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Abstract. Degenerate kernel approximation method is generalized to solve
Hammerstein system of Fredholm integral equations of the second kind.
This method approximates the system of integral equations by construct-
ing degenerate kernel approximations and then the problem is reduced to
the solution of a system of algebraic equations. Convergence analysis is
investigated and on some test problems, the proposed method is examined.
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1 Introduction

We consider the numerical solution of Hammerstein system of Fredholm
integral equations (HSFIEs) of the second kind:

xi(t) = fi(t) + λ

m∑
j=1

∫ 1

0
Kij(t, s)ψij(s, xj(s))ds, i = 1, . . . ,m, (1)

where 0 ≤ s, t ≤ 1, fi, Kij and ψij , i, j = 1, . . . ,m, are given and xj(t),
j = 1, . . . ,m are the solution to be determined. For more details about
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such problems and solution approach, we refer to [2, 6, 7] and references
therein. Solution of Eq. (1) is easily reduced to the solution of a system of
m2n algebraic equations, if the kernels are in the form

Kij(t, s) =

n∑
κ=1

aκij(t)b
κ
ij(s), i, j = 1, . . . ,m,

called separable or degenerate kernels [7]. The idea behind the degenerate
kernel approximation method is to replace the given kernels by degenerate
kernels. This method was introduced and analyzed by Kanekoand and Xu
in [3] for a single Hammerstein integral equation. The goal of this paper
is to generalize this method and its convergence results [3] to HSFIEs (1).
We define the Hilbert space H and its inner product as follows

H = L2[0, 1]× L2[0, 1]× ...× L2[0, 1]︸ ︷︷ ︸
m times

,

〈f ,g〉 =

∫ 1

0
f(t)Hg(t)dt, f ,g ∈ H,

where L2[0, 1] is the vector space of all functions u : [0, 1]→ C satisfying∫ b

a
|u(t)|2dt <∞,

and f(t)H denotes the conjugate transpose of f(t). We denote by ‖.‖ the
associated norm of the inner product 〈., .〉. Moreover, we define the operator
T : H → H by

(Txxx)i(t) = fi(t) + λ
m∑
j=1

∫ 1

0
Kij(t, s)ψij(s, xj(s))ds, i = 1, . . . ,m,

where xxx = [x1 x2 . . . xm]T , so that a solution of (1) is a fixed point of the
operator T . Therefore to establish existence and uniqueness theorem for
Eq.(1), it is enough to examine a number of conditions under which we can
guarantee the existence and uniqueness of the fixed point for the operator
T . This leads to the following theorem.

Theorem 1. Let the individual kernels Kij(t, s), i, j = 1, . . . ,m are con-
tinuous for all t, s ∈ [0, 1], ψij(t, s), i, j = 1, . . . ,m are continuous for all
t ∈ [0, 1] and all s and∫ 1

0
|ψij(t, u(t))|2dt ≤ A2

ij‖u‖2.
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Moreover, suppose that ψij(t, s), i, j = 1, . . . ,m satisfy the Lipschitz condi-
tion

|ψij(t, s1)− ψij(t, s2)| ≤ Bij |s1 − s2|, i, j = 1, . . . ,m, (2)

where Bij, i, j = 1, . . . ,m are independent of t, and let there exist constants
Cij, i, j = 1, . . . ,m which

|Kij(t, s)| ≤ Cij , i, j = 1, . . . ,m. (3)

Then (1) has a unique solution in H provided that

|λ| < 1

σ
, σ =

√√√√ m∑
i=1

B(i)C(i),

where B(i) =
m∑
j=1

B2
ij and C(i) =

m∑
j=1

C2
ij.

The proof of this theorem is similar to that of its discretized form given in
Theorem 2.

The remainder of the paper is organized as follows: In Section 2, the
degenerate kernel approximation method is described to the HSFIEs of the
second kind. The convergence analysis of the proposed method is studied
in Section 3. Section 4 deals with constructing degenerate kernel approx-
imations. In this section, the Taylor series expansion is used to construct
degenerate kernel approximations and its convergence analysis is discussed.
The results of numerical experiments on some examples are given in Section
5. Finally in Section 6, a brief conclusion is drawn.

2 Description of the method

We assume that we can approximate the kernels in Eq. (1) as follows

Kij(t, s) ≈ Kn
ij(t, s) =

n∑
κ=1

bκ(s)aκij(t), i, j = 1, . . . ,m. (4)

Replacing this approximations in (1), we get the following system

xni (t) = fi(t) + λ

m∑
j=1

n∑
κ=1

aκij(t)

∫ 1

0
bκ(s)ψij(s, x

n
j (s))ds, i = 1, . . . , n. (5)

Let

βκij =

∫ 1

0
bκ(s)ψij(s, x

n
j (s))ds, i, j = 1, . . . ,m, κ = 1, . . . , n, (6)
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be unknown constants depending on unknown vector function

xn(s) = (xnj (s))j=1,...,m.

Then Eq. (5) can be rewritten as follows

xni (t) = fi(t) + λ
m∑
j=1

n∑
κ=1

βκija
κ
ij(t), i = 1, . . . ,m. (7)

Substituting (7) into (6) gives

βκij =

∫ 1

0
bκ(s)ψij(s, fj(s) + λ

m∑
r=1

n∑
p=1

βpjra
p
jr(s))ds, (8)

i, j = 1, . . . ,m, κ = 1, . . . n,

which is a nonlinear system of m2n algebraic equations that can be solved
by well-known methods such as Newton and so on.

Let

βββ = [β1 β2 . . . βn]T , FFF (βββ) = [F1(βββ) F2(βββ) . . . Fn(βββ)]T , (9)

where for κ = 1, . . . n,

βκ = [βκ11 β
κ
12 . . . β

κ
1m βκ21 . . . β

κ
2m . . . β

κ
m1 . . . β

κ
mm], (10)

Fκ(βββ) = [F κ11 F
κ
12 . . . F

κ
1m F κ21 . . . F

κ
2m . . . F

κ
m1 . . . F

κ
mm], (11)

and

F κij =

∫ 1

0
bκ(s)ψij(s, fj(s) + λ

m∑
r=1

n∑
p=1

βpjra
p
jr(s))ds. (12)

As a result the system (8) can be written in general form

βββ = FFF (βββ). (13)

Therefore, solving system (8) is equivalent to finding the fixed point of
FFF which is a nonlinear operator from Rm2n into Rm2n. Substituting the
solution of this system in (7), the approximate solution of the system of
integral equations (1) is obtained. It should be mentioned that often the
definite integrals in (8) must be computed numerically. To approximate
these integrals, we use some convergent quadrature method∫ 1

0
u(t)dt ≈

N∑
l=0

ωlu(tl), tl ∈ [0, 1], l = 0, 1, . . . , N,
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where ωl > 0, l = 0, 1, . . . , N . As a result, Eq. (8) is replaced by

βκij =
N∑
l=0

ωlb
κ(tl)ψij(tl, fj(tl) + λ

m∑
r=1

n∑
p=1

βpjra
p
jr(tl)),

i, j = 1, . . . ,m, κ = 1, . . . n.

The above discussion leads to a discrete degenerate kernel approximation
method.

3 Convergence analysis

In this section, we study the convergence of the degenerate kernels approx-
imation method. The following theorem shows that the approximate Eqs.
(5) has a unique solution.

Theorem 2. Suppose that the hypotheses of Theorem 1 are fulfilled and let
the individual approximate kernels Kn

ij(t, s), i, j = 1, . . .m are continuous
for all t, s ∈ [0, 1] and

(∫ 1

0

∫ 1

0
|Kn

ij(t, s)−Kij(t, s)|2dtds
) 1

2

→ 0 as n→∞, i, j = 1, . . .m.

(14)
Then there exists M ∈ N such that for each n ≥M , Eqs. (5) has a unique
solution xxxn ∈ H.

Proof. Using (14) and (3), it is easy to show that there exists M ∈ N such
that for n ≥M ,

(∫ 1

0

∫ 1

0
|Kn

ij(t, s)|2dtds
) 1

2

≤ Cij , i, j = 1, . . .m. (15)

Now, for n ≥M , it is sufficient to show the following operator, which is an
approximation of the operator T , that a unique fixed point:

(T̃xxx)i(t) = fi(t) + λ
m∑
j=1

n∑
κ=1

∫ 1

0
Kn
ij(t, s)ψij(s, xj(s))ds, i = 1, . . . ,m.
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Let xxx,yyy ∈ H, then

‖T̃xxx− T̃yyy‖2 = |λ|2
∫ 1

0

m∑
i=1

∣∣∣ m∑
j=1

∫ 1

0
Kn
ij(t, s)(ψij(s, xj(s))

−ψij(s, yj(s)))ds
∣∣∣2dt

≤ |λ|2
∫ 1

0

m∑
i=1

(∫ 1

0

m∑
j=1

∣∣∣Kn
ij(t, s)

∣∣∣∣∣∣ψij(s, xj(s))
−ψij(s, yj(s))

∣∣∣ds)2
dt

≤ |λ|2
∫ 1

0

m∑
i=1

(∫ 1

0

m∑
j=1

|Kn
ij(t, s)|2ds

)
×
(∫ 1

0

m∑
j=1

|ψij(s, xj(s))− ψij(s, yj(s))|2ds
)
dt

= |λ|2
m∑
i=1

(∫ 1

0

m∑
j=1

|ψij(s, xj(s))− ψij(s, yj(s))|2ds
)

×
m∑
j=1

∫ 1

0

∫ 1

0
|Kn

ij(t, s)|2dsdt

≤ |λ|2
m∑
i=1

( m∑
j=1

B2
ij

∫ 1

0
|xj(s)− yj(s)|2ds

) m∑
j=1

C2
ij ,

where the second inequality have been obtained from the Cauchy-Schwarz
inequality for the vector functions [|Kij(t, s)|]1≤j≤m and [|ψij(t, s)|]1≤j≤m,
i = 1, . . . ,m in H and the last inequality is the result of Lipschitz condition
(2). On the other hand,∫ 1

0
|xj(s)−yj(s)|2ds ≤

∫ 1

0

m∑
j=1

|xj(s)−yj(s)|2ds = ‖xxx−yyy‖2, j = 1, . . . ,m.

Therefore

‖T̃xxx− T̃yyy‖2 ≤ |λ|2‖xxx− yyy‖2
m∑
i=1

( m∑
j=1

B2
ij

m∑
j=1

D2
ij

)
= |λ|2σ2‖xxx− yyy‖2.

Thus by taking |λ| < 1
σ , the operator T̃ is contraction.

Uniqueness of the solution of the system of algebraic equations (8) or
(13) is the subject of the following theorem.
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Theorem 3. Assume that

|λ| < 1

M
,

where

M =
(∫ 1

0

n∑
κ=1

|bκ(s)|2ds
) 1

2
( m∑
i=1

B(i)
n∑
l=1

m∑
r=1

∫ 1

0
|alir(s)|2ds

) 1
2
.

Then the system of nonlinear algebraic equations (13) has a unique solution.

Proof. It is sufficient to prove that F is a contraction operator. We use
the Euclidean norm ‖.‖2 on Rm2n. For βββ = [β1 β2 . . . βn]T and γγγ =
[γ1 γ2 . . . γn]T , where βκ, γκ, 1 ≤ κ ≤ n are in the form (10), we have

‖FFF (βββ)−FFF (γγγ)‖22 =
n∑
κ=1

‖Fκ(βββ)− Fκ(γγγ)‖22, (16)

and by Equations (9)-(12)

‖Fκ(βββ)− Fκ(γγγ)‖22 =
m∑
i=1

m∑
j=1

∣∣∣ ∫ 1

0
bκ(s)

(
ψij
(
fj(s) + λ

m∑
r=1

n∑
l=1

βlira
l
ir(s)

)
−ψij

(
fj(s) + λ

m∑
r=1

n∑
l=1

γlira
l
ir(s)

))
ds
∣∣∣2

≤ |λ|2
m∑
i=1

m∑
j=1

B2
ij

×
(∫ 1

0

∣∣bκ(s)
∣∣∣∣∣ m∑
r=1

n∑
l=1

(βlir − γlir)alir(s)
∣∣∣ds)2

≤ |λ|2
∫ 1

0
|bκ(s)|2ds

m∑
i=1

m∑
j=1

B2
ij

×
∫ 1

0

( m∑
r=1

n∑
l=1

|βlir − γlir||alir(s)|
)2
ds

≤ |λ|2
∫ 1

0
|bκ(s)|2ds

m∑
i=1

( m∑
j=1

B2
ij

)( m∑
r=1

n∑
l=1

|βlir − γlir|2
)

×
( m∑
r=1

n∑
l=1

∫ 1

0
|alir(s)|2ds

)
.

The first inequality have been obtained from the assumption (2). The
second and third inequalities are the results of the Schwarz inequality for
‖.‖L2[0,1] and ‖.‖2 respectively. Moreover,

m∑
r=1

n∑
l=1

|βlir − γlir|2 ≤
m∑
i=1

m∑
r=1

n∑
l=1

|βlir − γlir|2 = ‖βββ − γγγ‖22.
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Therefore, for κ = 1, . . . , n,

‖Fκ(βββ)− Fκ(γγγ)‖22 ≤ |λ|
2
∫ 1

0
|bκ(s)|2ds

m∑
i=1

 m∑
j=1

B2
ij


×
(

m∑
r=1

n∑
l=1

∫ 1

0

∣∣∣alir(s)∣∣∣2ds) ‖βββ − γγγ‖22 .
(17)

Substituting (17) into (16) gives

‖FFF (βββ)−FFF (γγγ)‖22 ≤ |λ|2M2‖βββ − γγγ‖22.

The following theorem shows that the sequence, produced by the de-
generate kernel method, converges to the exact solution of Eq. (1).

Theorem 4. Let xxx and xxxn be the solutions of Equations (1) and (5),
respectively. Then

‖xxx− xxxn‖ ≤ |λ|AAA‖xxx‖
1− |λ|µ‖xxx‖

KKK, (18)

‖xxx− xxxn‖ ≤ |λ|AAA‖xnxnxn‖
1− |λ|µ‖xxxn‖

KKK, (19)

where

KKK =
(∫ 1

0

∫ 1

0

m∑
i=1

m∑
j=1

|Kij(t, s)−Kn
ij(t, s)|2dtds

) 1
2
,

and

AAA =
m∑
i=1

m∑
j=1

A2
ij , µ =

m∑
i=1

( m∑
j=1

C2
ij

m∑
j=1

B2
ij

) 1
2
.

As a result, under condition (14), xxxn → xxx as n→∞.

Proof. We have

‖xxx− xxxn‖2 =

∫ 1

0

m∑
i=1

|xi(t)− xni (t)|2dt =
m∑
i=1

‖xi(t)− xni (t)‖2L2 . (20)
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In addition

‖xxxi(t)− xxxni (t)‖2
L2

≤ |λ|2
(∥∥∥∫ 1

0

m∑
j=1

(
Kij(t, s)−Kn

ij(t, s)
)
ψij(s, xj(s))ds

∥∥∥
L2

+
∥∥∥∫ 1

0

m∑
j=1

Kn
ij(t, s)

(
ψij(s, xj(s))− ψij(s, xnj (s))

)∥∥∥
L2

)2

= |λ|2
((∫ 1

0

∣∣∣ ∫ 1

0

m∑
j=1

(
Kij(t, s)−Kn

ij(t, s)
)
ψij(s, xj(s))ds

∣∣∣2dt) 1
2

+
(∫ 1

0

∣∣∣ ∫ 1

0

m∑
j=1

Kn
ij(t, s)

(
ψij(s, xj(s))− ψij(s, xnj (s))

)
ds
∣∣∣2dt) 1

2

)2

≤ |λ|2
((∫ 1

0

(∫ 1

0

m∑
j=1

∣∣Kij(t, s)−Kn
ij(t, s)

∣∣2ds)

×
(∫ 1

0

m∑
j=1

∣∣ψij(s, xj(s))∣∣2ds)dt) 1
2

+

(∫ 1

0

(∫ 1

0

m∑
j=1

∣∣Kij(t, s)∣∣2ds)(∫ 1

0

m∑
j=1

∣∣ψij(s, xj(s))− ψij(s, xnj (s))
∣∣2ds)dt) 1

2

)2

≤ |λ|2
((( m∑

j=1

A2
ij

∫ 1

0
|xj(s)|2ds

)
×
(∫ 1

0

∫ 1

0

∣∣Kij(t, s)−Kn
ij(t, s)

∣∣2dsdt)) 1
2

+

(( m∑
j=1

C2
ij

)( m∑
j=1

B2
ij

∫ 1

0
|xj(s)− xnj (s)|2ds

)) 1
2

)2

.

By substituting the above result in (20), we have

‖xxx− xxxn‖2 ≤ |λ|2
(

m∑
i=1

(( m∑
j=1

A2
ij

∫ 1

0
|xj(s)|2ds

)

×
(∫ 1

0

∫ 1

0

∣∣Kij(t, s)−Kn
ij(t, s)

∣∣2dsdt)) 1
2

+

(( m∑
j=1

C2
ij

)( m∑
j=1

B2
ij

∫ 1

0
|xj(s)− xnj (s)|2ds

)) 1
2

)2

.

Now by using the Cauchy-Schwarz inequality for ‖.‖2 and

∫ 1

0
|xj(s)|2ds ≤ ‖xxx‖2,

∫ 1

0
|xj(s)− xnj (s)|2ds ≤ ‖xxx− xxxn‖2,
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we have

‖xxx− xxxn‖2 ≤ |λ|2‖xxx‖2
(( m∑

i=1

m∑
j=1

A2
ij

) 1
2

×
(∫ 1

0

∫ 1

0

m∑
i=1

m∑
j=1

|Kij(t, s)−Kn
ij(t, s)|2dtds

) 1
2

+‖xxx− xxxn‖
m∑
i=1

( m∑
j=1

C2
ij

m∑
j=1

B2
ij

) 1
2

)2

,

which proves (18). Eq. (19) can be proved similarly.

4 Construction of degenerate kernel

There are several methods for constructing degenerate kernel approxima-
tions. Three of the most important methods are Taylor series expansion,
interpolation and orthonormal expansions [1, 4, 5]. Here the Taylor series
expansion is used.

4.1 Taylor series expansion

We assume that the individual kernels Kij , i, j = 1, 2, . . . ,m and their
derivatives of any order with respect to variable s exist in a neighborhood
of a point c ∈ [0, 1]. Then by using nth truncation of Taylor-series expansion
of the individual kernels with respect to s at the point (t, c), we have

Kij(t, s) ' Kn
ij(t, s) =

n−1∑
κ=1

(s− c)κ−1

(κ− 1)!

∂κ−1Kij

∂sκ−1
(t, c), i, j = 1, . . .m.

By (4) Kn
ij , i, j = 1, . . .m, are degenerate kernels with

bκ(s) = (s−c)κ−1

(κ−1)! , a
κ
ij(t) =

∂κ−1Kij
∂sκ−1 (t, c),

i, j = 1, 2, . . . ,m, κ = 1, 2, . . . , n.
(21)

For the convergence analysis, it is sufficient to show that the condition (14)
satisfies. By using Taylor’s theorem, we have

Kij(t, s) = Kn
ij(t, s) +Rnij(t, s), i, j = 1, 2, . . . ,m,

where

Rnij(t, s) =
(s− c)n

n!

∂nKij

∂sn
(t, ηnij), i, j = 1, 2, . . . ,m,
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for some ηnij between s and c. Moreover, for each s ∈ (c− δij , c+ δij),

Rnij(t, s)→ 0 as n→∞, i, j = 1, . . . ,m,

where δij is convergence radius of Taylor-series of Kij for variable s about
s = c. In this case

Kn
ij(t, s)→ Kij(t, s) as n→∞, i, j = 1, . . . ,m,

which results (14). Moreover, we have the following Proposition from [4].

Proposition 1. Let max
x∈[0,1]

|∂
nKij
∂yn |(x,ηnij) |=M, then

min
c∈[0,1]

max
(x,y)∈Ω

|Rnij(x, y)| = M
2nn!

,

where Ω = [0, 1]× [0, 1].

5 Numerical experiments

In this section, some examples are given to examine the proposed method
numerically. We introduce the notations ei and Ei, i = 1, 2 as follows

ei = max
0≤j≤N

|xni (tj)− xi(tj)| tj = j∆t, j = 0, . . . N

Ei(t) = |xni (t)− xi(t)|, t ∈ [0, 1],

where ∆t = 0.001 and xni , xi are the ith element of approximate and exact
solutions of (1), respectively. All computations are performed in MATLAB
with double precision. In addition, to approximate the involved definite
integrals we have used 8 points Gauss-Legendre quadrature. Also, the
resulting nonlinear algebraic system of equations obtained by the proposed
method have been solved using the solve function in MATLAB.

Example 1. We consider the following HSFIEs
x1(t) = f1(t)−

∫ 1

0
etsx3

1(s)ds−
∫ 1

0
cos(ts)x2

2(s)ds,

x2(t) = f2(t)−
∫ 1

0
et

2sx2
1(s)ds−

∫ 1

0
etsx3

2(s)ds,

where f1(t) = et+3−1
t+3 + sin t

t + et and f2(t) = et
2+2−1
t2+2

+ et−1
t + 1 with exact

solutions (x1(t), x2(t)) = (et, 1).
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Figure 1: The error functions for Example 1 with n = 12 and various c.

Example 2. We consider the following HSFIEs
x1(t) = f1(t)−

∫ 1

0
cos(ts)x2

1(s)ds−
∫ 1

0
cos(ts)x2

2(s)ds,

x2(t) = f2(t)−
∫ 1

0
etsex1(s)ds−

∫ 1

0
etsex2(s)ds,

where f1(t) = t+2(t2 sin t−2 sin t+2t cos t)
t3

and f2(t) = 2 e
t+1−1
t+1 + t with exact

solutions (x1(t), x2(t)) = (t, t).

Example 3. We consider the following HSFIEs
x1(t) = f1(t)−

∫ 1

0
et−sx2

1(s)ds−
∫ 1

0
e(t+2)se−x2(s)ds,

x2(t) = f2(t)−
∫ 1

0
etsx2

1(s)ds−
∫ 1

0
et+se−x2(s)ds,
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Figure 2: The error functions for Example 2 with n = 12 and various c.

where f1(t) = et+1−1
t+1 + et+1 and f2(t) = et+2−1

t+2 + et + t with exact solutions
(x1(t), x2(t)) = (et, t).

Numerical results for Examples 1, 2 and 3 are given in Tables 1, 2 and 3
respectively. In these tables, the notations c and n are the same as the one
introduced in Section 4. As we can see the errors e1 and e2 for c = 0.5 are
more satisfactory than that of c = 0. This manner confirms Proposition
1. In addition, the error functions Ei, i = 1, 2, for n = 12 or n = 15
and various c , for Examples 1, 2 and 3 are plotted in Figures 1, 2 and 3
respectively.

6 Conclusion

Degenerate kernels approximation method was proposed for solving Ham-
merstein type system of Fredholm integral equations of the second kind.
Taylor series expansion was used to construct degenerate kernels. The
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Table 1: Numerical results for Example 1.

c = 0 c = 0.5

n e1 e2 e1 e2

3 2.45E − 01 2.07E − 01 2.59E − 02 1.55E − 02
6 1.61E − 03 1.17E − 03 2.49E − 05 1.97E − 05
9 2.94E − 06 1.79E − 06 4.85E − 09 2.21E − 9
12 2.07E − 09 1.10E − 09 7.25E − 13 1.91E − 12

Table 2: Numerical results for Example 2.

c = 0 c = 0.5

n e1 e2 e1 e2

3 2.52E − 02 1.56E − 01 1.79E − 03 9.59E − 03
6 3.17E − 04 9.11E − 04 2.56E − 06 1.53E − 05
9 1.41E − 08 1.24E − 06 4.51E − 09 1.25E − 09
12 5.66E − 08 1.00E − 09 5.60E − 09 5.60E − 11

Table 3: Numerical results for Example 3.

c = 0 c = 0.5

n e1 e2 e1 e2

3 3.17E − 01 4.54E − 01 1.05E − 02 5.53E − 02
6 3.36E − 02 6.96E − 02 2.50E − 03 4.47E − 03
9 1.40E − 03 2.00E − 03 4.64E − 06 6.17E − 06
12 2.39E − 05 2.64E − 05 3.56E − 08 3.61E − 08
15 2.02E − 07 1.84E − 07 1.17E − 11 1.43E − 11

method reduces the solution of a system of integral equations to the solu-
tion of a system of algebraic equations. Under certain conditions, it was
shown that the approximate solution obtained by the proposed method
converges to the exact solution. Numerical results verified the efficiency of
the proposed method.
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