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Abstract. Classical explicit finite difference schemes are unsuitable for
the solution of the famous Black-Scholes partial differential equation, since
they impose severe restrictions on the time step. Furthermore, they may
produce spurious oscillations in the solution. We propose a new scheme
that is free of spurious oscillations and guarantees the positivity of the so-
lution for arbitrary stepsizes. The proposed method is constructed based
on a nonstandard discretization of the spatial derivatives and is applicable
to Black-Scholes equation in the presence of discontinues initial conditions.
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1 Introduction

Mathematical finance is a field of applied mathematics, concerned with
financial markets. In the market of financial derivatives, options, futures
and forward contracts are extremely useful tools. The simplest option gives
the holder the right, but not the obligation to buy or sell an underlying asset
at a specific price on or before a certain date at a fixed strike price. The
simplest types of option (called European options) come in two main brands
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calls and puts. European option can be exercised only at the expiry date
T. For American option exercise is permitted at any time t ≤ T . Option
pricing has become increasingly important in the finance world. Black
and Scholes published their germinal work on option pricing in [3]. Since
double barrier options are becoming more and more popular, they are not
considered to be complicated anymore. The application of the nonstandard
finite difference method and investigation of its positivity preserving and
smoothing properties for pricing European call option with discrete double
barrier are the subject of this paper. We concentrate on a double barrier
knock out option with discrete monitoring, which satisfies the Black-Scholes
pricing partial differential equation:

−∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV = 0, (1)

in which S is the asset price and V (S, t) is the price of the option and
endowed with initial and boundary conditions:

V (S, 0) = max(S −K, 0)1[L,U ](S),

V (S, t) → 0 as S → 0 or S → ∞,

with updating of the initial condition at the monitoring dates ti, i =
1, . . . , F :

V (S, ti) = V (S, t−i )1[L,U ](S), 0 = t0 < t1 < · · · < tF = T,

where 1[L,U ](S) is the indicator function, i.e.,

1[L,U ](S) =

{
1, if S ∈ [L,U ],

0, if S /∈ [L,U ].
(2)

Moreover K is the exercise price, T is the maturity, the parameter r > 0 is
the interest rate and the reference volatility is σ > 0. Notice that such an
option has a payoff condition equal to max(S−K, 0) but the option expires
worthless if the maturity of the asset price S has fallen outside the corridor
[L,U ] at the prefixed monitoring dates. On the other hand the knock-out
clause at the monitoring date introduces a discontinuity at the barriers set
at S = L and S = U respectively. For more details see [2, 8, 15].

Explicit numerical methods based on the standard finite difference ap-
proach are consistent with the original differential equation and guarantee
convergence of the discrete solution to the exact one, but they impose
severe restrictions on the time step and in the presence of discontinuous
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payoff and low volatility, essential qualitative properties of the solution are
not transferred to the numerical solution [15–18]. Spurious oscillations and
negative values might be occurred in the solution. For example by using for-
ward difference for ∂V

∂t and centered difference for discretization of ∂V
∂S and

∂2V
∂S2 and approximations V n

j of V at the grid points (j∆S, n∆t) for every
j = 1, . . . , N and n = 0, 1, . . . ,M , where N = Smax/∆S, M = T/∆t and
[0, Smax] × [0, T ] is the computational domain, an explicit finite difference
method take the form:

−V n+1
j − V n

j

∆t
+rS

V n
j+1 − V n

j−1

2∆S
+
1

2
σ2S2

V n
j−1 − 2V n

j + V n
j+1

∆S2
−rV n

j = 0. (3)

Comparing with the analytical solution V (T, S) = exp(−rT )(1 − N(d2)),
with N(·) standard normal cumulative distribution and

d2 =
log(S/k) + (r − 1

2σ
2)T

σ
√
T

,

we observe that method (3) has lower accuracy and often generates nu-
merical drawbacks such as spurious oscillations and negative values in the
solution applied to (1), whenever the financial parameters of the Black-
Scholes model σ and r satisfy the relationship σ2 � r, see Figure 1. In
the case of larger time steps, we see the same behavior, see Figure 2. The
analytical solution and the values of the parameters used in our simulation
are taken from [15].
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Figure 1: Truncated call option value for the explicit method with ∆S = 0.01, ∆t = 10−6.
parameters: L = 90, K = 100, U = 110, r = 0.05, σ = 0.001, T = 0.01, Smax = 120.
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Figure 2: Truncated call option value for the explicit method with ∆S = 0.01, ∆t = 10−3.
parameters: L = 90, K = 100, U = 110, r = 0.05, σ = 0.001, T = 0.01, Smax = 120.

2 Scheme construction

In this section by using the strategy of nonstandard discretization meth-
ods (using values at different time levels for discretization of ∂V

∂S ,
∂2V
∂S2 and

approximation V n+1
j of V , see [4–10, 12–14]) we propose our new scheme

as:

−V n+1
j − V n

j

∆t
+rSj

V n
j+1 − V n+1

j

∆S
+
1

2
σ2S2

j

V n
j−1 − 2V n+1

j + V n
j+1

∆S2
−rV n+1

j = 0,

(4)
The explicit form of (4) is:

V n+1
j =

1
2 (

σSj

∆S )
2V n

j−1 +
1
∆tV

n
j +

( rSj

∆S + 1
2(

σSj

∆S )
2
)
V n
j+1

1
∆t +

rSj

∆S + (
σSj

∆S )
2 + r

. (5)

Similar to the method in [8,11,17], the new proposed scheme performs well
for larger time steps but the main advantage of it is unconditional positivity
and stability (these results will be discussed in following).

Proposition 1. Assuming V n
j−1, V

n
j and V n

j+1 are nonnegative real num-

bers, then (5) provides a nonnegative approximation V n+1
j to the solution

of (1).

Theorem 1. The new proposed scheme is unconditionally stable and con-
vergent with local truncation error O(∆t,∆S2).

Proof. Using the Fourier stability method [1] put

V n
j = eαn∆teiβj∆S , (6)
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where i =
√

(−1), and β is an arbitrary real parameter. By substituting
(6) into (5) we obtain

eα(n+1)∆teiβj∆S =

1
2(

σSj

∆S )
2eαn∆teiβ(j−1)∆S + 1

∆te
αn∆teiβj∆S +

(rSj

∆S + 1
2 (

σSj

∆S )
2
)
eαn∆teiβ(j+1)∆S

1
∆t +

rSj

∆S + (
σSj

∆S )
2 + r

,

(7)

and division by eαn∆teiβj∆S leads to

eα∆t =
1
2(

σSj

∆S )
2e−iβ∆S + 1

∆t +
( rSj

∆S + 1
2 (

σSj

∆S )
2
)
eiβ∆S

1
∆t +

rSj

∆S + (
σSj

∆S )
2 + r

. (8)

By taking the real part, it is seen that the absolute value of the amplification
factor eα∆t ≤ 1. Therefore the scheme is stable and convergent with local
truncation error:

T n
j =− V (Sj, tn+1)− V (Sj , tn)

∆t
+ rSj

V (Sj+1, tn)− V (Sj , tn+1)

∆S

+
1

2
σ2S2

j

V (Sj−1, tn)− 2V (Sj , tn+1) + V (Sj+1, tn)

∆S2
− rV (Sj , tn+1).

(9)

By Taylor’s expansion, we have

V (Sj , tn+1) = V (Sj , tn)+∆t

(
∂V

∂t

)n

j

+
∆t2

2

(
∂2V

∂t2

)n

j

+
∆t3

6

(
∂3V

∂t3

)n

j

+ · · · ,

V (Sj+1, tn) = V (Sj , tn)+∆S

(
∂V

∂S

)n

j

+
∆S2

2

(
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∂S2

)n

j

+
∆S3

6

(
∂3V

∂S3
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+· · · ,

V (Sj−1, tn) = V (Sj , tn)−∆S

(
∂V

∂S

)n

j

+
∆S2

2

(
∂2V

∂S2

)n

j

−∆S3

6

(
∂3V

∂S3

)n

j

+· · · ,

substituting these equations into the expression for T n
j then gives

T n
j =

(
− ∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
− rV

)n

j

− (
rj∆t+ σ2j2∆t+ r∆t

)(∂V

∂t

)n

j

+
1

2
rj∆S2

(
∂2V

∂S2

)n

j

−
(
1

2
∆t+

1

2
rj2∆t2 +

1

2
σ2j2∆t2 +

1

2
r∆t2

)(
∂2V

∂t2

)n

j

+ · · · . (10)
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But V is the solution of the Black-Scholes equation so(
− ∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
− rV

)n

j

= 0.

Therefore the principle part of the local truncation error is

−(
rj∆t+ σ2j2∆t+ r∆t

)(∂V

∂t

)n

j

+
1

2
rj∆S2

(
∂2V

∂S2

)n

j

.

Hence
T n
j = O(∆t+∆S2).

3 Numerical Results

To illustrate the advantage of the designed new positive explicit scheme,
we again consider the Black-Scholes equation (1) with σ2 � r. Proposed
nonstandard scheme provides an accurate spurious oscillation free solution
and is positivity preserving, see Figure 3.
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Figure 3: Truncated call option value for nonstandard explicit method with ∆s = 0.01,
∆t = 10−6. parameters: L = 90, K = 100, U = 110, r = 0.05, σ = 0.001, T = 0.01,
Smax = 120.
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As we can see in Figure 4, similar behavior is observed when (5) is used
with larger time steps.
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Figure 4: Truncated call option value for nonstandard explicit method with ∆s = 0.01,
∆t = 10−3. parameters: L = 90, K = 100, U = 110, r = 0.05, σ = 0.001, T = 0.01,
Smax = 120.

4 Conclusions and discussion

Within the strategy of the nonstandard discretization of spatial derivatives,
we have presented an alternative scheme to the classical explicit ones that
prevents the occurrence of spurious oscillations and negative values where
even very small negative values are unacceptable. The main advantages
of the new scheme is that in addition to the unconditionally positivity
property, it performs well for larger time steps. Future works will include
extending the new scheme to the nonlinear Black-Scholes equation.
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