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Abstract. In this paper, we have proposed a numerical method for singu-
larly perturbed fourth order ordinary differential equations of convection-
diffusion type. The numerical method combines boundary value technique,
asymptotic expansion approximation, shooting method and finite difference
method. In order to get a numerical solution for the derivative of the solu-
tion, the given interval is divided into two subintervals called inner region
(boundary layer region) and outer region. The shooting method is ap-
plied to inner region whereas for the outer region, standard finite difference
method is applied. Necessary error estimates are derived. Computational
efficiency and accuracy are verified through numerical examples.
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1 Introduction

Singular Perturbation Problems (SPPs) appear in many branches of ap-
plied mathematics, and for more than three decades quite a good number
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of research works on the qualitative and quantitative analysis of these prob-
lems for both ODEs and Partial Differential Equations (PDEs) have been
reported in the literature. Such problems have been investigated by many
researchers. In recent years, a variety of numerical methods are available
in the literature to solve Singularly Perturbed Boundary Value Problems
(SPBVPs) for second order ODEs, but for higher order equations only few
results are reported in the literature.

Analytical treatment of SPBVPs for higher order non-linear ODEs
which have important applications in fluid dynamics is available in [3], [7],
[11], [13], [15]- [17], [29]. Niederdrenk and Yserentant [11] have considered
convection-diffusion type problems and derived conditions for the uniform
stability of the discrete and continuous problems. Gartland [3] has shown
that the uniform stability of the discrete BVP follows from the uniform
stability of the associated discrete IVP and the uniform consistency of the
scheme. In [15], an iterative method is described.

In [15, 22], a FEM for convection and reaction type problems is de-
scribed. Feckan [7] has considered higher order problems and his works are
based on the non-linear analysis involving the fixed point theory, Leray-
Schauder theory, etc. Howes [4] has considered the higher order problems
and discussed the existence, uniqueness and asymptotic estimates of the
solution. Weili [29], has considered a more general class of third order non-
linear SPBVPs and discussed the existence, uniqueness of the solution and
obtained asymptotic estimates using the theory of the differential inequal-
ities. In fact Weili [30] has derived results on third order non-linear SPPs
using differential inequality theorems. Robert’s [14] and Valarmathi [24–27]
have suggested methods of finding approximate solutions for third order
SPBVPs.

As far as author’s knowledge goes, only few results are reported in the
literature in the case of fourth order differential equations. Sember [17],
Roos [16] and O’Malley [13] have considered fourth order equations and
applied a standard FEM. In [19] authors reported a numerical method
known as Boundary Value Technique (BVT) and in [18,20,21] authors de-
scribed an asymptotic numerical method for solving fourth order Singularly
Perturbed Ordinary Differential Equations (SPODEs) of reaction diffusion
and convection diffusion types.

Following the Boundary Value Technique (BVT) of Roberts [14],
Vigo-Aguiar [28], Valarmathi [24], Santhi [19] and using the basic idea
underlying the method suggested in Jayakumar [5] and Natesan [9] we in
the present paper, suggest a new computational method which makes use
of the zero order asymptotic expansion approximation, BVT and shooting
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method to obtain a numerical solution for the derivative of SPBVPs for
fourth order ODEs of convection-diffusion type of the form:

εyiv(x) + a(x)y′′′(x)− b(x)y′′(x) + c(x)y(x) = f(x), x ∈ Ω, (1)

y(0) = p, y′′′(0) = q, y(1) = r, −y′′(1) = s (2)

where 0 < ε � 1, a(x), b(x), c(x) are sufficiently smooth functions satis-
fying the following conditions:

a(x) ≥ α, α > 0, (3)

b(x) ≥ 0, (4)

0 ≥ c(x) ≥ −γ, γ > 0, (5)

α > 3γ, (6)

with Ω = (0, 1), Ω̄ = [0, 1] and y ∈ C(4)(Ω) ∩ C(3)(Ω̄). The boundary
conditions (2) of the problem (1) are one of the types of boundary conditions
discussed in [7].

In order to get a numerical solution for the derivative of the solution
of SPBVP (1)-(2), we divide the interval [0, 1] into two subintervals [0, τ ]
and [τ, 1]. An inner region problem defined in the interval [0, τ ] is solved
by shooting method and BVP corresponding to the outer region is solved
based on the standard finite difference scheme. It is quite natural to take τ
as the width of the boundary layer which can be obtained or estimated [6].
The problems defined in the intervals [0, τ ] and [τ, 1] are independent of
each other. Therefore, these problems can be solved simultaneously, that
is, more suitable for parallel architectures.

This method is easy to implement, and further, we could give a full-
fledged theory (consistency, stability, convergence and error estimates) for
the same. In Section 2 some analytical results for the SPBVPs(1)-(2) are
presented. Section 3 deals with derivative estimates of the solution. In
Section 4 some analytical and numerical results are derived for auxiliary
second order SPBVPs of convection diffusion type and description of the
numerical method is also given. The error estimates for the method are
discussed in detail in Section 5. Section 6 deals with non-linear problems.
Numerical examples are presented in Section 7. Conclusions are drawn in
the last section.

Through out this paper, we use C, with or without subscript to denote
a generic positive constant, which is independent of N and ε. We use h1

for mesh size for the inner region problem and h2 for mesh size for the
outer region problem. Error estimates are derived. Numerical examples are
presented to illustrate the method. We define ||.|| of w̄ = (w1, w2)T ∈ R2

as ||w̄|| = max{|w1|, |w2|} .
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2 Preliminaries

The SPBVPs (1)-(2) can be transformed into an equivalent weakly coupled
system of the form:

P1ȳ(x) ≡ −y′′1(x)− y2(x) = 0, x ∈ Ω,

P2ȳ(x) ≡ −εy′′2(x)− a(x)y′2(x) + b(x)y2(x)

+c(x)y1(x) = f(x), x ∈ Ω,

(7)

y1(0) = p, −y′2(0) = q, y1(1) = r, y2(1) = s, (8)

where ȳ = (y1, y2)T , the functions a(x), b(x), c(x) and f(x) are suffi-
ciently smooth functions satisfying the conditions (3)-(6).

This transformation makes it possible to establish the maximum prin-
ciple theorems and stability results for the continuous problem.

Remark 1. The solution of the problem (7)-(8) exhibits a boundary layer
at x = 0 which is less severe because the boundary conditions are pre-
scribed [15] for the derivative of the solution. The condition (3) says that
the problem (7)-(8) is a non turning point problem. The condition (5) is
known as the quasi monotonicity condition [15]. The maximum principle
for the above system (7)-(8) and for the corresponding discrete problem are
established using the conditions (3)-(6).

2.1 Analytical results

This section presents the maximum principle for the problem (7)-(8).
Using this principle, a stability result is derived. Further, an asymptotic
expansion approximation is constructed for the solution and a theorem is
presented to establish its accuracy.

Theorem 1. (Maximum Principle). Consider the BVPs (7)-(8). Let
y1(0) ≥ 0, y′2(0) ≤ 0, y1(1) ≥ 0 and y2(1) ≥ 0, P1ȳ(x) ≥ 0, P2ȳ(x) ≥
0, ∀x ∈ Ω. Then, ȳ(x) ≥ 0, ∀x ∈ Ω̄.

Proof. Define the test functions s̄(x) = (s1(x), s2(x))T as

s1(x) = 2(1 + η)(1− x2/2), s2(x) = 2− x, 0 < η � 1/2, x ∈ Ω̄.

Clearly, s1(0) = 2(1 + η) > 0, s′2(0) = −1 < 0, s1(1) = 1 + η > 0, s2(1) =
1 > 0. We can easily prove that P1s̄ > 0 and P2s̄ > 0, for x ∈ Ω .

Assume that the theorem is not true. We define

ξ = max

{
max
x∈Ω̄

(
−y1

s1

)
(x),max

x∈Ω̄

(
−y2

s2

)
(x)

}
.
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Then ξ > 0. Also (y1 +ξs1)(x) ≥ 0 and (y2 +ξs2)(x) ≥ 0 for x ∈ Ω̄.

Furthermore, there exists a point x0 ∈ Ω̄ such that

(y1 + ξs1)(x0) = 0 for x0 ∈ Ω or (y2 + ξs2)(x0) = 0 for x0 ∈ Ω.

Case 1: (y1 + ξs1)(x0) = 0 for x0 ∈ Ω.
This implies that y1 + ξs1 attains its minimum at x = x0. Therefore,

0 < P1(ȳ + ξs̄)(x0) = −(y1 + ξs1)
′′
(x0)− (y2 + ξs2)(x0) ≤ 0,

which is a contradiction.
Case 2: (y2 + ξs2)(x0) = 0 for x0 ∈ Ω.
This implies that y2 + ξs2 attains its minimum at x = x0. Therefore,

0 < P2(ȳ + ξs̄)(x0) = −ε(y2 + ξs2)
′′
(x0)− a(x)(y2 + ξs2)′(x0)

+ b(x)(y2 + ξs2)(x0) + c(x)(y1 + ξs1)(x0) ≤ 0,

which is a contradiction. Hence it can be concluded that ȳ(x) ≥ 0, ∀x ∈
Ω̄.

Lemma 1. (Stability Result). If ȳ(x) is the solution of the BVPs (7)-
(8) then

||ȳ(x)|| ≤ C max{|y1(0)|, |y′2(0)|, |y1(1)|, |y2(1)|, max
x∈Ω
|P1ȳ(x)|, max

x∈Ω
|P2ȳ(x)|}, ∀x ∈ Ω̄

Proof. Set

M = C max{|y1(0)|, |y′2(0)|, |y1(1)|, |y2(1)|, max
x∈Ω
|P1ȳ(x)|, max

x∈Ω
|P2ȳ(x)|}.

Define two barrier functions w̄±(x) = (w±1 (x), w±2 (x))T as

w±1 (x) = M{2(1 + η)(1− x2

2
)} ± y1(x) and w±2 (x) = M(2− x)± y2(x),

we have

P1w̄
±(x) = −w±1

′′(x)− w±2 (x) > Mη ± P1ȳ(x) ≥ 0,

and

P2w̄
±(x) = −εw±2

′′(x)− a(x)w±2
′(x) + b(x)w±2 (x) + c(x)w±1 (x)

> M(α− 3γ)± P2ȳ(x) ≥ 0,

by a proper choice of C. Furthermore, we have

w±1 (0) = 2M(1 + η)± y1(0) ≥ 0, w±
′

2 (0) = −M ± y′2(0) ≤ 0,

w±1 (1) = M(1 + η)± y1(1) ≥ 0 and w±2 (1) = M ± y2(1) ≥ 0,

by a proper choice of C. Applying Theorem 1 to the barrier functions
w̄±(x), we get the desired bound for ȳ(x).
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2.2 Asymptotic expansion approximation

We look for an asymptotic expansion solution of the BVPs (7)-(8) in the
form ȳas(x, ε) = ū0(x) + v̄0(x) + O(ε). By the method of stretching vari-
able [8], one can obtain the zero order asymptotic approximation as ȳas =
ū0(x)+v̄0(x), where ū0(x) = (u01(x), u02(x))T is the solution of the reduced
problem of the BVPs (7)-(8) given by

−u′′01
(x)− u02(x) = 0,

−a(x)u′02
(x) + b(x)u02(x) + c(x)u01(x) = f(x),

u01(0) = p, u01(1) = r, u02(1) = s

(9)

and v̄0(x) = (v01(x), v02(x))T is a layer correction term with{
v01(x) = (ε/a(0))3(q + u′02

(0)) exp[−(a(0)/ε)(x)],

v02(x) = (ε/a(0))(q + u′02
(0)) exp[−(a(0)/ε)(x)],

(10)

where v̄0(x) satisfies

−v′′01
(x)− v02(x) = 0,

−εv′′02
(x)− a(0)v′02

(x) = 0,

v01(0) = −(ε/a(0))3v′02
(0), v01(1) = (ε/a(0))2v02(1),

B0v02(0) ≡ −v′02
(0) = (q + u′02

(0)),

v02(1) = −(ε/a(0))v′02
(0) exp[−(a(0)/ε)].

(11)

The following theorem gives the error bound for the difference between
the solution of the BVPs (7)-(8) and its zero order asymptotic expansion
approximation.

Theorem 2. The zero order asymptotic expansion approximation ȳas =
ū0(x) + v̄0(x) of the solution ȳ(x) of the BVPs (7)-(8) defined by (9)-(11)
satisfies the inequality

||ȳ(x)− ȳas(x)|| ≤ Cε, ∀x ∈ Ω̄.

Proof. It is easy to prove that

|(y1 − y1as)(0)| = |v01(0)| ≤ Cε3, |(y2 − y2as)
′(0)| = 0,

|(y1 − y1as)(1)| = |v01(1)| ≤ Cε3, |y2(1)− y2as(1)| = |v02(1)| ≤ Cεe−α/ε.

Applying the differential operator on ȳ(x)− ȳas(x) and using the fact that
te−t ≤ e−t/2, ∀ t ≥ 0, we have,

|P1(ȳ − ȳas)(x)| = 0 and |P2(ȳ − ȳas)(x)| ≤ Cε+ Ce−αx/2ε.
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Define the barrier functions φ̄±(x) = (φ±1 (x), φ±2 (x))T for x ∈ Ω̄ by

φ±1 (x) = C1[2(1−x
2

2
)]ε+C2ε

2[1−(1/2)e−αx/2ε]±(y1−y1as)(x), 0 < η � 1/2

and

φ±2 (x) = C1(2− x)ε+ C2ε
2e−αx/2ε ± (y2 − y2as)(x),

where C1 and C2 are positive constants to be chosen suitably, so that the
following expressions are satisfied:

φ±1 (0) ≥ 0, φ2
±′(0) < 0, φ±1 (1) ≥ 0, φ±2 (1) ≥ 0,

P1φ̄
±(x) = −φ±1

′′(x)− φ±2 (x) > 0

and

P2φ̄
±(x) = −εφ±2

′′(x)−a(x)φ±2
′(x) + b(x)φ±2 (x) + c(x)φ±1 (x) ≥ 0 for x ∈ Ω.

Then, applying Theorem 1 to the functions φ̄±(x), it follows that φ̄±(x) ≥ 0,
∀x ∈ Ω, and consequently ||ȳ(x)− a

¯
ryas(x)|| ≤ Cε, ∀x ∈ Ω̄.

Corollary 1. If y1(x) is the solution of the BVP (7)-(8) and u01(x) is the
solution of the problem (9) then |y1(x)− u01(x)| ≤ Cε, ∀x ∈ Ω̄.

Proof. From the above theorem, |y1(x)− (u01(x) + v01(x))| ≤ C1ε. There-
fore,

|y1(x)− u01(x)| = |y1(x)− u01(x) + v01(x)− v01(x)|
≤ |y1(x)− (u01(x) + v01(x))|+ |v01(x)|
≤ C1ε+ C2ε

2 ≤ Cε,

which completes the proof.

3 Estimates for the derivatives

Theorem 3. Let ȳ(x) be the solution of the BVP (7)-(8). Then y2(x)
satisfies

|y(k)
2 (x)| ≤ C(1 + ε−(k−1) exp(−αx/ε)), (12)

for 0 ≤ k ≤ 4, and x ∈ Ω̄.
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Proof. Consider the BVP

εy′′2(x) + a(x)y′2(x)− b(x)y2(x)− c(x)y1(x) = −f(x),

y′2(0) = −q, y2(1) = s.

Rewrite this BVP as

εy′′2(x) + a(x)y′2(x)− b(x)y2(x) = −f(x) + c(x)y1(x),

y′2(0) = −q, y2(1) = s.

Then, y1 ∈ C(3)(Ω̄) and using the procedure adopted in [10] we have

|y(k)
2 (x)| ≤ C(1 + ε−(k−1) exp(−αx/ε)), as required.

4 Some analytical and numerical results for sec-
ond order SPBVPs

We present some results for the following SPBVPs which are needed for
the error analysis of the numerical method given in this section. Consider
the auxiliary second order SPBVPs

Ly?2 ≡ −εy?
′′

2 (x)− a(x)y?
′

2 (x) + b(x)y?2(x) = f(x)− c(x)u01(x), x ∈ Ω, (13)

B0y
?
2(0) ≡ −y?

′

2 (0) = q, B1y
?
2(1) ≡ y?2(1) = s, (14)

where u01(x) is defined as in (9), a(x), b(x) and f(x), are sufficiently
smooth and a(x) ≥ α, α > 0, b(x) ≥ 0 and 0 ≥ c(x) ≥ −γ, γ > 0.

4.1 Analytical results

Theorem 4. (Maximum Principle). Consider the SPBVPs (13)-(14).
Let y?2(x) be a smooth function satisfying B0y

?
2(0) ≤ 0, B1y

?
2(1) ≥ 0 and

Ly?2(x) ≥ 0 for x ∈ Ω. Then, y?2(x) ≥ 0, ∀x ∈ Ω̄.

Proof. See [1].

Lemma 2. If y?2(x) is the solution of the SPBVPs (13)-(14) then

|y?2(x)| ≤ C max{|B0y
?
2(0)|, |B1y

?
2(1)|, max

x∈Ω
|Ly?2(x)|}, ∀x ∈ Ω̄.

Proof. Define the barrier functions Ψ±(x) as Ψ±(x) = A′(2−x)±y?2(x), x ∈
Ω̄, where A′ = C max{|B0y

?
2(0)|, |B1y

?
2(1)|, maxx∈Ω |Ly?2(x)|}. It is easy

to check that B0Ψ±(0) ≤ 0, B1Ψ±(1) ≥ 0 and LΨ±(x) ≥ 0 for a proper
choice of the constant C. Applying Theorem 4 to Ψ±(x), the required sta-
bility bound for y?2(x) is obtained.
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Theorem 5. If ȳ(x) and y?2(x) are solutions of the BVPs (7)-(8) and
(13)-(14) respectively, then |y2(x)− y?2(x)| ≤ Cε, ∀x ∈ Ω̄.

Proof. The second component y2 of the solution ȳ(x) of (7)-(8) satisfies
the BVP

−εy2
′′(x)− a(x)y2

′(x) + b(x)y2(x) = f(x)− c(x)y1(x), x ∈ Ω,

−y′2(0) = q, y2(1) = s.

Further, the function w(x) = y2(x)− y?2(x) satisfies the BVP

−εw′′(x)− a(x)w′(x) + b(x)w(x) = −c(x)[y1(x)− u01(x)], x ∈ Ω,

w′(0) = 0, w(1) = 0.

From the stability result given in [1], we have |w(x)| ≤ C|y1(x)−u01(x)|.
From Theorem 2, we further have |y1(x)−y1as(x)| ≤ Cε or |y1(x)−u01(x)−
v01(x)| ≤ Cε. Then |y1(x)− u01(x)| − |v01(x)| ≤ |y1(x)− u01(x)− v01(x)|,
implies that

|y1(x)− u01(x)| ≤ |v01(x)|+ Cε ≤ Cε.

Therefore, |w(x)| ≤ Cε. Hence, |y2(x)− y?2(x)| ≤ Cε.

4.2 Description of the method

Step 1: An asymptotic approximation is derived for the solution of (7)-(8)
which is given by (9)-(10).
Step 2: The first component of the solution ȳ(x) of the BVPs (7)-(8),
namely y1 is approximated by the first component of the solution of the
reduced problem namely u01 given by (9). Then replacing y1 appearing in
the second equation of (7) by u01 and taking the same boundary values,
one gets the auxiliary SPBVPs (13)-(14). The solution of this problem is
taken as an approximation to y2 which is the second equation of (7) which
has to be solved .
Step 3: In order to solve the auxiliary second order problem (13)-(14)
numerically, we divide the interval [0, 1] into two subintervals [0, τ ] and

[τ, 1] called inner and outer region respectively, where τ = min{1

2
,
ε

α
lnN}.

The inner region problem for (13)-(14) is given by
−εy′′2 (x)− a(x)y

′
2(x) + b(x)y2(x)

= f(x)− c(x)u01(x), x ∈ (0, τ),

−y′2(0) = q, y2(τ) = u02(τ) + v02(τ).

(15)
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The outer region problem for (13)-(14) is given by
−εy′′2 (x)− a(x)y

′
2(x) + b(x)y2(x)

= f(x)− c(x)u01(x), x ∈ (τ, 1),

y2(τ) = u02(τ) + v02(τ), y2(1) = r.

(16)

Step 4: The inner region problem (15) is solved by the Shooting method
using the initial conditions ỹ2(0) = u02(0) + v02(0), −ỹ′2(0) = q. Here,
Shooting method in the sense that BVP (15) is replaced by the IVP (17)
on the interval [0, τ ]. Step 5: The outer region problem (16) subject to
boundary conditions y2(τ) = u02(τ) + v02(τ), y2(1) = r is solved by the
standard FD scheme.
Step 6: After solving both the inner region and the outer region problems,
we combine their solutions to obtain an approximate solution y2 which
is the derivative of the solution of the original problem (1)-(2) over the
interval Ω̄.

4.3 Inner region problem

Using Step 4 for the BVPs (15), we get the following IVPs
−εỹ2

′′(x)− a(x)ỹ2
′(x) + b(x)ỹ2(x)

= f(x)− c(x)u01(x), x ∈ (0, τ ],

ỹ2(0) = q̄ = u02(0) + v02(0), −ỹ′2(0) = q.

(17)

This IVPs is equivalent to the system
P ∗1 ȳ

∗ = y∗1
′(x) + y∗2(x) = 0,

P ∗2 ȳ
∗ = εy∗2

′(x) + a(x)y∗2(x) + b(x)y∗1(x)

= f∗(x), x ∈ (0, τ ],

y∗1(0) = q̄, y∗2(0) = q,

(18)

where, f∗(x) = f(x)−c(x)u01(x), ȳ∗ = (y∗1, y
∗
2)T , a(x) ≥ α, α > 0 and

b(x) ≥ 0.

Theorem 6. (Maximum Principle). Consider the IVPs (18). Let
y∗1(0) ≥ 0, y∗2(0) ≥ 0 and P ∗1 ȳ

∗(x) ≥ 0, P ∗2 ȳ
∗(x) ≥ 0 for x ∈ (0, τ ]. Then,

ȳ∗(x) ≥ 0, ∀x ∈ [0, τ ].

Proof. See [23].
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Lemma 3. (Stability Result). If ȳ∗(x) is the solution of the IVPs (18),
then

||ȳ∗(x)|| ≤ C max{|y∗1(0)|, |y∗2(0)|, max
x∈(0,τ ]

|P ∗1 ȳ∗(x)|, max
x∈(0,τ ]

|P ∗2 ȳ∗(x)|}, ∀x ∈ Ω̄.

Proof. Defining two barrier functions χ̄±(x) = (χ±1 (x), χ±2 (x))T as

χ±1 (x) = M ′(1 + x)± y∗1(x) and χ±2 (x) = M ′ ± y∗2(x),

where

M ′ = C max{|y∗1(0)|, |y∗2(0)|, max
x∈(0,τ ]

|P ∗1 ȳ∗(x)|, max
x∈(0,τ ]

|P ∗2 ȳ∗(x)|}.

We have

P ∗1 χ̄
±(x) = χ±1

′(x) + χ±2 (x) = 2M ′ ± P ∗1 ȳ∗(x) ≥ 0 and

P ∗2 χ̄
±(x) = εχ±2

′(x) + a(x)χ±2 (x) + b(x)χ±1 (x)± P ∗2 ȳ∗(x)

≥M ′α± P ∗2 ȳ∗(x) ≥ 0,

by a proper choice of C. Furthermore, we have χ±1 (0) = M ′ ± y∗1(0) ≥ 0
and χ±2 (0) = M ′ ± y∗2(0) ≥ 0, by a proper choice of C. Applying Theorem
6 to the barrier functions χ̄±(x), we get the desired result.

Theorem 7. Let ȳ∗(x) be the solution of the IVPs (18). Then y∗1(x) and
y∗2(x) satisfy

|y∗(k)
1 (x)| ≤ Cε−(k−1), |y∗(k)

2 (x)| ≤ Cε−k for 0 ≤ k ≤ 2, x ∈ (0, τ ].

Proof. For k = 0, the result follows from Lemma 3. From (18), it is evident
that |y∗′1 (x)| ≤ C and |y∗′2 (x)| ≤ Cε−1. Differentiating the equations in
(18) once and using the above estimates of |y∗′1 (x)| and |y∗′2 (x)|, it is found
that |y∗′′1 (x)| ≤ Cε−1 and |y∗′′2 (x)| ≤ Cε−2.

4.4 Numerical schemes

Applying Euler’s Finite Difference scheme for (18), we get
P
∗N/2
1 ȳ∗i = D−y∗1,i + y∗2,i = 0,

P
∗N/2
2 ȳ∗i = εD−y∗2,i + a(xi)y

∗
2,i + b(xi)y

∗
1,i = f∗(xi), 1 ≤ i ≤ N/2,

y∗1,0 = q̄, y∗2,0 = q,

(19)

where, D−y∗j,i = (y∗j,i − y∗j,i−1)/h1, h1 = 2τ
N , xi = ih1, j = 1, 2 and

1 ≤ i ≤ N/2. This fitted mesh is denoted by Ω̄
N/2
τ .
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Theorem 8. (Discrete Maximum Principle). Consider the discrete

IVP (19). Let y∗1,0 ≥ 0 , y∗2,0 ≥ 0 . Then P
∗N/2
1 ȳi

∗ ≥ 0, P
∗N/2
2 ȳi

∗ ≥ 0
for 1 ≤ i ≤ N/2, implies that ȳi

∗ ≥ 0 for 0 ≤ i ≤ N/2.

Proof. See [23].

Lemma 4. (Stability Result). Consider the discrete IVP (19). If ȳ∗i is
any mesh function, then

||ȳ∗i || ≤ C max{|y∗1,0|, |y∗2,0|, max
1≤i≤N/2

|P ∗N/21 ȳ∗i |, max
1≤i≤N/2

|P ∗N/22 ȳ∗i |}

for 0 ≤ i ≤ N/2.

Proof. Set

M ′ = C max{|y∗1,0|, |y∗2,0|, max
1≤i≤N/2

|P ∗N/21 ȳ∗i |, max
1≤i≤N/2

|P ∗N/22 ȳ∗i |}.

Define the barrier functions χ̄±i = (χ±1,i, χ
±
2,i)

T by

χ±1,i = M ′{1 + xi} ± y∗1,i and χ±2,i(x) = M ′ ± y∗2,i for 0 ≤ i ≤ N/2.

Then for a proper selection of the constant C, applying Theorem 8 to the
barrier functions χ̄±i , we can obtain the desired bound for ȳ∗i .

4.5 Outer region problem

The outer region problem for (13)-(14) is given by
Ly2(x) := −εy′′2 (x)− a(x)y

′
2(x) + b(x)y2(x)

= f(x)− c(x)u01(x), x ∈ (τ, 1),

B0y2(0) = y2(τ) = u02(τ) + v02(τ) = r̄, B1y2(1) = y2(1) = r,

(20)

where u01(x) is defined as in (9), a(x), b(x) and f(x) are sufficiently smooth
and a(x) ≥ α, b(x) ≥ 0 and 0 ≥ c(x) ≥ −γ, γ > 0.

4.5.1 Analytical results

Theorem 9. (Maximum Principle). Consider the BVP (20). Let y2(x)
be a smooth function satisfying B0y2(0) ≥ 0 , B1y2(1) ≥ 0 and Ly2(x) ≥
0 for x ∈ (τ, 1). Then, y2(x) ≥ 0 for x ∈ [τ, 1].

Proof. See [1].
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Lemma 5. (Stability result). If y2(x) is the solution of the BVP (20)
then

|y2(x)| ≤ C max{|B0y2(0)|, |B1y2(1)|, max
x∈(τ,1)

|Ly2(x)|} for x ∈ [τ, 1].

Proof. Define the barrier functions Φ±(x) as Φ±(x) = M(2−x)±y2(x), x ∈
[τ, 1], where

M = C max{|B0y2(0)|, |B1y2(1)|, max
x∈(0,τ)

|Ly2(x)|}.

It is easy to check that B0Φ±(τ) ≥ 0, B1Φ±(1) ≥ 0 and LΦ±(x) ≥ 0
for a proper choice of the constant C. Applying Theorem 9 to Φ±(x), the
required stability bound for y2(x) is obtained.

To solve this BVP (20), we apply the standard FD scheme defined by
LN/2y2,i := −εδ2y2,i − a(xi)D

+y2,i + b(xi)y2,i

= f(xi)− c(xi)u01(xi), 1 ≤ i ≤ N/2− 1,

B
N/2
0 y2,0 = y2,0 = r̄, B

N/2
1 y2,N = y2,N/2 = r,

(21)

where, D+y2,i = (y2,i+1 − y2,i)/h2, δ2y2,i = (y2,i+1 − 2y2,i + y2,i−1)/h2
2,

xi = τ + ih2, and h2 =
2(1− τ)

N
, 0 ≤ i ≤ N/2.

This fitted mesh is denoted by Ω̄
N/2
τ .

Theorem 10. (Discrete Maximum Principle). Consider the discrete

BVP (21). If B
N/2
0 y2,0 ≥ 0, B

N/2
1 y2,N ≥ 0 and LN/2y2,i ≥ 0 for 1 ≤ i ≤

N/2− 1. Then y2,i ≥ 0 for 0 ≤ i ≤ N/2.

Proof. See [1].

Lemma 6. (Discrete Stability Result). If y2,i is the solution of the
BVP (21), then

|y2,i| ≤ C max{|BN/2
0 y2,0|, |BN/2

1 y2,N |, max
1≤i≤N/2−1

|LN/2y2,i|}

for 0 ≤ i ≤ N/2.
Proof. Set

M ′′ = C max{|BN/2
0 y2,0|, |BN/2

1 y2,N |, max
1≤i≤N/2−1

|LN/2y2,i|}.

Define the barrier function by φ±i = M ′′{1 + xi} ± y2,i for 0 ≤ i ≤ N/2.
Then for a proper selection of the constant C, applying Theorem 10 to the
barrier functions φ̄±i , we can obtain the desired bound for y2,i.
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5 Error estimates

In this section, we derive error estimates for the solution of (13)-(14).

5.1 Inner region problem

In order to derive error estimate for the solution of the inner region
problem, we prove the following theorems.

Theorem 11. Let ȳ∗ = (y∗1, y
∗
2)T and ȳ∗i = y∗1,i, y

∗
2,i)

T be, respectively, the
solutions of (18) and (19). Then

||ȳ∗(xi)− ȳ∗i || ≤ CN−1 lnN for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2
τ .

Proof. From Lemma 4.1 in [6] and Theorem 7 it is clear that for each i,

the consistency errors due to ȳ∗(x) with P
∗N/2
1 and P

∗N/2
2 are bounded

as given below.

|P ∗N/21 (ȳ∗(xi)− ȳ∗i )| = |(D+ −D)y∗1(xi)|

=
h1

2
|y∗′′1 (t)| = h1

2ε
(22)

and

|P ∗N/22 (ȳ∗(xi)− ȳ∗i )| = ε|(D+ −D)y∗2(xi)|

=
εh1

2
|y∗′′2 (t)| = h1

2ε
, (23)

for some point t satisfying xi−1 ≤ t ≤ xi.
Since τ = min{1

2
,
ε

α
lnN}, the argument is considered for two cases

τ =
1

2
and τ =

ε

α
lnN separately.

Case 1: τ =
1

2
. Note that

1

2
≤ ε

α
lnN implies ε−1 ≤ C lnN.

From (22) and (23) and using h1 ≤ CN−1, we have{
|P ∗N/21 (ȳ∗(xi)− ȳ∗i )|,≤ CN−1 lnN,

|P ∗N/22 (ȳ∗(xi)− ȳ∗i )| ≤ CN−1 lnN.

Case 2: τ =
ε

α
lnN .

From (22) and (23), we have{
|P ∗N/21 (ȳ∗(xi)− ȳ∗i )| ≤ CN−1 lnN,

|P ∗N/22 (ȳ∗(xi)− ȳ∗i )| ≤ CN−1 lnN.
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Since y∗1(0) = y∗1,0 and y∗2(0) = y∗2,0, by the discrete stability result given
by Lemma 4 it follows that

||ȳ∗(xi)− ȳ∗i || ≤ CN−1 lnN,

which completes the proof.

Theorem 12. Let ȳ∗ = (y∗1, y
∗
2)T and ȳ∗1 = (y∗11 , y

∗1
2 )T be, respectively, the

solutions of the IVPs
y∗
′

1 − y∗2 = 0,

εy∗
′

2 + a(x)y∗2 − b(x)y∗1 = f(x) + c(x)u01(x), x ∈ Ω,

y∗1(0) = α
′
, y∗2(0) = β

′
(24)

and 
y∗11 − y∗12 = 0,

εy∗1
′

2 + a(x)y∗12 − b(x)y∗11 = f(x) + c(x)u01(x), x ∈ Ω,

y∗11 (0) = α
′
+O(ε), y∗12 (0) = β

′
,

(25)

then ||ȳ∗(x)− ȳ∗1(x)|| ≤ Cε.

Proof. Let w̄ = ȳ∗ − ȳ∗1. Then w̄ satisfies
w′1 − w2 = 0,

εw′2 + a(x)w2 − b(x)w1 = 0, x ∈ Ω,

w1(0) = O(ε), w2(0) = 0.

(26)

Using the maximum principle for the system (26) as in [1], we have

||ȳ∗(x)− ȳ∗1(x)|| ≤ Cε, x ∈ Ω.

Theorem 13. Let ȳ∗ = (y∗1, y
∗
2)T be the solution of the IVP (24). Further,

let ȳ∗i = (y∗1,i, y
∗
2,i)

T be the numerical solution of the IVP (25) after applying
the Euler’s Finite Difference scheme as given in (19). Then,

||ȳ∗(xi)− ȳ∗i || ≤ Cε+ CN−1 lnN for 0 ≤ i ≤ N/2 and xi ∈ Ω̄N/2
τ .

Proof. From Theorem 12, ||ȳ∗(xi) − ȳ∗1(xi)|| ≤ Cε. From Theorem 11,
||ȳ∗1(xi)− ȳ∗i || ≤ CN−1 lnN. Using these estimates in the inequality ,

||ȳ∗(xi)− ȳ∗i || ≤ ||ȳ∗(xi)− ȳ∗1(xi)||+ ||ȳ∗1(xi)− ȳ∗i ||,

where ȳ∗1(x) is the solution of the system (25), this theorem is proved.
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The BVP (13)-(14) is equivalent to the following IVP{
−εy′′2(x)− a(x)y′2(x) + b(x)y2(x) = f∗(x), x ∈ Ω,

y2(0) = q∗, y′2(0) = −q,
(27)

where q∗ is the exact value of the solution of the BVP (13)-(14) at x = 0.
Because of uniqueness of the solutions of the IVP (27) and the BVP (13)-
(14), we have the following result on the error estimate for the inner region
problem.

Theorem 14. Let y?2(xi) be the solution of the BVP (13)-(14). Further,
let ȳ∗i = (y∗1,i, y

∗
2,i)

T be the numerical solution of the IVP (19). Then,

|y?2(xi)− y∗1,i| ≤ Cε+ CN−1 lnN for 0 ≤ i ≤ N/2 xi ∈ Ω̄N/2
τ .

Proof. Consider the inequality ,

|y?2(xi)− y∗1,i| ≤ |y?2(xi)− y∗11 (xi)|+ |y∗11 (xi)− y∗1,i|,

where y∗11 (x) is the solution of the system (25). The proof follows from
Theorems 12 and 13.

Theorem 15. Let ȳ(x) be the solution of the BVP (7)-(8) and let ȳ∗i =
(y∗1,i, y

∗
2,i)

T be the numerical solution of the IVP (19). Then,

|y2(xi)− y∗1,i| ≤ Cε+ CN−1 lnN for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2
τ .

Proof. Consider the inequality,

|y2(xi)− y∗1,i| ≤ |y2(xi)− y?2(xi)|+ |y?2(xi)− y∗1,i|,

where y?2(x) is the solution of the BVP (13)-(14). The proof follows from
Theorems 5 and 14.

Remark 2. In particular, Theorem 14 and Theorem 15 are true over the
interval [0, τ ], that is, for the inner region problem.

5.2 Outer regin problem

Adopting the method of analysis provided as in [2], the following theorem
can be proved.

Theorem 16. Let y2(xi) be the solution of the BVP (20) and y2,i be its
numerical solution given by (21). Then,

|y2(xi))− y2,i| ≤ CN−1 lnN for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2
τ .
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Proof. See [2].

Theorem 17. Let y?2(xi) be the solution of the BVP (13)-(14) and y2,i

be the numerical solution of the BVP (20) after applying the standard FD
scheme as given in (21). Then,

|y?2(xi)− y2,i| ≤ Cε+ CN−1 lnN for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2
τ .

Proof. From Theorem 5, |y?2(xi)−y2(xi)| ≤ Cε. From Theorem 16, |y2(xi)−
y2,i| ≤ CN−1 lnN. Using these estimates in the inequality,

|y?2(xi)− y2,i| ≤ |y?2(xi)− y2(xi)|+ |y2(xi)− y2,i|,

where y2(xi) is the solution of the BVP (20), this theorem is proved.

Theorem 18. Let ȳ(x) be the solution of the BVP (7)-(8) and y2,i be
the numerical approximation obtained for y2(xi) for the BVP (20) after
applying the standard FD scheme as given in (21). Then,

|y2(xi)− y2,i| ≤ Cε+ CN−1 lnN for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2
τ .

Proof. From Theorem 5, |y2(xi)−y?2(xi)| ≤ Cε. From Theorem 17, |y?2(xi)−
y2,i| ≤ CN−1 lnN. Using these estimates in the inequality,

|y2(xi)− y2,i| ≤ |y2(xi)− y?2(xi)|+ |y?2(xi)− y2,i|.

where y?2(xi) is the solution of the BVP (13)-(14), this theorem is proved.

6 Nonlinear problem

Consider the quasilinear BVP

εyiv(x) = F (x, y, y′′, y′′′), x ∈ Ω, (28)

y(0) = p, y′′′(0) = q, y(1) = r, −y′′(1) = s, (29)

where F (x, y, y′′, y′′′) is a smooth function such that
Fy′′′(x, y, y

′′, y′′′) ≥ α, α > 0,

Fy′′(x, y, y
′′, y′′′) ≥ 0,

0 ≥ Fy(x, y, y′′, y′′′) ≥ −γ, γ > 0, α > 3γ.

(30)

Assume that the reduced problem

F (x, y, y′′, y′′′) = 0, y(0) = p, y(1) = r, −y′′(1) = s
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has a solution y0 ∈ C4(Ω̄). Then the BVP (28)-(29) has a unique solution
and has a less severe boundary layer of width O(ε) near x = 0 [12]. The
analytical results such as existence, uniqueness and asymptotic behavior
of the solution of (28)-(29) can be found in [12,19,29].

In order to obtain a numerical solution of (28)-(29), first Newton’s
method of quasi-linearization is applied [1] and then the problem is lin-
earized. Consequently, we get a sequence {y[m]}∞0 of successive approxima-
tions with a proper choice of initial guess y[0].

We define y[m+1] for each fixed non-negative integer m, to be the
solution of the following linear problem:{
ε(yiv)[m+1] + am(x)(y′′′)[m+1] − bm(x)(y′′)[m+1] + cm(x)y[m+1] = F [m](x),

y[m+1](0) = p, (y′′′)[m+1](0) = q, y[m+1](1) = r, −(y′′)[m+1](1) = s,

(31)
where 

am(x) = Fy′′′(x, y
[m], (y′′)[m], (y′′′)[m]),

bm(x) = Fy′′(x, y
[m], (y′′)[m], (y′′′)[m]),

cm(x) = Fy(x, y
[m], (y′′)[m], (y′′′)[m]),

F [m](x) = F (x, y[m], (y′′)[m], (y′′′)[m])

+(y′′′)[m]Fy′′′(x, y
[m], (y′′)[m], (y′′′)[m])

−(y′′)[m]Fy′′(x, y
[m], (y′′)[m], (y′′′)[m])

−(y)[m]Fy(x, y
[m], (y′′)[m], (y′′′)[m]).

(32)

Remark 3. If the initial guess y[0] is sufficiently close to the solution y(x)
of (28)-(29), then, following the method of proof given in [1], one can prove
that the sequence {y[m]}∞0 converges to y(x). From (30), it follows that for
each fixed m:

am(x) = Fy′′′(x, y
[m], (y′′)[m], (y′′′)[m]) ≥ α, α > 0,

bm(x) = Fy′′(x, y
[m], (y′′)[m], (y′′′)[m]) ≥ 0,

0 ≥ cm(x) = Fy(x, y
[m], (y′′)[m], (y′′′)[m]) ≥ −γ, γ > 0, α > 3γ,

Remark 4. Problem (31)-(32) for each fixed m is a linear BVP of fourth
order and is of the form (1)-(2). Hence it can be solved by numerical
method discussed above.

Remark 5. The solution of the reduced problem of (28)-(29) or a suit-
able approximation will be taken as the initial guess y[0] to generate the
successive approximations {y[m]}∞0 .
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7 Numerical illustrations

In this section, we present three examples to illustrate the method described
in this paper. Let Y N be a numerical approximation for the exact solution
y on the mesh ΩN and N is the number of mesh points. We compute the
maximum point-wise errors using

ENε = max
x∈Ω̄N

| Y N (xj)− y(xj) | .

The computed maximum pointwise errors ENε for various values of ε and
N are tabulated in Table 1, Table 2 and Table 3.

Example 1. Consider the BVP

εyiv(x) + y′′′(x)− y′′(x) = 0,

y(0) = 1, y′′′(0) = 1, y(1) = 0, −y′′(1) = 0.

The numerical results are presented in Table 1. The exact solution of
auxiliary second order SPBVPs for this problem is

y?2(x) = [m1e
m1x+m2 − em1+m2x]/(m2e

m1 −m1e
m2),

where

m1 = (−1 +
√

1 + 4ε)/(2ε), m2 = (−1−
√

1 + 4ε)/(2ε).

The graph for this exact solution is given in Figure 1.

Example 2. Consider the BVP

εyiv(x) + 4(x+ 2)y′′′(x)− (x+ 2)y′′(x)− y(x) =
√
ε(sinhx),

y(0) = 1, y′′′(0) = 0, y(1) = 0, −y′′(1) = 0.

The numerical results are presented in Table 2.

Example 3. Consider the quasilinear BVP

εyiv(x) + 6y′′′(x)− 8y′′(x)− (1/2)y2(x) = εe−3x + 1/2,

y(0) = 0, y′′′(0) = 0, y(1) = 0, −y′′(1) = 0.

The numerical results are presented in Table 3. This SPBVP is linearized
using the Newton’s Method of quasi-linearization. The initial approxima-
tion for y1 is taken to be y0(x) = x. In the Tables 1, 2 and 3, the numerical
results appearing in the rows 1-8 correspond to the boundary layer region.
The rest of the rows namely 9-16 correspond to the outer region.
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Figure 1: Graph of exact solution of auxiliary problem with in the layer
region.

Table 1: Comparison of Numerical and Exact solutions for y?2 of Example1
Number of mesh point N=64

ε Approx. Exact Relative Error
2−13 2.180034141639589e-006 2.170734141639589e-006 4.284264858420493e-003
2−14 1.088000198318126e-006 1.085700198318126e-006 2.118448539995594e-003
2−15 5.431204085870404e-007 5.429504085870399e-007 3.131041017960758e-004
2−16 2.715075350959110e-007 2.714875350959110e-007 7.366820724552635e-005
2−17 1.357500756793042e-007 1.357489756793042e-007 8.103191898982985e-006
2−18 6.787608981531353e-008 6.787578981531353e-008 4.419838072150196e-006
2−19 3.393834049157181e-008 3.393822049157181e-008 3.535836536519309e-006
2−20 1.696928162872805e-008 1.696919162872805e-008 5.303729368377519e-006
2−13 9.700859856710905e-001 9.693859856710905e-001 7.221065812246451e-004
2−14 9.700006136435082e-001 9.693096136435082e-001 7.128785171155152e-004
2−15 9.694714249518869e-001 9.692714249518869e-001 2.063405511102380e-004
2−16 9.694052339937300e-001 9.692523299373004e-001 1.577546441797454e-004
2−17 9.693428822626144e-001 9.692427822626144e-001 1.032764977278165e-004
2−18 9.692492083834264e-001 9.692380083834264e-001 1.155546924812541e-005
2−19 9.692456224406448e-001 9.692356214406448e-001 1.031844040685589e-005
2−20 9.692354279575486e-001 9.692344279575480e-001 1.031742137648939e-006

8 Conclusions

In this paper, we presented a numerical

method to solve fourth order SPBVPs for ODEs subject to particu-
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Table 2: Comparison of Numerical and Exact solutions for y?2 of Example2
Number of mesh point N=16

ε Approx. Exact Relative Error
2−13 5.949767218381516e-008 5.949643407515523e-008 2.915640149758703e-003
2−14 2.103595173563539e-008 2.103534231337541e-008 2.916087350004491e-003
2−15 7.437393581949865e-009 7.437147767220178e-009 2.916310952422627e-003
2−16 2.629526593874225e-009 2.629434319680751e-009 2.916422754205524e-003
2−17 9.296799655283715e-010 9.296463931558273e-010 2.916478655240370e-003
2−18 3.286918438535174e-010 3.286798065503170e-010 2.916506605793629e-003
2−19 1.162101759367909e-010 1.162058904659394e-010 2.916520581079230e-003
2−20 4.108651234500969e-011 4.108499196232649e-011 2.916527568724325e-003
2−13 9.895488206428230e-006 4.534376803447920e-007 2.082325959083009e+001
2−14 7.116668821305247e-006 3.173894284766306e-007 2.142251374112559e+001
2−15 5.075514879970357e-006 2.232725180728062e-007 2.173237621799607e+001
2−16 3.604414608041251e-006 1.574670599112803e-007 2.188995939895011e+001
2−17 2.554213519843517e-006 1.112005809470889e-007 2.196942604156767e+001
2−18 1.808054813005443e-006 7.857920415580200e-008 2.200932966208901e+001
2−19 1.279179397779354e-006 5.554567665102278e-008 2.202932424094973e+001
2−20 9.047611223334508e-007 3.927028407937256e-008 2.203933224686534e+001

lar type of boundary conditions by adopting the techniques of [5, 14, 28]
and [9, 19] who used to solve second and fourth order SPBVPs for ODEs.
The boundary conditions help us to reduce the given fourth order ordinary
differential equation into a weakly coupled system of two second order equa-
tions subject to suitable boundary conditions. Of course, an approximate
solution can be improved by taking better approximate initial condition as
said in Section 4. This is the reason for taking the solution of the IVPs
only in the intervals [0, τ ]. In [19], both inner and outer region problems
are BVPs, whereas in our case the inner region problem is an IVP and
the outer region problem is a BVP. Though the present method yields al-
most the same order of convergence as given in [19], it produces very good
reduction on the maximum-pointwise error especially in the inner region
compared with [19]. This is the contribution of the present method used
with IVP in the inner region. Naturally IVPs can be treated more easily
compared with BVPs. Error estimates derived in Section 5 show first order
convergence. Our numerical experiments show that this method gives good
approximate solutions especially in layer region. This can be seen from the
numerical results presented in Table 1, Table 2 and Table 3.
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