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Abstract. In this paper, we study the problem of minimizing the ra-
tio of two quadratic functions subject to a quadratic constraint. First
we introduce a parametric equivalent of the problem. Then a bisection
and a generalized Newton-based method algorithms are presented to solve
it. In order to solve the quadratically constrained quadratic minimization
problem within both algorithms, a semidefinite optimization relaxation ap-
proach is presented. Finally, two set of examples are presented to compare
the performance of algorithms.
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1 Introduction

Quadratically constrained quadratic fractional optimization problems arise
in wide-range applications including signal processing, communications, fi-
nancial analysis, location theory, portfolio selection problem, stochastic de-
cision making problems [11,13,17,18]. These class of problems are in general
nonconvex and hard to solve. However several among them are successfully
solved using semidefinite optimization (SDO) relaxation [1,3,15,16,19]. In
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2006, Beck et al. [2] solved a class of fractional quadratic problem sub-
ject to a quadratic constraint with application to the regularized total least
squares problem. Moreover in 2010, Beck and Teboulle [4], considered the
nonconvex problem minimizing the ratio of two quadratic functions over
finitely many nonconvex quadratic inequalities. Using the homogenization
technique, they established a sufficient condition that warrantees the at-
tainment of an optimal solution. In [22], Zhang and Hayashi focused on
fractional optimization problems that minimize the ratio of two indefinite
quadratic functions subject to two quadratic constraints. Using the re-
lationship between fractional and parametric optimization problems, they
transformed the original problem into a univariate nonlinear equation and
proposed a bisection method and a generalized Newton algorithm. Within
both algorithms, they need to solve a problem of minimizing a nonconvex
quadratic function subject to two quadratic constraints, which is commonly
called a Celis-Dennis-Tapia (CDT) subproblem.

In this paper, we consider the problem analogous to the one in [22] but
with one constraint as follows:

min
f1(x)

f2(x)
(1)

subject to xTBx− 2dTx+ e ≤ 0,

where
fi = xTAix− 2bTi x+ ci, i = 1, 2, (2)

A1, A2, B ∈ R
n×n are symmetric matrices, b1, b2, d ∈ R

n and c1, c2, e ∈ R.
Furthermore, we require that the denominator of the objective function is
away from zero in the feasible region. For simplicity we denote the feasible
region of the problem by F .

In Section 2, we represent the fractional problem as a parametric opti-
mization problem. Then the bisection and generalized Newton methods are
discussed to solve the parametric problem. In Section 3, we give an SDO
relaxation approach to solve the quadratically constrained quadratic prob-
lem within both algorithms. Finally in Section 4, we give some numerical
results to examine the efficiency of both algorithms.

2 Parametric approach

The following proposition gives the relationship between fractional and
parametric problems [8, 22].

Proposition 1. The following two statements are equivalent:
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1. min
x∈F

f1(x)

f2(x)
= α.

2.
F (α) := min

x∈F
{f1(x)− αf2(x)} = 0. (3)

Using this proposition, finding the minimum of (1) is equivalent to
a root-finding problem. Now, we give some properties of the univariate
function F .

Theorem 1. The following statements hold.
(a) F is concave over R.
(b) F is continuous at any α ∈ R.
(c) F is strictly decreasing.
(d) F (α) = 0 has a unique solution.

Proof. See [22]

In what follows, we give the bisection-based method algorithm to find
the root of F [22].

Algorithm 1: Bisection Algorithm

1: Choose l0 and u0 that l0 ≤ min
x∈F

f1(x)

f2(x)
≤ u0 holds. Set k := 1.

2: Let

αk :=
lk−1+uk−1

2 ,

then calculate F (αk) by solving the following minimization problem:

min
x∈F

f1(x)− αkf2(x) (4)

3: If | F (αk) |≤ ǫ, then terminate. Otherwise, update lk and uk as
follows:
If F (αk) ≤ 0,

lk := lk−1, uk := αk.

If F (αk) > 0,

lk := αk, uk := uk−1.
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Let k = k + 1. Return to Step 1.

As we see, the main step of the algorithm is Step 2 which requires
solving an indefinite quadratic optimization problem. Beside this main
difficulty, it is known that bisection method has slow convergence rate,
thus in the sequel a generalized Newton-based method is presented to solve
the problem.

The function F is is not differentiable, however, there exists an explicit
expression of its subgradient [22].

Theorem 2. For any α ∈ R, let xα be xα ∈ argminx∈F{−f1(x) + αf2(x)}.
Then, a subgradient of F at α is given by f2(xα), i.e.,

f2(xα) ∈ ∂F (α),

where ∂F denotes the clarke subdifferential of F .

Proof. See [22].

Algorithm 2: Generalized Newton Algorithm

1: Choose α1 ∈ R. Set k := 1.

2: Solve the following minimizing problem to obtain a global optimum
xk and its optimal value F (αk):

min
x∈F

f1(x)− αkf2(x) (5)

3: If | F (αk) |≤ ǫ, then terminate. Otherwise, Let:

αk :=
f1(x)

f2(x)

Let k = k + 1 and return to Step 1.

As we see, in both algorithms one requires to solve the following nonconvex
quadratically constrained quadratic minimization problem:

min
x∈F

xTAx− 2bTx+ c (6)
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where

A = A1 − αA2,

b = b1 − αb2,

c = c1 − αc2,

In general this subproblem is nonconvex, thus classical algorithms may not
lead to a global solution. In the next section, an SDO relaxation approach
is used to solve (6) globally.

3 SDO relaxation approach

Problem (6) except the constant c in the homogenized form is given by

min
x∈Rn, t∈R

xTAx− 2tbTx (7)

subject to xTBx− 2tdTx+ t2e ≤ 0,

t2 = 1.

Obviously if (x, t) solves this problem, then x/t is an optimal solution of
(1). Furthermore, (7) is equivalent to

min M0 • X̂

subject to M1 • X̂ ≤ 0, (8)

M2 • X̂ = 1,

where A •B = Trace(ATB) and

X̂ =

(

t2 txT

tx xxT

)

, M0 =

(

0 −bT

−b A

)

,

M1 =

(

e −dT

−d B

)

, M2 =

(

1 01×n

0n×1 0n×n

)

.

The SDO relaxation of (8) is

min
X∈Sn

M0 •X

subject to M1 •X ≤ 0, (9)

M2 •X = 1,

X � 0(n+1)×(n+1)
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where

X =

(

1 xT0
x0 X̄

)

.

The dual of (9) is given by

max y2 (10)

subject to y1M1 + y2M2 � M0

y1 ≤ 0, y2 free

or

max y2 (11)

subject to Z =M0 − y1M1 − y2M2

Z � 0(n+1)×(n+1), y1 ≤ 0, y2 free.

Theorem 3. Suppose (1) has a strictly feasible solution x0 and λ1A +
λ2B ≻ 0 for some λ1, λ2 ≥ 0. Then, both problems (9) and (11) also
satisfy the Slater regularity conditions. Hence, both problems attain their
optimal value and the duality gap is zero.

Proof. Let X be as follows:

X =

(

1 xT0
x0 X̄

)

,

where X̄ = x0x
T
0 + Q and Q = diag(q1, ..., qn) with all qi > 0. Obviously

by the Schur complement theorem, X is positive definite. Moreover,

M1 •X < 0 ⇐⇒ M1 •X =

(

e −dT

−d B

)

•

(

1 xT0
x0 x0x

T
0 +Q

)

= e− dTx0 − dTx0 + xT0 Bx0 +
n
∑

i=1

(B)iiqi < 0.

Now since x0 is strictly feasible for (1), then by choosing qi’s sufficiently
small, the inequality holds. Also

M2 •X =

(

1 01×n

0n×1 0n×n

)

•

(

1 xT0
x0 x0x

T
0 +Q

)

= 1.
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Therefore, X is a strictly feasible solution for the primal problem. Now for
the dual problem we have

Z = M0 − y1M1 − y2M2

=

(

0 −bT

−b A

)

− y1

(

e −dT

−d B

)

− y2

(

1 01×n

0n×1 0n×n

)

=

(

−(ey1 + y2) −bT + y1d
T

−b+ y1d A− y1B

)

.

By the Schur complement theorem

Z ≻ 0 ⇐⇒ A− y1B +
1

ey1 + y2
(−b+ y1d)(−b+ y1d)

T ≻ 0. (12)

Since (−b + y1d)(−b + y1d)
T is positive semidefinite, then by choosing y2

sufficiently large, the term 1
ey1+y2

(−b + y1d)(−b + y1d)
T will be always

positive semidefinite. Moreover, since λ1A + λ2B ≻ 0, then A − y1B ≻ 0
holds with appropriately chosen y1, which implies the Slater regularity of
(11).

Lemma 1. Let X be a positive semidefinite matrix with rank r and G be
an arbitrary symmetric matrix such that G • X ≤ 0. Then there exists a
rank−one decomposition for X such that X =

∑r
i=1 xix

T
i and xTi Gxi ≤ 0

for all i = 1, 2, . . . , r. If, in particular, if G •X = 0, then xTi Gxi = 0 for
all i = 1, 2, . . . , r.

Proof. See [9].

Now let us assume that X∗ with rank r and (y∗1 , y
∗
2, Z

∗) are optimal

solutions for (9) and (11), respectively. Moreover let x∗i =

[

t∗i
x̄∗i

]

, then by

the second constraint of (9), for at least one k = 1, . . . , r, we have t∗k 6= 0.

Now let us assume y∗k = [1, (ȳ∗k)
T ]T with ȳ∗k =

x̄∗

k

t̄∗
k

and Y ∗ = y∗k(y
∗
k)

T . Then

we have

M1 • Y
∗ ≤ 0.

Similarly one has

M2 • Y
∗ = 1, Z∗ • Y ∗ = 0.

Therefore Y ∗, (y∗, Z∗) are optimal solution for (9) and (11), respectively.
Now since (9) is equivalent to (7), then Y ∗ is optimal for (7) as well. This
further implies ȳ∗k is optimal for (1).
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4 Numerical Results

In this section, we consider two sets of examples to compare the two previ-
ous algorithms for dimensions 50 to 550 for different densities. In order to
solve the subproblem within both algorithms, we use “fmincon” command
of Matlab and the SDO relaxation approach of the previous section. For
both algorithms, ǫ is set to be 10−6 . Results are summarized in Tables 1 to
3. For each dimension, we generate 5 test problems and report the average
CPU time and roots. All computations are performed on MATLAB 8.1
using a PC computer with Intel(R) Core Duo CPU 2.40 GHz and 8.00 GB
of RAM. In all tables “——–” means the algorithm is not able to solve the
problem.

Example 1. Consider the following problem

min
x∈Rn

xTA1x− 2bT1 x+ c1
‖ x ‖2 +1

,

subject to xTA2x− 2bT2 x+ c2 ≤ 0,

whereA1, A2 are two symmetric matrices, A2 is positive semidefinite, b2, b1 ∈
R
n, c2, c1 ∈ R. As wee see in Table 1, both algorithms solve all problems

and the one using “fmincon” command is faster than the SDO relaxation
approach on most problems. However, from Table 2 we observe that when
algorithm is using “fmincon”, it fails to solve some problems and for densi-
ties 1 to 0.1, among the problems which can be solved by both algorithms,
SDO-based algorithm is faster on most problems, while the “fmincon”-
based algorithm is better for sparse problems.

Example 2. Consider the following problem

min
x∈Rn

xTA1x− 2bT1 x+ c1

xTA2x− 2bT2 x+ c2
,

subject to xTA3x− 2bT3 x+ c3 ≤ 0,

where A1, A2, A3 are symmetric and A3 is positive semidefinite, b3, b1 ∈ R
n,

b2 ∈ R
n c3, c2, c1 ∈ R. For this class of examples, we do not report the re-

sults of Algorithm 1 due to its slow convergence rate. In Table 3 we have
reported the results for Algorithm 2. As wee see, when the algorithm is us-
ing “fmincon” command, it fails to solve some problems, while SDO-based
algorithm solves all problems. Moreover, SDO is faster than “fmincon”
command for most of those problems which “fmincon” can solve. Over-
ally, from tables we can observe that the SDO-based algorithms are robust
although they might be slow one some problems.
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Table 1: Numerical results for Example 1 using Algorithm 1
SDO fmincon

n density α time α time
50 1 -1.203041e+00 2.244538e+01 -1.203041e+00 2.433823e+01
100 1 -2.272280e+00 8.279166e+01 -2.272280e+00 3.879564e+01
150 1 -4.507551e+00 2.475396e+02 -4.507551e+00 2.053157e+02
50 0.5 -1.532171e+00 2.406932e+01 -1.532171e+00 3.432474e+01
100 0.5 -2.761989e+00 6.920756e+01 -2.761989e+00 3.961989e+01
150 0.5 -3.886832e+00 2.148970e+02 -3.886832e+00 4.304446e+01
200 0.5 -4.253636e+00 5.382952e+02 -4.253636e+00 3.546856e+02
50 0.25 -1.477334e+00 2.233867e+01 -1.477334e+00 2.803656e+01
100 0.25 -4.311943e+00 4.770934e+01 -4.311943e+00 4.112678e+01
150 0.25 -4.874942e+00 1.963069e+02 -4.874942e+00 4.976305e+01
200 0.25 -5.595645e+00 4.529062e+02 -5.595645e+00 5.356899e+01
50 1e-1 -3.259227e+00 2.344456e+01 -3.259227e+00 1.943978e+01
100 1e-1 -4.540142e+00 7.320052e+01 -4.540142e+00 6.825349e+01
150 1e-1 -6.206322e+00 2.010590e+02 -6.206322e+00 1.182349e+02
200 1e-1 -7.045596e+00 4.717287e+02 -7.045596e+00 2.123551e+02
250 1e-1 -7.983914e+00 7.373832e+02 -7.983914e+00 2.600914e+02
300 1e-1 -8.456371e+00 1.236395e+03 -8.456371e+00 3.085462e+02
350 1e-1 -9.817050e+00 1.799365e+03 -9.817050e+00 2.755520e+02
400 1e-1 -9.954717e+00 3.242619e+03 -9.954717e+00 8.302876e+02
50 1e-2 -2.976855e+00 1.101675e+01 -2.976855e+00 4.646819e+01
100 1e-2 -5.387870e+00 5.903953e+00 -5.387870e+00 3.217152e+01
150 1e-2 -6.953154e+00 1.091339e+02 -6.953154e+00 4.768078e+01
200 1e-2 -7.916123e+00 2.917711e+02 -7.916123e+00 1.246565e+02
250 1e-2 -8.843726e+00 5.393416e+02 -8.843726e+00 1.864699e+02
300 1e-2 -9.959038e+00 8.960638e+02 -9.959038e+00 3.126383e+02
350 1e-2 -1.048172e+00 1.375094e+03 -1.048172e+00 3.671712e+02
400 1e-2 -1.173159e+01 2.084403e+03 -1.173159e+01 4.431602e+02
450 1e-2 -1.240355e+01 2.880718e+03 -1.240355e+01 2.629137e+02
50 1e-3 -3.302979e+00 2.348483e+01 -3.302979e+00 4.225397e+01
100 1e-3 -5.323466e+00 5.761741e+01 -5.323466e+00 1.630380e+01
150 1e-3 -6.879773e+00 1.404970e+02 -6.879773e+00 3.890080e+01
200 1e-3 -7.851325e+00 2.649818e+02 -7.851325e+00 6.413956e+01
250 1e-3 -8.823625e+00 4.857750e+02 -8.823625e+00 7.708184e+01
300 1e-3 -9.801415e+00 8.593537e+02 -9.801415e+00 1.191771e+02
350 1e-3 -1.040392e+01 1.313989e+03 -1.040392e+01 1.862124e+02
400 1e-3 -1.147393e+01 1.992004e+03 -1.147393e+01 2.406859e+02
450 1e-3 -1.216152e+01 2.902077e+03 -1.216152e+01 2.774110e+02
500 1e-3 -1.233325e+01 6.111908e+03 -1.233325e+01 2.983806e+02
550 1e-3 -1.342142e+01 5.405368e+03 -1.342142e+01 2.962538e+02

5 Conclusions

In this paper, we have studied minimizing the ratio of two quadratic func-
tions subject to a quadratic constraint. Two existing algorithms from the
literature are presented and a SDO relaxation approach is introduced to
solve the underlying subproblems within both algorithms. Our compu-
tational experiments on several randomly generated test problems with
various dimensions and densities show that the SDO relaxation is better
than the case when we use “fmincon” command of MATLAB to solve the



10 M. Salahi and A. Zare

Table 2: Numerical results for Example 1 using Algorithm 2
SDO fmincon

n density α time α time
50 1 -1.203041e+00 1.776531e+00 -1.203041e+00 4.524196e+00
100 1 -2.272280e+00 7.345768e+00 ——– ——–
150 1 -4.507551e+00 2.564052e+01 ——– ——–
50 0.5 -1.532171e+00 2.031175e+00 -1.532171e+00 1.747989e+01
100 0.5 -2.761989e+00 9.091808e+00 ——– ——–
150 0.5 -3.886832e+00 2.339637e+01 ——– ——–
200 0.5 -4.253636e+00 5.528322e+01 ——– ——–
50 0.25 -1.477334e+00 1.815958e+00 -1.477334e+00 5.562837e+00
100 0.25 -4.311943e+00 7.726511e+00 ——– ——–
150 0.25 -4.874942e+00 2.110719e+01 ——– ——–
200 0.25 -5.595645e+00 4.611992e+01 ——– ——–
50 1e-1 -3.259227e+00 1.852506e+00 -3.259227e+00 2.215671e+00
100 1e-1 -4.540142e+00 7.854478e+00 -4.540142e+00 5.663952e+01
150 1e-1 -6.206322e+00 1.994895e+01 -6.206322e+00 2.830753e+01
200 1e-1 -7.045596e+00 4.784027e+01 -7.045596e+00 6.111840e+00
250 1e-1 -7.983914e+00 9.147257e+01 -7.983914e+00 1.593589e+01
300 1e-1 -8.456371e+00 1.544323e+02 ——– ——–
350 1e-1 -9.817050e+00 2.456413e+02 ——– ——–
400 1e-1 -9.954717e+00 4.316310e+02 ——– ——–
50 1e-2 -2.976855e+00 2.228447e+00 -2.976855e+00 4.435214e+00
100 1e-2 -5.387870e+00 6.048665e+00 -5.387870e+00 1.300060e+01
150 1e-2 -6.953154e+00 1.972976e+01 -6.953154e+00 2.368148e+01
200 1e-2 -7.916123e+00 3.390616e+01 -7.916123e+00 2.582431e+01
250 1e-2 -8.843726e+00 7.312239e+01 -8.843726e+00 6.351422e+01
300 1e-2 -9.959038e+00 1.226811e+02 -9.959038e+00 8.001024e+01
350 1e-2 -1.048172e+00 1.836862e+02 -1.048172e+00 8.253071e+01
400 1e-2 -1.173159e+01 3.411169e+02 -1.173159e+01 2.567219e+02
450 1e-2 -1.240355e+01 4.867198e+02 -1.240355e+01 9.986375e+01
50 1e-3 -3.302979e+00 2.269103e+00 -3.302979e+00 9.012562e+00
100 1e-3 -5.323466e+00 5.523672e+00 -5.323466e+00 2.257842e+01
150 1e-3 -6.879773e+00 1.899749e+01 -6.879773e+00 6.615520e+01
200 1e-3 -7.851325e+00 3.446472e+01 -7.851325e+00 1.019773e+01
250 1e-3 -8.823625e+00 6.622839e+01 -8.823625e+00 1.177376e+01
300 1e-3 -9.801415e+00 1.392504e+02 -9.801415e+00 1.585505e+01
350 1e-3 -1.040392e+01 2.155496e+02 -1.040392e+01 2.725475e+01
400 1e-3 -1.147393e+01 3.275338e+02 -1.147393e+01 4.230004e+01
450 1e-3 -1.216152e+01 4.756332e+02 -1.216152e+01 4.613759e+01
500 1e-3 -1.233325e+01 6.439025e+02 -1.233325e+01 5.409772e+01
550 1e-3 -1.342142e+01 8.917905e+02 -1.342142e+01 5.987055e+01

subproblems. Extending our approach to the other classes of fractional
problems are left for interested readers.
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Table 3: Numerical results for Example 2 using Algorithm 2
SDO fmincon

n density α time α time
50 1 -1.258963e+00 2.958644e+00 ——– ——–
100 1 -2.125057e+00 1.631298e+01 ——– ———
50 0.5 -1.576781e+00 3.450615e+00 ——– ——–
100 0.5 -1.167992e+00 1.378850e+01 ——– ——–
150 0.5 -1.354655e+00 4.054407e+01 ——– ——–
200 0.5 -1.846205e+00 9.175490e+01 ——– ——–
50 0.25 -9.593844e+00 2.693359e+00 ——– ——–
100 0.25 -1.671113e+00 1.756213e+01 ——– ——–
150 0.25 -1.510739e+00 4.062985e+01 ——– ——–
200 0.25 -2.464268e+00 9.385546e+01 ——– ——–
50 1e-1 -1.660130e+00 1.425864e+00 -1.660130e+00 1.81655e+01
100 1e-1 -1.975422e+00 1.558024e+01 ——— ——–
150 1e-1 -1.769742e+00 4.223061e+01 ——— ——–
200 1e-1 -2.049265e+00 9.533966e+01 ——— ——–
250 1e-1 -1.543671e+00 9.906579e+01 ——— ——–
300 1e-1 -2.854732e+00 2.922332e+02 ——— ——–
350 1e-1 -3.953304e+00 5.148218e+02 ——— ——–
400 1e-1 -3.973742e+00 4.755629e+02 ——— ——–
50 1e-2 -1.157849e+00 3.288964e+00 -1.157849e+00 9.785501e+00
100 1e-2 -1.356978e+00 1.142670e+01 -1.356978e+00 1.296221e+01
150 1e-2 -1.624859e+00 2.880941e+01 ——— ——–
200 1e-2 -1.938739e+00 6.325097e+01 ——— ——–
250 1e-2 -2.828952e+00 1.182690e+02 ——— ——–
300 1e-2 3.801268e+00 2.356515e+02 ——— ——–
350 1e-2 -2.884995e+00 3.463546e+02 ——— ——–
400 1e-2 -3.973742e+00 4.755629e+02 ——— ——–
450 1e-2 -4.494638e+00 6.343319e+02 ——— ——–
50 1e-3 -1.489773e+00 4.015604e+00 -1.489773e+00 1.315874e+00
100 1e-3 -1.612217e+00 1.641235e+01 -1.612217e+00 1.200856e+01
150 1e-3 -2.159040e+00 2.797469e+01 -2.159040e+00 1.973654e+01
200 1e-3 -2.646711e+00 3.724827e+01 -2.646711e+00 5.874495e+01
250 1e-3 -3.007925e+00 1.152657e+01 ——— ——–
300 1e-3 -4.139799e+00 2.046470e+02 ——— ——–
350 1e-3 -2.602452e+00 3.088694e+02 ——— ——–
400 1e-3 -4.211007e+00 7.803894e+02 ——— ——–
450 1e-3 -4.505398e+00 9.766945e+02 ——— ——–
500 1e-3 -6.072257e+00 1.371127e+03 ——— ——–
550 1e-3 -3.349576e+00 1.320868e+03 ——— ——–
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