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Abstract. In this article, a numerical method based on improvement of
block-pulse functions (IBPFs) is discussed for solving the system of linear
Volterra and Fredholm integral equations. By using IBPFs and their op-
erational matrix of integration, such systems can be reduced to a linear
system of algebraic equations. An efficient error estimation and associated
theorems for the proposed method are also presented. Some examples are
given to clarify the efficiency and accuracy of the method.
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1 Introduction

Systems of linear integral equations and their solutions have great impor-
tance in science and engineering. Most physical problems, such as biological
applications in population dynamics and genetics where impulses arise nat-
urally or are caused by control, can be modeled by an integral equation or
a system of these equations. The systems of integral equations are usually
difficult to solve analytically, thus some numerical methods are applied to
approximately solve them. Systems of linear Volterra and Fredholm inte-
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gral equations can be appeared in the following form, respectively

f(x) = g(x) +

∫ x

0
k(x, y)f(y)dy, x ∈ D = [0, 1), (1)

and

f(x) = g(x) +

∫ 1

0
k(x, y)f(y)dy, x ∈ D, (2)

where f(x) is an unknown function and g(x) and k(x, y) are analytical
function on D and D ×D, respectively, as follows

f(x) = [f1(x), f2(x), . . . , fm(x)]T , (3)

g(x) = [g1(x), g2(x), . . . , gm(x)]T , (4)

k(x, y) = [kij(x, y)] , i, j = 1, 2, . . . ,m. (5)

Recently, several numerical methods such as the homotopy perturba-
tion method [24, 25], the Lagrange method [23], the modified homotopy
perturbation method [8], the rationalized Haar functions method [10, 11],
the differential transformation method [1], the Tau method [16], the vari-
ational iteration method [19], the Legendre matrix method [22], the Ado-
mian method [5], the Galerkin method [12], the Bessel matrix method [21],
and other methods [14–19] have been used for solving integral and integro-
differential equations systems.

In this paper, IBPFs are introduced. Also, some theorems are proved for
IBPFs method that show the results of this numerical expansions are more
precise than the results of block pulse expansions. This functions are dis-
joint, orthogonal and complete. According to the disjointness of IBPFs, the
joint terms will disappear in each subinterval when multiplication, division
and some other operations are applied. Also, the orthogonality property of
IBPFs will cause that the operational matrix to be a sparse matrix. The
completeness of IBPFs guarantees that an arbitrary small mean square er-
ror can be obtained for a real bounded function, which has only a finite
number of discontinuous point in the interval x ∈ [0, 1), by increasing the
number of terms in the improved block pulse series.

The rest of paper is organized as follows: In Section 2, we describe
IBPFs and their properties. In Section 3, we apply IBPFs for approximat-
ing the solution of system of linear Volterra and Fredholm integral equa-
tions. Convergence analysis is discussed in Section 4. Numerical results
are given in Section 5 to illustrate the efficiency and accuracy of proposed
method. Finally, Section 6 concludes the paper.
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2 IBPFs and their properties

2.1 Definition of IBPFs

An (n+ 1)-set of IBPFs consists of (n+ 1) functions which are defined over
district D as follows

φ0(x) =

{
1, x ∈ [0, h2 ),
0, otherwise,

φi(x) =

{
1, x ∈ [(i− 1)h+ h

2 , ih+ h
2 ),

0, otherwise,
i = 1, 2, . . . , n− 1,

φn(x) =

{
1, x ∈ [1− h

2 , 1),
0, otherwise,

where n is an arbitrary positive integer and h = 1
n .

The IBPFs are disjoint

φi(x)φj(x) =

{
φi(x), i = j,

0, otherwise,
(6)

where i, j = 0, 1, . . . , n and are orthogonal to each other

∫ 1

0
φi(x)φj(x)dx =


h
2 , i = j ∈ {0, n},
h, i = j ∈ {1, 2, . . . , n− 1},
0, otherwise,

(7)

where x ∈ D.

2.2 Vector forms

Consider the first (n + 1) terms of IBPFs and write them concisely as
(n+ 1)-vector

Φn(x) = [φ0(x), φ1(x), . . . , φn(x)]T , x ∈ D. (8)

Eq. (6) implies that

Φn(x)ΦT
n (x) =


φ0(x) 0 . . . 0

0 φ1(x) . . . 0
...

...
. . .

...
0 0 . . . φn(x)

 = diag(Φn(x)). (9)
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Now suppose that X be an (n + 1)-vector. Hence by using Eq. (9) we
obtain

Φn(x)ΦT
n (x)X = X̃Φn(x),

where X̃ = diag(X) is an (n+ 1)× (n+ 1) diagonal matrix.

2.3 Operational matrix

We have ∫ x

0
φ0(y)dy =

{
x, x ∈ [0, h2 ),
h
2 , otherwise.

Note that x = h
4 , at mid-point of [0, h2 ). So we can approximate x, for

x ∈ [0, h2 ), by h
4 .

∫ x

0
φi(x) =


0, x ∈ [0, (i− 1)h+ h

2 ),

x− (i− 1)h− h
2 , x ∈ [(i− 1)h+ h

2 , ih+ h
2 ),

h, otherwise,

for i = 1, 2, . . . , n − 1. Also, we can approximate x − (i − 1)h − h
2 , for

x ∈ [(i− 1)h+ h
2 , ih+ h

2 ), by h
2 .∫ x

0
φn(x) =

{
x− 1 + h

2 , x ∈ [1− h
2 , 1),

0 otherwise.

So, we can approximate x− 1 + h
2 , for x ∈ [1− h

2 , 1), by h
4 . Therefore, the

integration of the vector Φn(x) defined in Eq. (8) can be approximated by∫ x

0
Φn(y)dy ' P1Φn(x), (10)

where

P1 =
h

4



1 2 2 . . . 2 2
0 2 4 . . . 4 4
0 0 2 . . . 4 4
...

...
...

. . .
...

...
0 0 0 . . . 2 4
0 0 0 . . . 0 1


.

Using Eq. (9), we get∫ 1

0
Φn(y)ΦT

n (y)dy ' P2, (11)
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where

P2 =
h

2



1 0 0 . . . 0 0
0 2 0 . . . 0 0
0 0 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 0
0 0 0 . . . 0 1


.

2.4 IBPFs expansions

A continues function f(x) ∈ L2(D) may be expanded by the IBPFs as

f(x) ' fn(x) =
n∑

i=0

fiφi(x) = F T
n Φn(x) = ΦT

n (x)Fn , (12)

where Fn is an (n+ 1)× 1 vector given by

Fn = [f0, f1, . . . , fn]T ,

and Φn(x) is defined in Eq. (8), and fi is obtained as

fi =


2n
∫ h

2
0 f(x)dx, i = 0,

n
∫ ih+h

2

(i−1)h+h
2

f(x)dx, i = 1, 2, . . . , n− 1,

2n
∫ 1
1−h

2
f(x)dx, i = n.

(13)

Similarly a function of two variables, k(x, y) ∈ L2(D ×D) can be approxi-
mated by IBPFs as follows

k(x, y) ' kn(x, y) = ΦT
n (x)KnΦn(y), (14)

where Φn(x) and Φn(y) are IBPFs vector of dimension (n+ 1), and Kn =
[kij ] is the (n+ 1)× (n+ 1) IBPFs coefficients matrix of k(x, y).

3 Method of solution

3.1 System of linear Volterra integral equations

In this section, we solve system of linear Volterra integral equations of the
form Eq. (1) by using IBPFs. We can rewrite Eq. (1) as follows

fi(x) = gi(x) +

m∑
j=1

∫ x

0
kij(x, y)fj(y)dy, i = 1, 2, . . . ,m. (15)
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We now approximate functions fi(x), gi(x) and kij(x, y), i, j = 1, 2, . . . ,m,
by IBPFs as follows

fi(x) ' ΦT
n (x)Fi,

gi(x) ' ΦT
n (x)Gi,

kij(x, y) ' ΦT
n (x)KijΦn(y),

(16)

where i, j = 1, 2, . . . ,m, Φn(x) is defined by (8), Fi, Gi and Kij are IBPFs
coefficients of fi(x), gi(x) and kij(x, y), respectively.

By substituting Eq. (16) in Eq. (15), we get

ΦT
n (x)Fi = ΦT

n (x)Gi +
m∑
j=1

∫ x

0
ΦT
n (x)KijΦn(y)ΦT

n (y)Fjdy, i = 1, 2, . . . ,m,

therefore by Eq. (9), we have

ΦT
n (x)Fi = ΦT

n (x)Gi+

m∑
j=1

ΦT
n (x)Kij

∫ x

0
diag(Φn(y))dyFj , i = 1, 2, . . . ,m.

From Eq.(10), we have

ΦT
n (x)Fi = ΦT

n (x)Gi +
m∑
j=1

ΦT
n (x)KijAFj , i = 1, 2, . . . ,m, (17)

where

A =


P10Φn(x) 0 . . . 0

0 P11Φn(x) . . . 0
...

...
. . .

...
0 0 . . . P1nΦn(x)

 ,
and P1i is ith row of P1. On the other hand, using (6), we have

ΦT
n (x)KijA = ΦT

n (x)


K00

ij P10Φn(x) K01
ij P11Φn(x) . . . K0n

ij P1nΦn(x)

K10
ij P10Φn(x) K11

ij P11Φn(x) . . . K1n
ij P1nΦn(x)

...
...

. . .
...

Kn0
ij P10Φn(x) Kn1

ij P11Φn(x) . . . Knn
ij P1nΦn(x)


=

[
n∑

l=0

K l0
ijP10lφl(x)

n∑
l=0

K l1
ijP11lφl(x) . . .

n∑
l=0

K ln
ij P1nlφl(x)

]
= ΦT

n (x)Bij ,
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where

Bij =


K00

ij P100 K01
ij P110 . . . K0n

ij P1n0

K10
ij P101 K11

ij P111 . . . K1n
ij P1n1

...
...

. . .
...

Kn0
ij P10n Kn1

ij P11n . . . Knn
ij P1nn

 .

So, we can rewrite Eq. (17) as follows

ΦT
n (x)Fi = ΦT

n (x)Gi +
m∑
j=1

ΦT
n (x)BijFj , i = 1, 2, . . . ,m,

or

Fi = Gi +

m∑
j=1

BijFj , i = 1, 2, . . . ,m. (18)

Let
F = [F1, F2, . . . , Fm]T ,

G = [G1, G2, . . . , Gm]T ,

B = [Bij ] , i, j = 1, 2, . . . ,m .

(19)

Therefore, Eq. (18) can be written as

F = G+BF.

After solving above linear system, we can find F and accordingly find Fi,
i = 1, 2, . . . ,m, so

fi(x) ' ΦT
n (x)Fi.

3.2 System of linear Fredholm integral equations

In this section, we solve system of linear Fredholm integral equations of the
form Eq. (2) by using IBPFs. We can rewrite Eq. (2) as follows

fi(x) = gi(x) +

m∑
j=1

∫ 1

0
kij(x, y)fj(y)dy, i = 1, 2, . . . ,m. (20)

Substituting Eq. (16) in Eq. (20), we get

ΦT
n (x)Fi = ΦT

n (x)Gi +

m∑
j=1

∫ 1

0
ΦT
n (x)KijΦn(y)ΦT

n (y)Fjdy, i = 1, 2, . . . ,m.
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Using Eq. (11), we get

ΦT
n (x)Fi = ΦT

n (x)Gi +
m∑
j=1

ΦT
n (x)KijP2Fj , i = 1, 2, . . . ,m.

Letting C = [KijP2], from Eq.(19) we have

F = G+ CF.

After solving above linear system, we can find F and accordingly find
Fi; i = 1, 2, . . . ,m, so

fi(x) ' ΦT
n (x)Fi.

4 Convergence analysis

In this section, we show that the method discussed in the previous section
is convergent and its order of convergence is O( 1

n). We define

‖f(x)‖ =

(∫ 1

0
|f(x)|2dx

) 1
2

,

and

‖f(x)‖ =

(
m∑
i=1

‖fi(x)‖2
) 1

2

, (21)

where f(x) ∈ L2(D) and f(x) is defined in Eq. (3) and

‖k(x, y)‖ =

(∫ 1

0

∫ 1

0
|k(x, y)|2dxdy

) 1
2

,

and

‖k(x, y)‖ =

 m∑
i=1

m∑
j=1

‖kij(x, y)‖2
 1

2

, (22)

where k(x, y) ∈ L2(D ×D) and k(x, y) is defined in Eq. (5).
Also, for our purposes we will need the following theorems.

Theorem 1. Let f(x) ∈ L2(D) and fn(x) be the IBPFs expansion of f(x)
that is defined as

fn(x) =

n∑
i=0

fiφi(x) ,
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where fi; i = 0, 1, . . . , n, are defined in Eq. (13). Then the criterion of this
approximation is that the mean square error between f(x) and fn(x) in the
interval x ∈ D ∫ 1

0
(f(x)− fn(x))2dx ,

achieves its minimum value and also we have∫ 1

0
f2(x)dx =

∞∑
i=0

f2i ||φi(x)||2 .

Proof. It is an immediate consequence of theorem which is proved in [9].

Theorem 2. Suppose f(x) is continuous on D, differentiable on (0, 1), and
there exists a positive scalar M such that |f ′(x)| 6 M , for every x ∈ D.
Then

|f(b)− f(a)| 6M |b− a|, ∀a, b ∈ D.

Proof. See [18].

Theorem 3. Suppose fn(x) is the IBPFs expansions of f(x) that is defined
as Eq. (12) and f(x) is differentiable on D such that |f ′(x)| 6 M . Also,
assume that en(x) = f(x)− fn(x), then

‖en(x)‖ = O(h).

Proof. Suppose x0 = 0, xi = ih− h
2 , i = 1, . . . , n and xn+1 = 1. We define

the error between f(x) and its IBPFs expansion over every subinterval
Ii = [xi, xi+1) as follows

en,i(x) = f(x)− fi(x), x ∈ Ii ,

where i = 0, 1, . . . , n. By using mean value theorem for integral, we have

‖en,0(x)‖2 =

∫ h
2

0
e2n,0(x)dx =

∫ h
2

0
(f(x)− f0)2 dx =

h

2
(f(ξ0)− f0)2 ,

where ξ0 ∈ I0. Also, for i = 1, 2, . . . , n− 1, we have

‖en,i(x)‖2 =

∫ ih+h
2

ih−h
2

e2n,i(x)dx =

∫ ih+h
2

ih−h
2

(f(x)− fi)2 dx = h (f(ξi)− fi)2 ,

where ξi ∈ Ii. Furthermore, we have

‖en,n(x)‖2 =

∫ 1

1−h
2

e2n,n(x)dx =

∫ 1

1−h
2

(f(x)− fn)2 dx =
h

2
(f(ξn)− fn)2 ,
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where ξn ∈ In. Using Eq. (13) and the mean value theorem, we have

fi =


2n
∫ h

2
0 f(x)dx = 2nh

2f(η0) = f(η0), i = 0,

n
∫ ih+h

2

(i−1)h+h
2

f(x)dx = nhf(ηi) = f(ηi), i = 1, 2, . . . , n− 1,

2n
∫ 1
1−h

2
f(x)dx = 2nh

2f(ηn) = f(ηn), i = n,

where ηi ∈ Ii, i = 0, 1, . . . , n. From the above equations and Theorem 2,
we get

‖en,i(x)‖2 =
h
2 (f(ξ0)− f(η0))

2 6 M2h
2 |ξ0 − η0|

2 6 M2h3

8 , i = 0,

h (f(ξi)− f(ηi))
2 6M2h|ξi − ηi|2 6M2h3, i = 1, 2, . . . , n− 1,

h
2 (f(ξn)− f(ηn))2 6 M2h

2 |ξn − ηn|
2 6 M2h3

8 , i = n.

(23)

We have

‖en(x)‖2 =

∫ 1

0
e2n(x)dx =

∫ 1

0

(
n∑

i=0

en,i(x)

)2

dx

=

∫ 1

0

(
n∑

i=0

e2n,i(x)

)
dx+ 2

∑
i6j

∫ 1

0
en,i(x)en,j(x)dx.

Since for i 6= j, Ii ∩ Ij = ∅, then

‖en(x)‖2 =

∫ 1

0

(
n∑

i=0

e2n,i(x)

)
dx =

n∑
i=0

‖en,i(x)‖2. (24)

Substituting Eq. (23) into Eq. (24), we get

‖en(x)‖2 6M2h2 − 3M2h3

4
,

which completes the proof.

Suppose that e′n(x) is the error between f(x) and its BPFs expansion.
From [9], it is clear that

‖en(x)‖ 6 ‖e′n(x)‖.
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Lemma 1. Let g(x) be as defined in Eq. (4), gn(x) be the IBPFs of g(x)
and eg(x) = g(x)− gn(x). Then

‖eg(x)‖ = O(h).

Proof. From Eq. (21), we have

‖eg(x)‖ =

(
m∑
i=1

‖gi(x)− gn,i(x)‖2
) 1

2

,

and from Theorem 2, ‖gi(x)− gn,i(x)‖ 6 Cih. Then

‖eg(x)‖ 6

(
m∑
i=1

C2
i h

2

) 1
2

=

(
m∑
i=1

C2
i

) 1
2

h = Ch, (25)

which completes the proof.

Theorem 4. Let kn(x, y) be the IBPFs expansions of k(x, y) defined as
Eq. (14) and k(x, y) be differentiable on D ×D such that |k′(x, y)| 6 M .
Also, assume that en(x, y) = k(x, y)− kn(x, y), then

‖en(x, y)‖ = O(h).

Proof. Suppose x0 = y0 = 0, xi = yi = ih − h
2 , i = 1, . . . , n and xn+1 =

yn+1 = 1. We define the error between k(x, y) and its IBPFs expansion
over every subinterval Ii,j = [xi, xi+1)× [yj , yj+1) as follows

en,ij(x, y) = k(x, y)− kij(x, y), x ∈ Ii,j , i, j = 0, 1, . . . , n.

By using the mean value theorem for integral and similar to the proof of
Theorem 3, we get

‖en,ij(x, y)‖2 6

{
M2h4

8 , j = 0, n,

5M2h4

8 , j = 1, 2, . . . , n− 1,
(26)

for i = 0, n and

‖en,ij(x, y)‖2 6

{
5M2h4

8 , j = 0, n,

2M2h4, j = 1, 2, . . . , n− 1,
(27)
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for i = 1, 2, . . . , n− 1. We have

‖en(x, y)‖2 =

∫ 1

0

∫ 1

0
e2n(x, y)dxdy =

∫ 1

0

∫ 1

0

 n∑
i=0

n∑
j=0

en,ij(x, y)

2

dxdy

=

∫ 1

0

∫ 1

0

 n∑
i=0

n∑
j=0

e2n,ij(x, y)

 dxdy

+2
∑
i6k

∑
j6l

∫ 1

0

∫ 1

0
en,ij(x, y)en,kl(x, y)dxdy.

Since for i 6= k and j 6= l, we have Ii ∩ Ik = ∅ and Ij ∩ Il = ∅, then

‖en(x, y)‖2 =

∫ 1

0

∫ 1

0

 n∑
i=0

n∑
j=0

e2n,ij(x, y)

 dxdy

=
n∑

i=0

n∑
j=0

‖en,ij(x, y)‖2. (28)

Substituting Eqs. (26) and (27) into Eq. (28), we get

‖en(x, y)‖2 6 2M2h2 − 3M2h3

2
.

Suppose e′n(x, y) be the error between k(x, y) and its BPFs expansion.
From [14], it is clear that

‖en(x, y)‖ 6 ‖e′n(x, y)‖.

Lemma 2. Let k(x, y) be as defined in Eq. (5), kn(x, y) be the IBPFs of
k(x, y) and ek(x, y) = k(x, y)− kn(x, y). Then

‖ek(x, y)‖ = O(h).

Proof. From Eq. (22), we have

‖ek(x, y)‖ =

 m∑
i=1

m∑
j=1

‖kij(x, y)− kn,ij(x, y)‖

 1
2

.
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From Theorem 3, we conclude that ‖kij(x, y)− kn,ij(x, y)‖ 6 Cijh. There-
fore

‖ek(x, y)‖ 6

 m∑
i=1

m∑
j=1

C2
ijh

2

 1
2

=

 m∑
i=1

m∑
j=1

C2
ij

 1
2

h = Ch. (29)

Let the error of IBPFs be denoted by

En = ‖f(x)− fn(x)‖, x ∈ D,

where f(x) was defined in Eq. (3). Furthermore, assume the following
hypotheses:

(M1) Let ‖f(x)‖ 6 N for x ∈ D;

(M2) Let ‖k(x, y)‖ 6 N ′ for (x, y) ∈ D ×D;

(M3) According to lemma 1 and 2, let

Eg = ‖eg(x)‖ 6 Ch,

and
Ek = ‖ek(x, y)‖ 6 C ′h,

where C and C ′ are coefficients defined in Eqs. (25) and (29) and
g(x) and k(x, y) were defined in Eqs. (4) and (5), respectively;

(M4) Let N ′ + C ′h < 1.

Theorem 5. Let f(x) and fn(x) be the exact and approximate solutions of
Eq. (1) or Eq. (2), respectively. Also assumptions (M1)-(M4) are satisfied.
Then we have

En 6
(C + C ′N)h

1−N ′ − C ′h
. (30)

Proof. For the first case, from Eq. (1), we have

f(x)− fn(x) = g(x)− gn(x) +

∫ x

0
(k(x, y)f(y)− kn(x, y)fn(y)) dy,

and therefore

En 6 Eg + ‖x‖‖k(x, y)f(y)− kn(x, y)fn(y)‖.



146 F. Mirzaee

It is clear that ‖x‖ 6 1, So

En 6 Eg + ‖k(x, y)f(y)− kn(x, y)fn(y)‖. (31)

Also for the second case, from Eq. (2), we have

f(x)− fn(x) = g(x)− gn(x) +

∫ 1

0
(k(x, y)f(y)− kn(x, y)fn(y)) dy,

and therefore

En 6 Eg + ‖k(x, y)f(y)− kn(x, y)fn(y)‖.

So Eq. (31) is true in the both cases. Now, according to assumptions
(M1)-(M3), we have

‖k(x, y)f(y)− kn(x, y)fn(y)‖ 6 ‖k(x, y)‖ En + Ek (En + ‖f(x)‖)
6 N ′En + C ′h (En +N) . (32)

Also from assumptions (M3), Eqs. (31) and (32), we have

En 6 (C + C ′N)h+ (N ′ + C ′h)En.

Therefore according to (M4), Eq. (30) is satisfied and this completes the
proof. Also we have En = O(h).

Lemma 3. Suppose f(x) and fn(x) are the exact and approximate solution
of Eq. (1) or Eq. (2), respectively, where f(x) was defined in Eq. (3) and

fn(x) = [f1,n(x), f2,n(x), . . . , fm,n(x)]T .

Then

ei,n = ‖fi(x)− fi,n(x)‖ = O(h). (33)

Proof. From Theorem 4, we have En 6 Ch and according to Eq. (21) we
have

ei,n 6 En 6 Ch.
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Table 1: Numerical results for Example 1 (n = 8, 16).

Nodes x Exact solution Present method
n = 8 n = 16

0.0 (1.0,2.0,0.00) (1.00068,2.09408,0.03384) (1.00017,2.04696,0.01627)
0.1 (1.0,2.3,0.12) (1.00330,2.37638,0.15868) (1.00080,2.37535,0.15686)
0.2 (1.0,2.6,0.28) (1.00391,2.75169,0.37768) (1.00087,2.56287,0.25843)
0.3 (1.0,2.9,0.48) (1.00391,2.75169,0.37768) (1.00105,2.93799,0.50857)
0.4 (1.0,3.2,0.72) (1.00477,3.12733,0.65979) (1.00117,3.12558,0.65713)
0.5 (1.0,3.5,1.00) (1.00612,3.50347,1.00526) (1.00150,3.50086,1.00131)
0.6 (1.0,3.8,1.32) (1.00831,3.88035,1.41441) (1.00205,3.87632,1.40828)
0.7 (1.0,4.1,1.68) (1.01195,4.25841,1.88776) (1.00244,4.06416,1.63535)
0.8 (1.0,4.4,2.08) (1.01195,4.25841,1.88776) (1.00359,4.44011,2.13678)
0.9 (1.0,4.7,2.52) (1.01799,4.63840,2.42623) (1.00443,4.62830,2.41120)

5 Numerical experiments

In this section, several examples are presented to demonstrate the effec-
tiveness of our approach. In this regard, we have reported the values of the
exact solution f(x), the approximate solution fn(x);n = 8; 16; 32; 64 and
the L2-norms of errors that have been calculated by using

E2,n =

(∫ 1

0
|f(x)− fn(x)|2dx

) 1
2

, x ∈ D.

at the selected points of the given interval in tables and figures. All com-
putations is preformed in Matlab. In order to show the convergence rate
of this numerical method, we introduce the following notation

En,2n = log2
‖f(x)− fn(x)‖
‖f(x)− f2n(x)‖

.

The following problems have been tested.

Example 1. Consider the following system of linear Volterra integral equa-
tions [20]

f1(x) = 1− x2 − x3 − 1
5x

5 − 1
3x

6 +

∫ x

0
yf2(y)dy +

∫ x

0
y3f3(y)dy,

f2(x) = 2 + 3x− 1
2x

2 − 1
4x

4 − 2
5x

5 +

∫ x

0
yf1(y)dy +

∫ x

0
y2f3(y)dy,

f3(x) = x+ 2x2 − x3 − 1
2x

4 − 3
5x

5 +

∫ x

0
x2f1(y)dy +

∫ x

0
y3f2(y)dy,

where x ∈ [0, 1). The exact solution is f1(x) = 1, f2(x) = 2 + 3x and
f3(x) = x+2x2. Table 1 and 2 illustrates the comparison between the exact
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solution and numerical solution given by the proposed method (IBPFs) for
different values of n. Also, we compare the infinity-norm of absolute error
computed by the present method, block pulse functions method (BPFs) [13]
and rationalized Haar functions method (RHFs) [15] in Table 3. Further-
more, for this example, numerical convergence rate for proposed method
is tabulated in Table 4. Graph of the absolute errors for f1(x), f2(x) and
f2(x) are shown in Figures 1, 2 and 3, respectively.

Table 2: Numerical results for Example 1 (n = 32, 64).

Nodes x Present method
n = 32 n = 64

0.0 (1.00004,2.02346,0.00797) (1.00001,2.01172,0.00395)
0.1 (1.00019,2.28133,0.11148) (1.00005,2.28127,0.11137)
0.2 (1.00022,2.56259,0.25797) (1.00005,2.60940,0.28569)
0.3 (1.00026,2.93762,0.50800) (1.00006,2.89065,0.47319)
0.4 (1.00031,3.21891,0.73657) (1.00008,3.21879,0.73639)
0.5 (1.00037,3.50021,1.00033) (1.00009,3.50005,1.00008)
0.6 (1.00047,3.78155,1.29928) (1.00012,3.78132,1.29894)
0.7 (1.00061,4.06291,1.63345) (1.00016,4.10948,1.69206)
0.8 (1.00089,4.43815,2.13380) (1.00021,4.39078,2.06713)
0.9 (1.00123,4.71967,2.55021) (1.00031,4.71898,2.54917)

Table 3: Approximate L2-norm of absolute error for Example 1.

Methods E2,n

Method of [15]
n = 8 (1.25e-2,1.27e-1,1.31e-1)
n = 16 (3.02e-3,5.68e-2,6.11e-2)
n = 32 (6.93e-4,3.01e-2,3.16e-2)
n = 64 (1.87e-4,2.10e-2,1.96e-2)

Method of [13]
n = 8 (1.06e-2,1.09e-1,1.16e-1)
n = 16 (2.67e-3,5.42e-2,5.80e-2)
n = 32 (6.67e-4,2.71e-2,2.90e-2)
n = 64 (1.67e-4,1.40e-2,1.48e-2)

Present method
n = 8 (8.89e-3,1.03e-1,1.09e-1)
n = 16 (2.44e-3,5.29e-2,5.63e-2)
n = 32 (6.37e-4,2.67e-2,2.86e-2)
n = 64 (1.63e-4,1.35e-2,1.44e-2)
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Table 4: Numerical convergence rate for Example 1.

m En,2n

for f1(x) for f2(x) for f3(x)

4 1.7360 0.9267 0.9116
8 1.8685 0.9656 0.9578
16 1.9342 0.9831 0.9790
32 1.9670 0.9916 0.9894
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Figure 1: Absolute value of error, Example 1 for f1(x).

Example 2. Consider the following system of linear Volterra integral equa-
tions [4]: 

f1(x) = 1− x2

2 +

∫ x

0
(f1(y) + yeyf2(y)) dy ,

f2(x) = 1 + x2

2 +

∫ x

0

(
−ye−yf1(y)− f2(y)

)
dy ,

where x ∈ [0, 1). The exact solution is f1(x) = ex and f2(x) = e−x. Table 5
illustrates the comparison between the exact solution and numerical solu-
tion given by the proposed method (IBPFs) for different values of n. Also,
we compare the infinity-norm of absolute error computed by the present
method, BPFs [4] and RHFs [15] method in Table 6. Furthermore, for this
example, numerical convergence rate for proposed method is tabulated in
Table 7. Graph of the absolute errors for f1(x) and f2(x) are shown in
Figures 4 and 5, respectively.
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Figure 2: Absolute value of error, Example 1 for f2(x).
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Figure 3: Absolute value of error, Example 1 for f3(x).

Table 5: Numerical results for Example 2.
Nodes x, Exact Present method

n = 8 n = 16 n = 32 n = 64
0.0, (1.0,1.0) (1.03260,0.96939) (1.01596,0.98454) (1.00789,0.99223) (1.00393,0.99610)

0.1, (1.10517,0.90484) (1.14747,0.87722) (1.14120,0.87780) (1.10128,0.90839) (1.09984,0.90931)
0.2, (1.22140,0.81873) (1.32221,0.76300) (1.21968,0.82151) (1.21308,0.82471) (1.22902,0.81371)
0.3, (1.34986,0.74082) (1.32221,0.76300) (1.39260,0.71933) (1.37969,0.72491) (1.35167,0.73977)
0.4, (1.49182,0.67032) (1.52126,0.66293) (1.48767,0.67297) (1.51917,0.65795) (1.51014,0.66190)
0.5, (1.64872,0.60653) (1.74720,0.57499) (1.69669,0.58868) (1.67240,0.59705) (1.66049,0.60165)
0.6, (1.82212,0.54881) (2.00282,0.49749) (1.93339,0.51440) (1.84065,0.54164) (1.82560,0.54681)
0.7, (2.01375,0.49659) (2.29115,0.42904) (2.06312,0.48060) (2.02531,0.49121) (2.03877,0.48901)
0.8, (2.22554,0.44933) (2.29115,0.42904) (2.34752,0.41901) (2.29969,0.43091) (2.24086,0.44426)
0.9, (2.45960,0.40657) (2.61538,0.36847) (2.50313,0.39097) (2.52876,0.39037) (2.50165,0.39709)
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Table 6: Approximate L2-norm of absolute error for Example 2.

Methods E2,n

Method of [15]
n = 8 (6.47e-2,7.89e-2)
n = 16 (8.13e-2,4.72e-2)
n = 32 (4.12e-2,2.07e-2)
n = 64 (2.34e-2,6.28e-2)

Method of [4]
n = 8 (5.61e-2,7.17e-2)
n = 16 (7.94e-2,2.89e-2)
n = 32 (3.71e-2,1.35e-2)
n = 64 (2.03e-2,5.97e-3)

Present method
n = 8 (1.44e-1,4.02e-2)
n = 16 (7.13e-2,2.17e-2)
n = 32 (3.54e-2,1.13e-2)
n = 64 (1.77e-2,5.74e-3)

Table 7: Numerical convergence rate for Example 2.

m En,2n

for f1(x) for f2(x)

4 1.0162 0.7896
8 1.0159 0.8916
16 1.0096 0.9449
32 1.0052 0.9722

Example 3. Consider the following system of linear Fredholm integral
equations [13]:

f1(x) = 11
6 x+ 11

15 −
∫ 1

0
(x+ y)f1(y)dy −

∫ 1

0
(x− 2y2)f2(y)dy ,

f2(x) = 5
4x

2 + 1
4x−

∫ 1

0
xy2f1(y)dy −

∫ 1

0
x2yf2(y)dy ,

where x ∈ [0, 1). The exact solution is f1(x) = x and f2(x) = x2. Table 8
illustrates the comparison between the exact solution and numerical solu-
tion given by the proposed method (IBPFs) for different values of n. Also,
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Figure 4: Absolute value of error, Example 2 for f1(x).
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Figure 5: Absolute value of error, Example 2 for f2(x).

we compare the infinity-norm of absolute error computed by the present
method, BPFs [13] and RHFs [15] method in Table 9. Furthermore, for
this example, numerical convergence rate for proposed method is tabulated
in Table 10. Graph of the absolute errors for f1(x) and f2(x) are shown in
Figures 6 and 7 respectively.

Example 4. Consider the following system of linear Fredholm integral
equations [13]:

f1(x) = 2ex + ex+1−1
x+1 −

∫ 1

0
ex−yf1(y)dy −

∫ 1

0
e(x+2)yf2(y)dy ,

f2(x) = ex + e−x + ex+1−1
x+1 −

∫ 1

0
exyf1(y)dy −

∫ 1

0
ex+yf2(y)dy ,
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Figure 6: Absolute value of error, Example 3 for f1(x).
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Figure 7: Absolute value of error, Example 3 for f2(x).

Table 8: Numerical results for Example 3.
Nodes x, Exact Present method

n = 8 n = 16 n = 32 n = 64
0.0, (0.0,0.00) (0.03402,0.00133) (0.01638,0.00033) (0.00801,0.00008) (0.00396,0.00002)
0.1, (0.1,0.01) (0.12755,0.01704) (0.12568,0.01598) (0.09393,0.00888) (0.09380,0.00881)
0.2, (0.2,0.04) (0.25226,0.06405) (0.18815,0.03553) (0.18767,0.03525) (0.20317,0.04128)
0.3, (0.3,0.09) (0.25226,0.06405) (0.31307,0.09807) (0.31265,0.09776) (0.29691,0.08816)
0.4, (0.4,0.16) (0.37697,0.14233) (0.37553,0.14106) (0.40638,0.16515) (0.40628,0.16507)
0.5, (0.5,0.25) (0.50168,0.25189) (0.50045,0.25048) (0.50012,0.25012) (0.50003,0.25003)
0.6, (0.6,0.36) (0.62639,0.39272) (0.62537,0.39116) (0.59385,0.35267) (0.59378,0.35257)
0.7, (0.7,0.49) (0.75110,0.56482) (0.68784,0.47322) (0.68759,0.47280) (0.70315,0.49442)
0.8, (0.8,0.64) (0.75110,0.56482) (0.81276,0.66078) (0.81257,0.66031) (0.79689,0.63505)
0.9, (0.9,0.81) (0.87581,0.76820) (0.87522,0.76628) (0.90630,0.82146) (0.90626,0.82133)
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Table 9: Approximate L2-norm of absolute error for Example 3.

Methods E2,n

Method of [15]
n = 8 (3.98e-2,4.44e-2)
n = 16 (2.21e-2,2.58e-2)
n = 32 (1.04e-2,1.53e-2)
n = 64 (1.77e-2,5.74e-3)

Method of [13]
n = 8 (3.61e-2,4.16e-2)
n = 16 (1.80e-2,2.08e-2)
n = 32 (9.02e-3,1.04e-2)
n = 64 (4.51e-3,5.21e-3)

Present method
n = 8 (3.44e-2,3.88e-2)
n = 16 (1.76e-2,2.01e-2)
n = 32 (8.92e-3,1.02e-2)
n = 64 (4.48e-3,5.16e-3)

Table 10: Numerical convergence rate for Example 3.

m En,2n

for f1(x) for f2(x)

4 0.9258 0.8896
8 0.9651 0.9471
16 0.9829 0.9741
32 0.9915 0.9872

where x ∈ [0, 1). The exact solution is f1(x) = ex and f2(x) = e−x. Table
11 illustrates the comparison between the exact solution and numerical so-
lution given by the proposed method (IBPFs) for different values of n. Also,
we compare the infinity-norm of absolute error computed by the present
method, BPFs [13] and RHFs [15] method in Table 12. Furthermore, for
this example, numerical convergence rate for proposed method is tabulated
in Table 13. Graph of the absolute errors for f1(x) and f2(x) are shown in
Figures 8 and 9, respectively.
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Table 11: Numerical results for Example 4.
Nodes x, Exact Present method

n = 8 n = 16 n = 32 n = 64
0.0, (1.0,1.0) (1.01970,0.97502) (1.01257,0.98603) (1.00703,0.99261) (1.00371,0.99620)

0.1, (1.10517,0.90484) (1.12106,0.88873) (1.12992,0.88415) (1.09747,0.91093) (1.09808,0.91062)
0.2, (1.22140,0.81873) (1.27114,0.78496) (1.20290,0.83067) (1.20537,0.82945) (1.22501,0.81628)
0.3, (1.34986,0.74082) (1.27114,0.78496) (1.36330,0.73323) (1.36592,0.73203) (1.34542,0.74324)
0.4, (1.49182,0.67032) (1.44131,0.69334) (1.45134,0.68889) (1.50022,0.66655) (1.50093,0.66625)
0.5, (1.64872,0.60653) (1.63418,0.61243) (1.64484,0.60809) (1.64772,0.60693) (1.64847,0.60663)
0.6, (1.82212,0.54881) (1.85279,0.54095) (1.86412,0.53677) (1.80972,0.55264) (1.81050,0.55235)
0.7, (2.01375,0.49659) (2.10060,0.47776) (1.98448,0.50431) (1.98764,0.50321) (2.01977,0.49513)
0.8, (2.22554,0.44933) (2.10060,0.47776) (2.24901,0.44514) (2.25237,0.44411) (2.21830,0.45083)
0.9, (2.45960,0.40657) (2.38148,0.42189) (2.39422,0.41820) (2.47380,0.40437) (2.47471,0.40412)

Table 12: Approximate L2-norm of absolute error for Example 4.

Methods E2,n

Method of [15]
n = 8 (6.94e-2,2.85e-2)
n = 16 (3.46e-2,1.33e-2)
n = 32 (1.88e-2,6.17e-3)
n = 64 (8.36e-3,3.21e-3)

Method of [13]
n = 8 (6.69e-2,2.45e-2)
n = 16 (3.26e-2,1.20e-2)
n = 32 (1.62e-2,5.94e-3)
n = 64 (8.07e-3,2.98e-3)

Present method
n = 8 (6.26e-2,2.29e-2)
n = 16 (3.15e-2,1.16e-2)
n = 32 (1.59e-2,5.85e-3)
n = 64 (8.00e-3,2.94e-3)

Table 13: Numerical convergence rate for Example 4.

m En,2n

for f1(x) for f2(x)

4 1.0126 0.9954
8 0.9890 0.9831
16 0.9871 0.9855
32 0.9913 0.9909
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Figure 8: Absolute value of error, Example 4 for f1(x).
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Figure 9: Absolute value of error, Example 4 for f2(x).

6 Conclusion

The IBPFs, together with operational matrices of integration P1 and
P2, are used to obtain the solution of system of linear Volterra and Fred-
holm integral equations. The present method reduces a system of linear
Volterra and Fredholm integral equations into a system of algebraic equa-
tions. The matrices P1 and P2 have many zeros, hence the method is
computationally very attractive. Also, we have shown that our approach
is convergence and its order of convergent is O( 1

n). For the approximate
solution of the given examples, we plot absolute value of error to discover
applicability and accuracy of the proposed method. Comparisons of the
results of applying IBPFs, BPFs and RHFs methods reveals that the new
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technique is effective and convenient. This method can be easily extended
and applied for solving systems of nonlinear Volterra and Fredholm integral
equations.
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