core region. Pri-
mary induced magnetic field is unaffected by rotation and Hall current
whereas secondary induced magnetic field is unaffected by permeability of
the medium and Hall current. Also both the induced magnetic field have
considerable effects of magnetic field and vary linearly with η .

4 Heat transfer characteristics

We shall now discuss heat transfer characteristics of the fluid flow. The
stationary and moving plates of the channel are maintained at uniform
temperature T0 and T1 respectively, where T0 < T < T1 , T being the fluid



Hydromagnetic Couette flow of class-II 61

temperature.
Energy equation, taking viscous and Joule dissipations into account, is
given by

α∗ d
2T

dz2
+

ν

Cp

[

(

dux

dz

)2

+

(

duy

dz

)2
]

+
ν

K ′Cp

[

(ux − U0)
2 + uy

2
]

+
1

σρCp

[

(

dHx
′

dz

)2

+

(

dHy
′

dz

)2
]

= 0, (39)

where α∗ and Cp are thermal diffusivity of fluid and specific heat at constant
pressure respectively.
Boundary conditions for the fluid temperature are

T = T0 at z = 0; T = T1 at z = L. (40)

Equation (39), in non-dimensional form, becomes

d2θ

dη2
+ PrEc

[{

(

du

dη

)2

+

(

dv

dη

)2
}

+
1

K1

{

(u− 1)2 + v2
}

+M2

{

(

dhx

dη

)2

+

(

dhy

dη

)2
}]

= 0, (41)

where θ = T−T0

T1−T0
, Pr = ν

α∗ and Ec = U0
2

Cp(T1−T0)
are non-dimensional fluid

temperature, Prandtl number and Eckert number respectively.
Boundary conditions (40), in non-dimensional form, become

θ = 0 at η = 0; θ = 1 at η = 1. (42)

Using analytical solutions for the fluid velocity and induced magnetic field
given by (20) and (21) in equation (41), the resulting differential equa-
tion subject to the boundary conditions (42) is solved numerically using
MATLAB software. The numerical values of rate of heat transfer at the
stationary and moving plates of the channel are also computed with the
help of MATLAB software.

5 Validation of results

In order to establish the accuracy of our results, we have compared our
results in case of non-porous medium with those of Sarkar et al. [29]. Both
the results are displayed graphically in Figure 2. It is evident from Figure
2 that our results are in excellent agreement with the results of Sarkar et
al. [29].
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6 Results and discussion

In order to study the effects of Hall current, magnetic field, rotation and
permeability of the medium on the flow-field, the numerical values of fluid
velocity and induced magnetic field, computed from the analytical solu-
tion given by (20) and (21), are displayed graphically versus channel width
variable η in Figures 2 to 9 for various values of Hall current parameter
m, rotation parameter K2, magnetic parameter M2 and porosity param-
eter K1. All parametric values corresponding to each figure are included
therein. It should be noted that M2 = 10, 15 and 20 imply the presence
of strong magnetic field. Figure 2 illustrates the influence of rotation on
both the primary and secondary fluid velocities u and v respectively. It is
noticed from Figure 2 that u as well as v increases on increasing K2. This
implies that rotation tends to accelerate fluid flow in both the primary and
secondary flow directions. Figure 3 manifests the effect of Hall current on
both the primary and secondary fluid velocities. It is evident from Fig-
ure 3 that u increases whereas v decreases on increasing m. This implies
that Hall current tends to accelerate fluid flow in the primary flow direc-
tion whereas it has a reverse effect on the fluid flow in the secondary flow
direction. Figure 4 demonstrates the effect of magnetic field on both the
primary and secondary fluid velocities. Figure 4 reveals that both u and v

decrease on increasing M2. This implies that magnetic field tends to decel-
erate fluid flow in both the primary and secondary flow directions. Figure
5 manifests the effect of permeability of the medium on both the primary
and secondary fluid velocities. It is evident from Figure 5 that u decreases
whereas v increases on increasing K1. This implies that permeability of
the medium tends to decelerate the fluid flow in the primary flow direc-
tion whereas it has a reverse effect on the fluid flow in the secondary flow
direction. Figure 6 depicts the effect of Hall current on both the primary
and secondary induced magnetic fields hx and hy respectively. It is evident
from Figure 6 that hx decreases whereas hy behaves in oscillatory manner
on increasing m. This implies that Hall current tends to reduce primary in-
duced magnetic field. Figure 7 depicts the influence of rotation on both the
primary and secondary induced magnetic fields. It is revealed from Figure
7 that both hx and hy increase on increasing K2. This implies that rotation
tends to enhance both the primary and secondary induced magnetic fields.
Figure 8 depicts the influence of magnetic field on both the primary and
secondary induced magnetic fields. It is revealed from Figure 8 that both
hx and hy decrease on increasing M2. This implies that magnetic field
tends to reduce both the primary and secondary induced magnetic fields.
Figure 9 displays the influence of permeability of the medium on both the
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primary and secondary induced magnetic fields. It is noticed from Figure 9
that hx decreases whereas hy increases on increasing K1. This implies that
permeability of the medium tends to reduce the primary induced magnetic
field whereas it has a reverse effect on the secondary induced magnetic field.

The numerical solution of the energy equation (41), computed using
MATLAB software, is displayed graphically versus channel width variable
η in Figures 10 to 13 for various values of m, K2, M2 and K1 taking
Prandtl number Pr = 7 and Eckert number Ec = 0.2. All parametric values
corresponding to each figure are included therein. Figure 10 displays the
influence of Hall current on the fluid temperature θ. It is evident from
Figure 10 that, with an increase in m, θ increases in the region 0 ≤ η < 0.2
whereas it decreases in the region 0.2 ≤ η ≤ 1. This implies that Hall
current tends to enhance fluid temperature in the region near the stationary
plate whereas it has a reverse effect on the fluid temperature in most of the
region of the channel. Figure 11 shows the effect of rotation on the fluid
temperature θ. It is evident from Figure 11 that, with an increase in K2,
θ increases in the region 0 ≤ η < 0.8 whereas it decreases in the region
0.8 ≤ η ≤ 1. This implies that rotation tends to enhance fluid temperature
in most of the region of the channel whereas it has a reverse effect on
the fluid temperature in the region near the moving plate of the channel.
Figure 12 depicts the effect of magnetic field on the fluid temperature θ.
It is noticed from Figure 12 that, with an increase in M2 , θ decreases in
the region 0 ≤ η < 0.2 whereas it increases in the region 0.2 ≤ η ≤ 1.
This implies that magnetic field tends to reduce fluid temperature in the
region near the stationary plate of the channel whereas it tends to enhance
fluid temperature in most of the region of the channel. Figure 13 reveals
the effect of permeability of the medium on the fluid temperature θ. It is
evident from Figure 13 that θ decreases on increasing K1. This implies that
permeability of the medium tends to reduce fluid temperature throughout
the channel.

The numerical values of primary shear stress τx and secondary shear
stress τy at the stationary and moving plates of the channel and those of
primary and secondary mass flow rates Qx and Qy, calculated from the
analytical expressions (22) to (24), are displayed in tabular form in Tables
2 to 7 for various values of m, K2, M2 and K1. All parametric values
corresponding to each table are included therein. Negative values of shear
stress imply that frictional force acts in opposite direction. It is found
from Tables 2 and 3 that primary shear stress at the stationary plate i.e.
τx |η=0 increases whereas secondary shear stress at the stationary plate
i.e. τy |η=0 decreases on increasing m. Both τx |η=0 and τy |η=0 increase
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on increasing K2 whereas it decrease on increasing M2. τx |η=0 decreases
whereas τy |η=0 increases on increasing K1. This implies that Hall current
tends to enhance the primary shear stress at the stationary plate whereas
it has a reverse effect on the secondary shear stress at the stationary plate.
Rotation has a tendency to enhance both the primary and secondary shear
stress at the stationary plate whereas magnetic field has a reverse effect
on both the primary and secondary shear stress at the stationary plate.
Permeability of the medium tends to reduce primary shear stress at the
stationary plate whereas it has a reverse effect on the secondary shear stress
at the stationary plate. Tables 4 and 5 reveal that primary shear stress at
the moving plate i.e. τx |η=1 decreases on increasing eitherm orK2 whereas
it increases on increasing either M2 or K1. Secondary shear stress at the
moving plate i.e. τy |η=1 increases on increasing m whereas it decreases
on increasing K2 when m ≥ 1. τy |η=1 decreases in magnitude, attains
a minimum, and then increases on increasing M2 whereas it increases in
magnitude on increasing K1 when M2 = 10 and decreases on increasing
K1 when M2 = 20. This implies that Hall current and rotation tend to
reduce primary shear stress at the moving plate whereas magnetic field and
permeability of the medium have reverse effect on it. Hall current tends to
enhance secondary shear stress at the moving plate whereas rotation has
a reverse effect on it when m ≥ 1. Permeability of the medium tends to
enhance secondary shear stress at the moving plate when M2 = 10 and
has a reverse effect on it when M2 = 20. It is interesting to note from
Tables 4 and 5 that there exists flow separation at the moving plate in
the secondary flow direction on increasing either K2 when m = 0.5 or m

when K2 = 7. Also there exists flow separation at the moving plate in the
secondary flow direction on increasing either M2 for every value of K1 or
K1 when M2 = 15. It is found from Tables 6 and 7 that primary mass
flow rate Qx increases on increasing either m or K2 whereas it decreases
on increasing either M2 or K1. Secondary mass flow rate Qy decreases on
increasing either m or M2 whereas it increases on increasing either K2 or
K1. This implies that Hall current and rotation tend to enhance primary
mass flow rate whereas magnetic field and permeability of medium have
reverse effect on it. Rotation and permeability of the medium tend to
enhance secondary mass flow rate whereas Hall current and magnetic field
have reverse effect on it.

The numerical values of rate of heat transfer at the stationary as well
as moving plate are computed with the help of MATLAB software and are
displayed in tabular form in Tables 8 to 10 for various values of m, K2,
M2, K1, Pr and Ec. All parametric values corresponding to each table are
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included therein. Negative values of rate of heat transfer at the moving
plate imply that, there is a transfer of heat from fluid to the plate due to
viscous and Joule dissipations. It is noticed from Tables 8 and 9 that rate
of heat transfer at the stationary plate i.e. dθ

dη
|η=0 increases on increasing

either m or K2 whereas it decreases on increasing either M2 or K1. Rate
of heat transfer at the moving plate i.e. dθ

dη
|η=1 decreases on increasing

either m or K2 whereas it increases on increasing either M2 or K1. This
implies that Hall current and rotation tend to enhance rate of heat transfer
at the stationary plate whereas these agencies have reverse effect on rate
of heat transfer at the moving plate. Magnetic field and permeability of
the medium tend to reduce rate of heat transfer at the stationary plate
whereas these agencies have reverse effect on rate of heat transfer at the
moving plate. It is evident from Table 10 that dθ

dη
|η=0 and dθ

dη
|η=1 increase

on increasing either Pr or Ec. Since Pr measures relative strength of vis-
cosity to thermal diffusivity, Pr decreases on increasing thermal diffusivity
of medium. This implies that thermal diffusion tends to reduce rate of heat
transfer at both the plates whereas viscous dissipation has a reverse effect
on it.

Sarkar et al. [29]
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Figure 6: Induced magnetic field
profiles when K2 = 7, M2 = 10
and K1 = 0.2.
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Table 2: Shear stress at the stationary plate when M2 = 10 and K1 = 0.2.

τx |η=0 τy |η=0

K2 ↓ m → 0.5 1 1.5 0.5 1 1.5

3 1.6824 1.8524 2.0026 0.9156 0.7967 0.7596

5 1.9523 2.1359 2.2885 1.5654 1.4435 1.4078

7 2.2646 2.4523 2.6044 2.1151 1.9824 1.9426

Table 3: Shear stress at the stationary plate when m = 0.5 and K2 = 7.

τx |η=0 τy |η=0

K1 ↓ M2 → 10 15 20 10 15 20

0.2 2.2646 2.0061 1.8111 2.1151 2.0281 1.9423

0.4 1.9489 1.6860 1.4928 2.3336 2.2314 2.1298

0.6 1.8439 1.5787 1.3857 2.4148 2.3065 2.1986

Table 4: Shear stress at the moving plate when M2 = 10 and K1 = 0.2.

τx |η=1 τy |η=1

K2 ↓ m → 0.5 1 1.5 0.5 1 1.5

3 2.2472 1.7616 1.3699 0.2405 0.5540 0.6050

5 2.0884 1.6151 1.2316 0.0269 0.3611 0.4299

7 1.9148 1.4644 1.0947 -0.1098 0.2468 0.3353

Table 5: Shear stress at the moving plate when m = 0.5 and K2 = 7.

τx |η=1 τy |η=1

K1 ↓ M2 → 10 15 20 10 15 20

0.2 1.9148 2.6291 3.2454 -0.1098 0.0261 0.1595

0.4 1.9761 2.7150 3.3460 -0.2288 -0.0876 0.0536

0.6 1.9943 2.7427 3.3793 -0.2744 -0.1308 0.0137

Table 6: Mass flow rates when M2 = 10 and K1 = 0.2.

Qx Qy

K2 ↓ m → 0.5 1 1.5 0.5 1 1.5

3 0.4669 0.5087 0.5470 0.0505 0.0162 0.0048

5 0.5075 0.5494 0.5871 0.1044 0.0677 0.0547

7 0.5525 0.5925 0.6287 0.1407 0.1007 0.0853
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Table 7: Mass flow rates when m = 0.5 and K2 = 7.

Qx Qy

K1 ↓ M2 → 10 15 20 10 15 20

0.2 0.5525 0.4870 0.4366 0.1407 0.1328 0.1243

0.4 0.5352 0.4667 0.4150 0.1718 0.1619 0.1511

0.6 0.5298 0.4600 0.4077 0.1836 0.1728 0.1610

Table 8: Rate of heat transfer at stationary and moving plates when
M2 = 10, K1 = 0.2, Pr = 7 and Ec = 0.2.

dθ
dη

|η=0 − dθ
dη

|η=1

K2 ↓ m → 0.5 1 1.5 0.5 1 1.5

3 7.0683 7.3462 7.7112 8.1756 4.8871 2.7237

5 8.8834 9.1520 9.5534 7.6536 4.4172 2.3451

7 11.2213 11.4606 11.8897 7.1751 4.0438 2.0714

Table 9: Rate of heat transfer at stationary and moving plates when
m = 0.5, K2 = 7, Pr = 7 and Ec = 0.2.

dθ
dη

|η=0 − dθ
dη

|η=1

K1 ↓ M2 → 10 15 20 10 15 20

0.2 11.2213 10.1963 9.4369 7.1751 12.2390 17.5908

0.4 9.2205 8.2253 7.4852 7.3701 12.5653 18.0389

0.6 8.6287 7.6353 6.8942 7.4367 12.6778 18.1941

Table 10: Rate of heat transfer at stationary and moving plates when
m = 0.5, K2 = 7, M2 = 10 and K1 = 0.2.

dθ
dη

|η=0 − dθ
dη

|η=1

Pr ↓ Ec → 0.2 0.4 0.6 0.2 0.4 0.6

1 2.4602 3.9204 5.3806 0.1679 1.3357 2.5036

3 5.3806 9.7611 14.1417 2.5036 6.0072 9.5108

7 11.2213 21.4426 31.6639 7.1751 15.3501 23.5252

7 Conclusions

In this paper investigation on steady hydromagnetic Couette flow of class-II
and heat transfer of a viscous, incompressible and electrically conducting
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fluid through a uniform porous medium in a rotating system taking Hall
current into account is carried out. The significant results are summarized
below:

• It is found that there arises a thin modified Ekman boundary layer
for large values of K2 and a thin modified Hartmann boundary layer
for large values of M2 near the plates of the channel.

• Hall current tends to accelerate fluid flow in the primary flow direc-
tion whereas it has a reverse effect on the fluid flow in the secondary
flow direction. Rotation tends to accelerate fluid flow in both the
primary and secondary flow directions whereas magnetic field has a
reverse effect on it. Permeability of the medium tends to decelerate
fluid flow in the primary flow direction whereas it has a reverse effect
on the fluid flow in the secondary flow direction.

• Hall current tends to reduce primary induced magnetic field. Ro-
tation tends to enhance both the primary and secondary induced
magnetic fields whereas magnetic field has a reverse effect on it. Per-
meability of the medium tends to reduce primary induced magnetic
field whereas it has a reverse effect on the secondary induced magnetic
field.

• There exists flow separation at the moving plate in the secondary flow
direction on increasing either K2 when m = 0.5 or m when K2 = 7.
Also there exists flow separation at the moving plate in the secondary
flow direction on increasing either M2 for every value of K1 or K1

when M2 = 15.

• In most of the region of the channel, Hall current tends to reduce fluid
temperature whereas rotation and magnetic field have reverse effect
on it. Permeability of the medium tends to reduce fluid temperature
throughout the channel.

• Hall current and rotation tend to enhance rate of heat transfer at the
stationary plate whereas these agencies have reverse effect on the rate
of heat transfer at the moving plate. Magnetic field and permeability
of the medium tend to reduce rate of heat transfer at the stationary
plate whereas these agencies have reverse effect on the rate of heat
transfer at the moving plate. Thermal diffusion tends to reduce rate
of heat transfer at both the plates whereas viscous dissipation has a
reverse effect on it.
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