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Abstract. A common method to determine the order of minimal realiza-
tion of a continuous linear time invariant descriptor system is to decompose
it into slow and fast subsystems using the Weierstrass canonical form. The
Weierstrass decomposition should be avoided because it is generally an
ill-conditioned problem that requires many complex calculations especially
for high-dimensional systems. The present study finds the order of minimal
realization of a continuous linear time invariant descriptor system without
use of the Weierstrass canonical form.
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1 Introduction

Consider the continuous linear time invariant descriptor system
{

Eẋ (t) = Ax (t) +Bu(t),
y (t) = Cx (t) +Du (t) ,

(1)

where constant matrices A,E∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,D ∈ Rp×m are
the coefficient matrices and x(t) ∈ Rn, u (t) ∈ Rm and y(t) ∈ Rp are the
state, input and output vectors, respectively.
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Matrix λE − A is called a matrix pencil. A matrix pencil can also be
denoted by the matrix pair (E,A). It is assumed that system (1) is regular,
i.e., there exists a λ ∈ C such that det(λE −A) 6= 0.

Matrix G(s) = C(sE −A)−1
B+D is referred to as the transfer matrix

of system (1). The dimension of state vector x(t) is called the order of
system. System (1) is C-controllable if rank[λE −A B]= n, ∀ λ ∈ C and

rank[E B] = n. System (1) is C-observable if rank

[

λE −A

C

]

= n , ∀ λ ∈

C and rank

[

E

C

]

= n. For the sake of brevity denote the sequel of system

(1) as [E, A, B, C, D ].
Systems [E,A,B,C,D] and [Ẽ, Ã, B̃, C̃, D̃] are called equivalent if their

orders and number of inputs and outputs are equal and there exist two
nonsingular matrices P and Q such that

Ẽ = PEQ, Ã = PAQ, B̃ = PB, C̃ = CQ, D̃ = D.

Further details about descriptor systems can be found in [2] and [4].

2 Determining the order of minimal realization of

descriptor systems using Weierstrass canonical

form

Since discernment of the proposed method for finding the minimal realiza-
tion order requires knowledge about the common method to calculate the
realization using Weierstrass canonical form, this section briefly explains
the necessary related concepts.

Theorem 1. If system [E,A,B,C,D] is regular with an order of n, it is
equivalent to system [Ẽ, Ã, B̃, C̃, D̃], where

Ẽ=

[

Inf
0

0 N

]

, Ã=

[

J 0
0 In∞

]

,

nf + n∞ = n , J ∈ Rnf×nf , N ∈ Rn∞×n∞. Submatrices J and N
are in Jordan canonical form and matrix N is a nilpotent matrix with the
nilpotence index υ ≥ 1.

Proof. Since matrix pencil (E, A) is regular, there exists a scalar λ ∈ C
such that det(λE −A) 6= 0. Define

E = (λE −A)−1
E, A = (λE −A)−1

A.
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It is easy to obtain

A = (λE −A)−1 (λE +A− λE) = λ(λE −A)−1
E − In = λĒ − In.

System (1) can be written as follows:

{

(λE −A)−1Eẋ(t) = (λE −A)−1Ax(t) + (λE −A)−1Bu(t),
y(t) = Cx(t) +Du(t).

Assuming (λE −A)−1
B = B̄, it follows that

{

Ēẋ (t) = Āx (t) + B̄u(t),
y (t) = Cx (t) +Du (t) .

(2)

There is a nonsingular matrix, such as M, which transforms Ē into Jordan
canonical form

M−1ĒM =

[

Ē1 0
0 Ē2

]

, (3)

where Ē1 ∈ Rnf×nf is nonsingular and Ē2 ∈ Rn∞×n∞ is nilpotent and
therefore λĒ2 − In∞

is nonsingular. In addition

M−1ĀM = M−1(λĒ − In)M

= λM−1ĒM − In =

[

λĒ1 − Inf
0

0 λĒ2 − In∞

]

. (4)

Assuming M−1x(t) = z(t), system (2) can be written as follows

{

M−1ĒMż(t) = M−1ĀMz(t) +M−1B̄u(t),
y(t) = CMz(t) +Du(t).

Inserting equations (3) and (4) into the previous system, produces







[

Ē1 0
0 Ē2

]

ż (t) =

[

λĒ1 − Inf
0

0 λĒ2 − In∞

]

z (t) +

[

B̄1

B̄2

]

u (t) ,

y (t) = [C̄1 C̄2]z (t) +Du (t) ,
(5)

where M−1B̄ =

[

B̄1

B̄2

]

and CM=[C̄1 C̄2]. System (5) can be written as

follows










[

Inf
0

0 N1

]

ż (t) =

[

J1 0
0 In∞

]

z (t) +

[

(

Ē1

)

−1
B̄1

(

λĒ2 − In∞

)

−1
B̄2

]

u (t) ,

y (t) =
[

C̄1 C̄2

]

z (t) +Du (t) ,
(6)
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where

J1 =
(

Ē1

)

−1 (
λĒ1 − Inf

)

= λInf
− (Ē1)

−1
,

N1 = (λĒ2 − In∞
)
−1

Ē2 .

If the index of nilpotence of Ē2 is υ ≥ 1, it follows from

(λĒ2 − In∞
)
−1

Ē2 = Ē2(λĒ2 − In∞
)
−1

,

that N1 is a nilpotent with nilpotence index υ ≥ 1. Matrices N1 and J1
in system (6) are not in Jordan canonical form, however, there exists two
nonsingular matrices G ∈ Rnf×nf and R ∈ Rn∞×n∞ such that

G−1J1G = J, R−1N1R = N,

and matrices J and N are in Jordan canonical form. In addition matrix N
is nilpotent.

Define S=

[

G 0
0 R

]

and assume that S−1z(t) = w(t). System (6) can

be written as:










[

Inf
0

0 N

]

ẇ (t) =

[

J 0
0 In∞

]

w (t) +

[

G−1
(

Ē1

)

−1
B̄1

R−1
(

λĒ2 − In∞

)

−1
B̄2

]

u (t) ,

y (t) =
[

C̄1G C̄2R
]

w (t) +Du (t) .
(7)

Suppose that

G−1
(

Ē1

)

−1
B̄1 = B1, R−1

(

λĒ2 − In∞

)

−1
B̄2 = B2,

C̄1G = C1, C̄2R = C2.

So






[

Inf
0

0 N

]

ẇ (t) =

[

J 0
0 In∞

]

w (t) +

[

B1

B2

]

u (t) ,

y (t) = [C1 C2]w (t) +Du (t) .

By defining

P = diag[G−1
(

Ē1

)

−1
, R−1

(

λĒ2 − In∞

)

−1
]M−1(λE −A)−1

,

Q = MS.

Then

Ẽ = PEQ=

[

Inf
0

0 N

]

, Ã = PAQ =

[

J 0
0 In∞

]

,
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B̃ = PB =

[

B1

B2

]

, C̃ = CQ = [C1 C2] , D̃=D .

As a result, the systems are equivalent and the conditions of the theorem
are established.

The basis of the proof for Theorem 1 is based on Duan [4].

Note 1. Representation

λPEQ− PAQ = λ

[

Inf
0

0 N

]

−

[

J 0
0 In∞

]

,

of pencil λE–A is referred to as the Weierstrass canonical form of λE–A.

Note 2. Using Theorem 1, system (1) can be decomposed into subsystems:
{

ẋ1 (t) = Jx1 (t) +B1u(t),
y (t)=C1x1 (t) ,

and

{

Nẋ2 (t) = x2 (t) +B2u (t) ,
y (t)=C2x2 (t) +Du(t),

which are called slow and fast subsystems, respectively. The transfer ma-
trices of the slow and fast subsystems are G1 (s) = C1(sI − J)−1

B1 and
G2 (s) = C2(sN − I)−1

B2 +D, respectively.

Notation 1. The slow system is shown with triple [J, B1, C1].

Definition 1. [E, A, B, C, D ] is the realization of transfer matrix G(s) if
G (s) = C(sE −A)−1

B +D. This realization is minimal, when it has the
smallest possible order.

Definition 2. The realization [E, A, B, C, 0 ] of transfer matrix G(s)
is conditionally minimal if it has the smallest possible order among all
realizations of form G (s) = C(sE −A)−1

B.

Theorem 2. The realization [E, A, B, C, 0] of transfer matrix G(s) is
conditionally minimal if and only if [E, A, B, C, 0] is C-controllable and
C-observable.

Proof. See [2] and [4].

Definition 3. The realization [E, A, B, C, D ] of transfer matrix G(s) is
called a deflated minimal realization if

1. System [E, A, B, C, D ] is C-controllable and C-observable.

2. Nilpotent matrix N in the Weierstrass canonical form of pencil sE−A

does not contain nilpotent Jordan blocks of index one.
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Theorem 3. A minimal realization of given rational matrix G(s) has the
same order as a deflated minimal realization of G(s).

Proof. See [6].

Note 3. Observe that, for every rational matrix G(s), there is representa-
tion G (s) = G1 (s)+G2 (s) where G1 (s) is a strictly proper rational matrix
and G2 (s) is a polynomial matrix. Suppose that: G1 (s) = C1(sI − J)−1

B1

and G2 (s) = C2(sN − I)−1B2 +D are minimal realizations of G1 (s) and
G2 (s), respectively. Then

G (s) = [C1 C2]

[

s

[

I 0
0 N

]

−

[

J 0
0 I

]]

−1 [

B1

B2

]

+D,

is a minimal realization of G(s).

Theorem 4. If G2 (s) is a polynomial matrix, the order of its deflated min-
imal realization will be equal to the order of minimal realization of G2 (s).

Proof. See [6].

Theorem 5. If G2(s) = C2(sN − I)−1
B2 + D is the deflated minimal

realization of polynomial matrix G2 (s), its order will equal:

n∗

1=
m
∑

i=2

idi ,

where di equals the number of Jordan blocks N of size of i and m is the
largest order of Jordan block in N.

Proof. See [6].

3 Determining order of minimal realization of poly-

nomial matrix G2 (s)=C2(sN−I)−1
B2+D without

use of Weierstrass canonical form

Lemma 1. The matrix R defined in Theorem 1 can be chosen such that
N = Ē2.

Proof. Assume that Ē2 = diag[Jα1
, Jα2

, . . . , Jαk
] is the nilepotent matrix

of size n∞ × n∞, in which submatrices Jαi
(i = 1, 2, . . . , k) are the Jordan

block, nilpotent matrices of dimension αi. Moreover
∑k

i=1 αi = n∞ and
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Jαi
=













0 1

0
. . .
. . . 1

0













, i = 1, 2, . . . , k.

Using the block diagonal form of matrix Ē2, produces

N1 = (λĒ2 − In∞
)
−1

Ē2

= diag[(λJα1
− Iα1

)−1Jα1
, (λJα2

− Iα2
)−1Jα2

, . . . , (λJαk
− Iαk

)−1Jαk
].

Since matrix Jαi
is upper triangular, for each i = 1, 2, . . . , k, we have

(λJαi
− Iαi

) =













−1 λ

−1
. . .
. . . λ

−1













=⇒ (λJαi
− Iαi

)−1 =



















−1 −λ −λ2 · · · −λαi−1

−1
. . .

. . .
...

. . .
. . . −λ2

. . . −λ

−1



















=⇒ (λJαi
− Iαi

)−1Jαi
=

























0 −1 −λ −λ2 · · · −λαi−2

0
. . .

. . .
. . .

...
. . .

. . .
. . . −λ2

. . .
. . . −λ
. . . −1

0

























.

Now, by choosing R appropriately, the above matrix can be transformed
into the Jordan canonical form

Jαi
=













0 1

0
. . .
. . . 1

0













,

using elementary row operations. This means that the Jordan canonical
form of each block of matrix N1 is equal to its corresponding block in
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matrix Ē2. Matrix N1 is, thus, transformed into Jordan canonical form
which is represented by N . In fact, each block of matrix N is equal to its
corresponding block in Ē2; Therefore, N = Ē2.

Lemma 2. If nilpotent matrix Ē2 does not contain nilpotent Jordan blocks
of index one, then the order of minimal realization G2 (s) = C2(sN − I)−1

B2+
D equals:

n∗

1=

m
∑

i=2

iei ,

where ei equals the number of Jordan blocks Ē2 of size of i and m is the
largest order of Jordan blocks in Ē2 .

Proof. This immediately follows from Theorem 5 and Lemma 1.

Therefore, to calculate the order of minimal realization of a fast sub-
system, write the Jordan form Ē2 and calculate n∗

1.

4 Determining order of minimal realization of stri-

ctly proper transfer matrix G1 (s) =C1(sI−J)−1
B1

without use of Weierstrass canonical form

Since subsystem [J1, (Ē1)
−1B̄1, C̄1] of system (6) is equivalent to subsys-

tem [J,B1, C1] of system (7), the order of their minimal realizations is
the same. Next consider subsystem [J1, (Ē1)

−1B̄1, C̄1]. Matrix J1 can be
directly obtained using Ē1 without using the Weierstrass canonical form
or by calculating matrices P and Q. In fact, J1 = λInf

− (Ē1)
−1. Also

(Ē1)
−1B̄1 can be calculated with Jordan decomposition Ẽ and B̄1; there-

fore, the order of minimal realization of [J1, (Ē1)
−1B̄1, C̄1] can be obtained

using common methods ( [1], [3] and [5]). If the order of minimal realization
of this subsystem is n∗

2, the order of minimal realization of system (1) is
equal to n = n∗

1 + n∗

2 .

Note 4. Taking into account both the controllability and observability of a
control system leads to the concept of minimal realization. This important
characteristic forms a system with the lowest possible order and it is impor-
tant to study and understand the control system. This is more important
when high dimensional systems are involved. Such systems allow the study
of a minimal system with lower dimensions than a main system. Knowing
and obtaining the minimal order for the system is important for various
reasons, one of them is that the main step to obtain minimal realization
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of a system in existing algorithms is to know the order of the minimal
system ( [2] and [4]). This knowledge makes each realization of minimal
order, controllable and observable and eliminates the need for determining
controllability and observability of the system.

5 Algorithm to determine order of minimal re-

alization of descriptor systems without use of

Weierstrass canonical form

For a given C-controllable and C-observable system [E,A,B,C,D]:

Step 1. Select λ ∈ C such that det(λE −A) 6= 0.

Step 2. Compute matrices Ē = (λE −A)−1
E and B̄ = (λE −A)−1

B.

Step 3. Find matrices M ∈ Rn×n, Ē1 and Ē2, such that equation (3) is sat-
isfied, where Ē1 ∈ Rnf×nf is nonsingular and Ē2 ∈ Rn∞×n∞ is nilpo-
tent.

Step 4. Compute matrices M−1B̄ =

[

B̄1

B̄2

]

and CM=[C̄1 C̄2], in which

B̄1 ∈ Rnf×m, B̄2 ∈ Rn∞×m, C̄1 ∈ Rp×nf and C̄2 ∈ Rp×n∞.

Step 5. Compute the order of minimal realization for slow subsystem
[J1, (Ē1)

−1B̄1, C̄1] using common methods.

Step 6. Compute the order of minimal realization of the fast subsystem by
removing blocks with nilpotence indices equal to 1 in nilpotent matrix
Ē2.

Step 7. Add orders of minimal realization from the slow and fast systems,
from steps 5 and 6 to be the order of minimal realization of descriptor
system [E,A,B,C,D].

Example 1. Consider system [E,A,B,C, 0] such that

E =

[

E1 0
0 0

]

, A =

[

A1 0
0 A2

]

, B =

[

B1

B2

]

, C = [C1 C2],

where

E1 =

























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

























, A1 =

























1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 3 0 1 0
0 0 0 0 0 2 0 1

























,
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C1 =

[

0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

]

, C2 =

[

0 0 0 0 0 0 −1
0 0 0 0 0 0 0

]

,

A2 =





















1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 1 0





















, B1 =

























−1 1
1 0
0 0
0 0
1 −2
−2 3
0 0
3 −3

























, B2 =





















0 0
1 2
0 0
0 0
−1 0
0 0
1 1





















.

The order of minimal of this system is 11. A program written in MATLAB
was used to obtain the order of minimal of this system. The program im-
plements both the Weierstrass canonical form and Jordan canonical form
for λ = 0. The first step used the common Weierstrass method, to exe-
cute all stages mentioned in the proof of Theorem 1 to find transformation
matrices, P and Q. Using these transformation matrices, the main system
was decomposed into descriptor and standard subsystems. The blocks of
dimension 1 in nilpotent matrix N , resulting from decomposition of the
main system were removed to obtain the order of the minimal descriptor
subsystem. Next, the order of the standard subsystem was obtained using
matrix J from the decomposition. The order of the main system equals the
summation of these two orders. The time consumed by the common Weier-
strass canonical form was 2.720401 sec. The Jordan canonical method, does
not need to perform all stages of the proof of Theorem 1; it is only necessary
to continue up to equation (3). Matrices Ē1 and Ē2 were used to compute
the orders of the descriptor subsystem and the standard subsystem respec-
tively. The order of the main system was obtained as the summation of
these two values. The time consumed by this method (without using the
Weierstrass canonical form) was 1.676645 sec. The lack of a need to em-
ploy transformation matrices which eliminates the need to compute their
inverses, and the decrease in the amount of calculation are advantages of
the proposed method.

6 Conclusion

This study found the order of minimal realization of transfer matrix G (s) =
C(sE −A)−1

B +D without the use of the Weierstrass canonical form and
transform matrices P and Q. The use of the Jordan canonical form, elim-
inated the use of the Weierstrass canonical form, which decreased the size
of the calculations and the time required to perform the calculations.
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