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Abstract. This paper presents a mathematical model for the vibration
analysis of a three-component piezoelectric force sensor. The cubic theory
of weakly nonlinear electroelasticity is applied to the model for describing
the electromechanical coupling effect in the piezoelectric sensing elements
which operate in thickness-shear and thickness-stretch vibration modes.
Hamilton’s principle is used to derive motion and charge equations for the
vibration analysis. The model can predict the performance of the force
sensor for use in proposed cutting force measurement.
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1 Introduction

A three-component piezoelectric force sensor, Figure 1, has been designed
to address sensing resolution and frequency bandwidth issues that currently
exist in the measurement of cutting forces for meso-milling applications [12].
The designed force sensor comprises of six piezoelectric sensing elements
which are distributed into three groups, Figure 1(b), for measuring the
three components of the cutting forces, FX,Y,Z , respectively. Two groups of
sensing elements working in thickness-shear mode are used to measure FX
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Figure 1: Sensor Model: (a) Components and (b) Output Charges.

Figure 2: Electromechanical Model for: (a) Thickness-Shear Mode Vibra-
tion due to FX (FY ), and (b) Thickness-Stretch Mode Vibration due to
FZ .

and FY based on output charges QX and QY , and one group in thickness-
stretch mode is used to measure FZ based on output charge QZ . In Figure
1(b), the thick black lines with ′+′ and ′−′ signs represent the positive and
negative electrodes of each sensing element, P represents the polarization
direction in each sensing element. The force sensor also consists of rigid
top and bottom plates which are used to generate homogenous stresses
on the piezoelectric sensing elements. Preloading screws are used to ex-
ert compression force on the top and bottom plates and the piezoelectric
sensing elements in order to provide sufficient friction to avoid slippage be-
tween these components. A sensor housing, which is used to protect the
piezoelectric sensing elements, is attached to the bottom plate.

Due to the oscillation characteristic of the input cutting forces [12], a vi-
bration analysis model of the sensory system is imperative for analyzing the
sensor response, namely the mechanical deformation and output charges,
to the input excitation. The sensor response can be used to predict the sen-
sor performance for the measurement: (1) the mechanical deformation and
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output charges with respect to the excitation frequency are used to identify
the frequency bandwidth, i.e., the linear operating range [2], of the force
sensor; (2) the output charges within the frequency bandwidth are used
to determine the sensing resolution of the force sensor, i.e., the minimum
change in the input signal that the sensor can detect [7]. The development
of the vibration analysis model involves the following procedures: (1) math-
ematical modeling of the vibrations of the sensory system, (2) derivation of
the motion and charge equations, (3) analytical solutions with respect to
mechanical deformation and output charges, and (4) simulations of sensor
response and analysis of sensor performance.

2 Mathematical modeling

The electromechanical model of the overall sensory system under the three-
component cutting forces is presented in Figure 2 where the homogeneous
stresses, T̄32, T̄31 and T̄33, due to the three components of the cutting forces,
FX,Y,Z , excite two thickness-shear mode vibrations in X2 and X1 axial di-
rections, Figure 2(a), and one thickness-stretch mode vibration in X3 axial
direction, Figure 2(b). For mathematical modeling, the sensor compo-
nents are divided into deformable components and rigid bodies due to their
structural stiffness. The deformable components include the stacked piezo-
electric ceramic sensing elements and the parallel preloading screws which
deform under the cutting forces, as shown in Figure 2. The rigid body as-
sociated with the top surface of the deformable components includes sensor
top plate, and the proposed workpiece and fixture that will be attached to
the sensor top plate. The rigid body associated with the bottom surface of
the deformable components includes sensor bottom plate and sensor hous-
ing. For mathematical modeling, the mass of the top rigid body is assumed
to be equal to that of the bottom rigid body so that the reference coordi-
nates, X1,2,3, can be fixed at the central point of the stacked piezoelectric
sensing elements and the symmetry of the sensory system can be used in
the modeling.

In order to determine the linear operating range of a piezoelectric de-
vice, a nonlinear vibration analysis model is necessary [5, 14]. The nonlin-
ear vibration analysis model is used herein to analyze the nonlinear effect,
namely the large mechanical deformation and distorted output charges, of
the sensory system with excitation frequency approaching the fundamen-
tal natural frequencies of the force sensor. The nonlinear effect is then
used to determine the linear operating range of the force sensor where the
amplitude of the mechanical deformation and the amplitude of the output
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charges are only determined by the amplitude of the input cutting forces
and are independent of the excitation frequency. The development of the
nonlinear vibration analysis model comprises of using the theory of nonlin-
ear electroelasticity [15,17] for the piezoelectric sensing elements, the three
dimensional elasticity theory [9] for the preloading screws, and the kinetic
energy equation for the rigid bodies. The theory of nonlinear electroelastic-
ity is pertinent for modeling the nonlinear effect in piezoelectric components
due to resonance [16]. Within these theories, the energy functional of the
overall sensory system is formulated as:

I(ym, φ) =

∫ t1

t0

dt

∫ V0

0

{ρ0
2
ẏ2m − ρ0ψ̂ (εLM , EK)− ρEφ

}
dV

+

∫ t1

t0

dt

∫ V1

0

{ρ1
2
ẏ2m − ρ1π (εLM )

}
dV

+

∫ t1

t0

dt

∫ V2

0

ρ1
2
ẏ2m |X3=3h dV +

∫ t1

t0

dt

∫ V3

0

ρ1
2
ẏ2m |X3=−3h dV

+

∫ t1

t0

dt

∫ S̄T

0
T̄LMymdS −

∫ t1

t0

dt

∫ S̄D

0
σ̄EφdS,

(1)
where ρ0 and ρ1 represent the density of the piezoelectric material used
for the sensing elements and the density of the steel material used for
the rest sensor components. ρE represents the reference charge density in
the piezoelectric sensing elements. ym represents the motion of a material
point in the sensor components due to the vibrations, m = 1, 2, 3 defining
the directions of the motion along the reference coordinates, X1,2,3. φ is

the electric potential in the piezoelectric sensing elements. ψ̂ (εLM , EK) and
π (εLM ) are referred to as energy densities due to the deformation in the
stacked piezoelectric sensing elements and the parallel preloading screws.
εLM represents the strain in the deformable sensor components and EK
represents the electric field in the piezoelectric sensing elements. Indices
L,M define the vibration mode of the sensory system and index K defines
the electric field direction in the piezoelectric sensing elements. V0, V1, V2
and V3 represent the volume of the stacked piezoelectric sensing elements,
the parallel preloading screws, the top rigid body, and the bottom rigid
body. h represents the thickness of each piezoelectric sensing element. T̄LM
represents the stresses distributed on the deformable sensor components
due to cutting forces FX,Y,Z , and ST represents the area of the top and
bottom surfaces of the deformable components where T̄LM is exerted onto.
σE represents the density of the free charges distributed on the surface SD
of each piezoelectric sensing element due to the electromechanical coupling
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effect. For the nonlinear vibration analysis, the strain εLM is defined for
the deformable components as [15]:

εLM =
1

2

(
∂ym
∂XM

∂ym
∂XL

− δLM

)
, (2)

where δLM is the Kronecker delta. The electric field EK in each piezoelectric
sensing element is defined as [15]:

EK = − ∂φ

∂XK
. (3)

3 Motion and charge equations

Within Hamilton’s principle [1], the first variation of (1) with respect to
variables ym and φ gives (integration by parts is applied to the quadratic
terms in (1) for the first variation as illustrated in the Appendix):

δI(ym, φ) = −
∫ t1

t0

dt

∫ V0

0

{
ρ0ÿmδym + ρ0

∂ψ̂ (εLM , EK)

∂εLM
δεLM

}
dV

−
∫ t1

t0

dt

∫ V0

0

{
ρ0
∂ψ̂ (εLM , EK)

∂EK δEK + ρEδφ

}
dV

−
∫ t1

t0

dt

∫ V1

0

{
ρ1ÿmδym + ρ1

dπ (εLM )

dεLM
δεLM

}
dV

−
∫ t1

t0

dt

∫ V2

0
(ρ1ÿmδym) |X3=3h dV

+

∫ t1

t0

dt

∫ V3

0
(ρ1ÿmδym) |X3=−3h dV

+

∫ t1

t0

dt

∫ S̄T

0
T̄LMδymdS −

∫ t1

t0

dt

∫ S̄D

0
σ̄EδφdS = 0.

(4)

From (2) and (3), and following the chain rule [10] and the commutativity
between the operators [11], the variation of the strain and the variation of
the electric field are defined as:

δεLM = δ

{
1

2

(
∂ym
∂XM

∂ym
∂XL

− δLM

)}

=
1

2

{
δ (∂ym)

∂XL

∂ym
∂XM

+
∂ym
∂XL

δ (∂ym)

∂XM

}
=

∂ym
∂XM

∂

∂XL
δym,

(5)
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δEK = δ

(
− ∂φ

∂XK

)
= − ∂

∂XK
δφ. (6)

Equation (4) is then rewritten as:

δI(ym, φ)

= −
∫ t1

t0

dt

∫ V0

0

{
ρ0ÿmδy +

∂ym
∂XM

ρ0
∂ψ̂ (εLM , EK)

∂εLM

∂

∂XL
δym

}
dV

+

∫ t1

t0

dt

∫ V0

0

{
ρ0
∂ψ̂ (εLM , EK)

∂EK
∂

XK
δφ − ρEδφ

}
dV

−
∫ t1

t0

dt

∫ V1

0

{
ρ1ÿmδy +

∂ym
∂XM

ρ1
dπ (εLM )

dεLM

∂

∂XL
δym

}
dV

−
∫ t1

t0

dt

∫ V2

0
(ρ1ÿmδy) |X3=3h dV

+

∫ t1

t0

dt

∫ V3

0
(ρ1ÿmδy) |X3=−3h dV

+

∫ t1

t0

dt

∫ S̄T

0
T̄LMδyMdS −

∫ t1

t0

dt

∫ S̄D

0
σ̄EδφdS = 0,

(7)

where ∂ym
∂XM

ρ0
∂ψ̂(εLM ,EK)

∂εLM
and ρ0

∂ψ̂(εLM ,EK)
∂EK are defined as two-point total

stress tensor, K̂Lm, and reference electric displacement, DK , for the piezo-
electric electric sensing elements as [15]:

K̂Lm =
∂ym
∂XM

ρ0
∂ψ̂ (εLM , EK)

∂εLM
, (8)

DK = −ρ0∂ψ̂ (εLM , EK)
∂EK . (9)

Similarly, ∂ym
∂XM

ρ1
dπ(εLM )
dεLM

is defined as two-point total stress tensor, KLm,
for the preloading screws as:

KLm =
∂ym
∂XM

ρ1
dπ (εLM )

dεLM
. (10)
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Substitute (8) to (10) into (7) and integrate the first and second integrals
in (7) by parts, (7) is rewritten as:

δI(ym, φ)

= −
∫ t1

t0

dt

∫ V0

0
{ρ0ÿmδy + ρEδφ} dV

−
∫ t1

t0

dt

∫ ST

0
dS

{
K̂Lmδym|XL

0 −
∫ XL

0
K̂Lm,LδymdXL

}

−
∫ t1

t0

dt

∫ SD

0
dS

{
DKδφ|XK

0 −
∫ XK

0
DK,KδφdXK

}

+

∫ t1

t0

dt
ST − SD
SD

∫ V0

0
{−ρ1ÿmδy} dV

−
∫ t1

t0

dt
ST − SD
SD

∫ ST

0
dS

{
KLmδym|XL

0 −
∫ XL

0
KLm,LδymdXL

}

−
∫ t1

t0

dt

∫ V2

0
(ρ1ÿmδy) |X3=3h dV +

∫ t1

t0

dt

∫ V3

0
(ρ1ÿmδy) |X3=−3h dV

+

∫ t1

t0

dt

∫ S̄T

0
T̄LMδyMdS −

∫ t1

t0

dt

∫ S̄D

0
σ̄EδφdS

=

∫ t1

t0

dt

∫ V0

0

{
−ρ0ÿm − ST − SD

SD
ρ1ÿm

}
δymdV

+

∫ t1

t0

dt

∫ V0

0

{
K̂Lm,L +

ST − SD
SD

KLm,L

}
δymdV

+

∫ t1

t0

dt

∫ V0

0
{DK,K − ρE} δφdV +

∫ t1

t0

dt

∫ S̄T

0
T̄LM δyMdS

−
∫ t1

t0

dt

∫ S̄T

0

(
K̂Lm +

ST − SD
SD

KLm

)
NLδyMdS

−
∫ t1

t0

dt

∫ V2

0
(ρ1ÿmδy) |X3=3h dV +

∫ t1

t0

dt

∫ V3

0
(ρ1ÿmδy) |X3=−3h dV

−
∫ t1

t0

dt

∫ S̄D

0
{DKNK + σ̄E} δφdS = 0,

(11)
where NL and NK represent the unit normal of the stress and electric
boundary surfaces, respectively. Separate the terms in (11) with respect
to δym and δφ, the motion and charge equations of the sensory system are
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formulated as:

K̂Lm,L +
ST − SD
SD

KLm,L =

(
ρ0 +

ST − SD
SD

ρ1

)
ÿm, (12)

DK,K = ρE , (13)

and the stress and electric boundary conditions are formulated as:

∫ ST

0

(
K̂Lm +

ST − SD
SD

KLm

)
NLdS +

∫ V2

0
(ρ1ÿm) |X3=3h dV

−
∫ V3

0
(ρ1ÿm) |X3=−3h dV =

∫ ST

0
T̄LMdS,

(14)

DKNK = −σ̄E . (15)

The displacement vector for the motion of a material point can be de-
fined as [15]:

u = y−X, (16)

where u represents the displacement vector of a material point, y represents
the present position vector of the material point, and X is constant which
represents the original position vector of the material point. The differential
of (16) over time gives:

u̇ = ẏ, (17)

ü = ÿ. (18)

From (18), (12) is rewritten with displacement term as:

K̂Lm,L +
ST − SD
SD

KLm,L =

(
ρ0 +

ST − SD
SD

ρ1

)
üm. (19)

Relating K̂Lm, KLm, and um to the reference coordinates by denoting [17]:

K̂LM = K̂LmδmM , (20)

KLM = KLmδmM , (21)

uM = umδmM , (22)

the motion equation presented in (19) is then rewritten as:

K̂LM,L +
ST − SD
SD

KLM,L =

(
ρ0 +

ST − SD
SD

ρ1

)
üM , (23)
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and the stress boundary condition presented in (14) is rewritten as:

∫ ST

0

(
K̂LM +

ST − SD
SD

KLM

)
NLdS +

∫ V2

0
(ρ1üM ) |X3=3h dV

−
∫ V3

0
(ρ1üM ) |X3=−3h dV =

∫ ST

0
T̄LMdS.

(24)

A charge mode amplifier [6] will be used to amplify the sensor output
charge signals for subsequent data acquisition and processing. Since the
charge mode amplifier maintains a weak electric field in each sensing ele-
ment, the cubic theory of weakly nonlinear electroelasticity [17] is sufficient
to model the electromechanical coupling effect in the piezoelectric sensing
elements. Within the cubic theory of weakly nonlinear electroelasticity, the
energy density due to the deformation of the piezoelectric sensing elements
is defined as [17]:

ρ0ψ̂ (εLM , EK) =
1

2
cABCDεABεCD +

1

6
cABCDEF εABεCDεEF

+
1

24
cABCDEFGHεABεCDεEF εGH − eABCEAεBC

− 1

2
χABEAEB .

(25)

With the partial differential of (25) and keeping up to the cubic terms of
displacement, the two-point total stress tensor K̂LM in piezoelectric sensing
elements is defined as [17]:

K̂LM =
∂ym
∂XM

ρ0
∂ψ̂ (εLM , EK)

∂εLM
δiM

= cLMRS
∂uR
∂XS

+ eKLM
∂φ

∂XK
+ ĉLMRSKN

∂uR
∂XS

∂uK
∂XN

+ ĉLMRSKNIJ
∂uR
∂XS

∂uK
∂XN

∂uI
∂XJ

,

(26)

and the reference electric displacement DK in piezoelectric sensing elements
is defined as [17]:

DK = −ρ0∂ψ̂ (εLM , EK)
∂EK

= eKRS
∂uR
∂XS

− ξKL
∂φ

∂XL
.

(27)

Similarly, within the theory of weakly nonlinear elasticity [8], the energy
density due to the deformation in the parallel preloading screws is defined
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as:

ρ1π (εLM ) =
1

2
cABCDεABεCD +

1

6
cABCDEF εABεCDεEF

+
1

24
cABCDEFGHεABεCDεEF εGH .

(28)

With the differential of (28) and keeping up to the cubic terms of displace-
ments, the two-point total stress tensor KLM in preloading screws is defined
as:

KLM =
∂ym
∂XM

ρ1
dπ (εLM )

dεLM
δiM

= cLMRS
∂uR
∂XS

+ ĉLMRSKN
∂uR
∂XS

∂uK
∂XN

+ ĉLMRSKNIJ
∂uR
∂XS

∂uK
∂XN

∂uI
∂XJ

,

(29)

where ĉLMRSKN and ĉLMRSKNIJ are given by [17]:

ĉLMRSKN =
1

2
(cLMRSKN + cLMNSδKR + cLNRSδKM ) , (30)

ĉLMRSKNIJ =
1

6
cLMRSKNIJ

+
1

2
(cLMKNSJδRI + cLNSJδMKδRI + cLNRSIJδMK) ,

(31)

cLMRS , cLMNS , cLNRS and cLNSJ represent the second order elastic con-
stants, cLMRSKN , cLMKNSJ and cLNRSIJ represent the third order elastic
constants, cLMRSKNIJ represents the fourth order elastic constant. δiM ,
δKR, δKM , δRI and δMK are the Kronecker deltas. eKLM and eKRS repre-
sent the piezoelectric stress constants of the sensing element material. ξKL
represents the dielectric coefficient of the sensing element material. χAB is
the electric susceptibility.

4 Analytical solutions

The vibration analysis model is solved for the mechanical deformation of
the sensory system and the output charges of each sensing element group
due to the input cutting forces. Thin plate structure is used herein for the
piezoelectric sensing elements so that edge effect can be ignored [14, 16].
Namely, the mechanical deformation, represented by uM , and the electric
potential in the sensing element are independent of the spatial variables X1

and X2 [14].



Modeling and analysis of a three-component piezoelectric force sensor 69

4.1 Mechanical deformation

Due to the top and bottom rigid bodies, the mechanical deformation of
the force sensor are equal to the mechanical deformation of the deformable
sensor components. The displacement uM in the deformable sensor com-
ponents is defined as [14]:

uM (X3, t) ∼= u (t) sin
π

6h
X3, (32)

the mechanical deformation of the force sensor is determined by the dif-
ference of the displacement between the top and bottom surfaces of the
deformable sensor components as:

uM (3h, t) − uM (−3h, t) = 2u (t) , (33)

where M = 1, 2, 3 corresponding to the mechanical deformation in X1,2,3

directions.

4.2 Output charges

The output charges of each sensing element group are determined by solving
(13) for the electric displacement DK . From (13) and (27), the partial
differential of φ gives:

∂2φ

∂X2
L

=
eKLM
ξKL

∂2uM
∂X2

L

, (34)

where L = 3 corresponding to the spatial variable X3 and K = 3 corre-
sponding to the electric field which is also defined in X3 direction.

Integration of (34) results in:

∂φ

∂XL
=
eKLM
ξKL

∂uM
∂XL

+ C1 (t) , (35)

φ =
eKLM
ξKL

uM + C1 (t)XL + C2 (t) . (36)

Substitute (35) into (27) and isolate (27) for C1 (t):

DK = eKLM
∂uM
∂XM

− ξKL

(
eKLM
ξKL

∂uM
∂XL

+C1 (t)

)
= −ξKLC1 (t) . (37)

Using the electric boundary condition presented in (15) and the expression
of DK presented in (37), the output charges for each sensing element group
are determined by C1 (t) as [5]:

Q = 2

∫ SD

0
σ̄EdS = 2

∫ SD

0
(−DK) dS = 2SDξKLC1 (t) . (38)
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4.3 Solution method

The vibration model presented in (23) is solved by the method of separating
the spatial variable X3 and time t with the use of (32) for the expression
of displacement uM and (24) for the expression of the stress boundary
condition. Since the linear operating range is approximated as 1/3 of the
minimum fundamental natural frequency [4], the fundamental natural fre-
quencies of the three dimensional vibrations are of interest herein for the
analysis. Within Hamilotn’s principle, the following variational equation is
used to solve the vibration model:∫ 3h

−3h

{
K̂LM,L +

ST − SD
SD

KLM,L −
(
ρ0 +

ST − SD
SD

ρ1

)
üM

}
δuMdXL = 0.

(39)
Integrating (39) by parts and utilizing (24) for the stress boundary condi-
tion, we obtain:{

K̂LM +
ST − SD
SD

KLM

}
sin

( π
6h
XL

)
|3h−3h

+

{
6h

π

(
ρ0 +

ST − SD
SD

ρ1

)
ü (t) cos

( π
6h
XL

)}
sin

( π
6h
XL

)
|3h−3h

−
∫ 3h

−3h

{
K̂LM +

ST − SD
SD

KLM

}
cos

( π

6h
XL

)
d
( π

6h
XL

)

−
∫ 3h

−3h

{
6h

π

(
ρ0 +

ST − SD
SD

ρ1

)
ü (t) cos

( π

6h
XL

)}
cos

( π

6h
XL

)
d
( π

6h
XL

)
= 0,

(40)
where{

K̂LM +
ST − SD
SD

KLM

}
sin

( π

6h
XL

)
|3h−3h

+

{
6h

π

(
ρ0 +

ST − SD
SD

ρ1

)
ü (t) cos

( π

6h
XL

)}
sin

( π
6h
XL

)
|3h−3h

= 2

{
K̂LM +

ST − SD
SD

KLM

}

= 2T̄LM − 2

ST

∫ V2

0

(
ρ1ü (t) sin

( π
6h
XL

))
|X3=3h dV

+
2

ST

∫ V3

0

(
ρ1ü (t) sin

( π
6h
XL

))
|X3=−3h dV

= 2

{
T̄LM − ρ1

ST
(V2 + V3) ü (t)

}
,

(41)
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∫ 3h

−3h

{
K̂LM +

ST − SD
SD

KLM

}
cos

( π
6h
XL

)
d
( π

6h
XL

)

+

∫ 3h

−3h

{
6h

π

(
ρ0 +

ST − SD
SD

ρ1

)
ü (t) cos

( π

6h
XL

)}
cos

( π

6h
XL

)
d
( π

6h
XL

)

=
1

12h

{(
c0LMML +

ST − SD
SD

c1LMML

)
π2 +

e2KLMπ

ξKK
α

}
u (t) + 2eKLMC1 (t)

+

(
ĉ0LMMLML +

ST − SD
SD

ĉ1LMMLML

)
π2

27h2
u2 (t)

+

(
ĉ0LMMLMLML +

ST − SD
SD

ĉ1LMMLMLML

)
π4

576h3
u3 (t) ,

(42)

where α = π
3 +

√
3
2 for thickness-stretch mode vibration and α = π

3 −
√
3
4 for

thickness-shear mode vibrations. Combining (41) and (42) into (40) and
normalizing the resultant, an ODE is obtained to describe the vibration
motions:

ü (t) + ω2
1u (t) + γu2 (t) + ηu3 (t) + λC1 (t) =

2T̄LM
α

sin (ωt) , (43)

where the fundamental natural frequency ω1 is defined as:

ω1 =
1

6h

√√√√√
(
ĉ0LMML +

ST − SD
SD

ĉ1LMML

)
π2 +

e2KLMπ

ξKK
α

12hµ
, (44)

and the other parameters are γ =

(
ĉ0LMMLML +

ST − SD
SD

ĉ1LMMLML

)
π2

27h2α
,

η =

(
ĉ0LMMLMLML +

ST − SD
SD

ĉ1LMMLMLML

)
π4

576h3α
, λ =

eKLM
2α

,

µ = 3h

(
ρ0 +

ST − SD
SD

ρ1

)
+ ρ1

ST
(V2 + V3). T̄LM represents the amplitude

of the stresses due to the three components of the cutting forces, FX,Y,Z .
ω represents the oscillation frequency of the input cutting forces.

The electric boundary condition due to the common ground connection,
Figure 1(b), is defined as:

φ (X3 + h, t) = φ (X3 − h, t) , (45)
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where X3 = +2h, 0, 2h for the top, middle, and bottom sensing element
groups, respectively. Using the definition of φ presented in (36), the follow-
ing equation is formulated which forms a function set with (43) for solving
for u (t) and C1 (t):

eKLM
νξKL

u (t) + 2hC1 (t) = 0, (46)

where ν = 1 for thickness-stretch mode vibration and ν = 2 for thickness-
shear mode vibrations.

5 Simulations and analysis

The function set presented in (43) and (46) was solved in MATLAB R© for
the sensor response, namely the mechanical deformation and the output
charges which are determined by u (t) and C1 (t), respectively. Simulations
of sensor response were performed with sensor component dimensions and
material parameters presented in Tables 1 to 3. Since the mechanical defor-
mation and the output charges possess the same oscillation characteristic
with the input cutting forces, the amplitude of the mechanical deformation
and the amplitude of the output charges can be used to analyze the sensor
performance, namely, frequency bandwidth and sensing resolution. The
requirements on the sensor design are that the force sensor can provide a
sensing resolution of within 10 mN and a frequency bandwidth of up to 8.3
kHz [12].

Table 1: Sensor Components’ Material and Dimensions [12].

Sensor Components Material Dimensions (mm3) Quantity

Sensing elements BM800 16.00 × 16.00 × 0.50 6
Top plate A2 (304) 22.00 × 22.00 × 1.80 1
Bottom plate A2 (304) 22.40 × 22.40 × 3.30 1
Sensor housing A2 (304) 22.40 × 22.40 × 0.50 1
Preloading screws A2 (304) M2 4

Note: The size of sensor housing is in the format of inner side length ×
inner side width × thickness.

5.1 Fundamental natural frequencies

Figure 3 presents the fundamental natural frequencies of the three mode
vibrations of the sensory system with respect to different sensing element
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Table 2: Parameters of BM800 Used in the Simulations [13].

Thickness-
Shear Mode
Vibration
due to FX

Thickness-
Shear Mode
Vibration
due to FY

Thickness-
Stretch Mode
Vibration
due to FZ

Mass density (kg/m3) ρ0 = 7600

Dielectric coefficient
(10−12F/m)

ξ33 = 8854

Elastic constants c044 = 3.33 c055 = 3.33 c033 = 14.63
(1010N/m2) ĉ0444 = 0 ĉ0555 = 0 ĉ0333 = 14.63

ĉ04444 = 7.32 ĉ05555 = 7.32 ĉ03333 = 7.32

Piezo-stress top e034 = 9.50 e035 = 0 e033 = 0
constants middel e034 = 0 e035 = 0 e033 = 21.21
(C/m2) bottom e034 = 0 e035 = 9.50 e033 = 0

Note: Top, middle, and bottom represent the top, middle, and bottom
groups, respectively, of the stacked piezoelectric sensing elements.

thicknesses. For the proposed 0.5 mm sensing element thickness, the funda-
mental natural frequencies are identified to be 37.0 kHz for thickness-shear
mode vibrations and 76.2 kHz for the thickness-stretch mode vibration.

5.2 Frequency bandwidth

The amplitude of the mechanical deformation and the amplitude of the
output charges are presented in Figure 4 and Figure 5, respectively, with
respect to the excitation frequency approaching the fundamental natural
frequencies. As can be seen from Figure 4, the relationship between the
mechanical deformation and excitation becomes nonlinear when the excita-
tion frequency approaches the fundamental natural frequencies. The large
mechanical deformation near the fundamental natural frequencies influence
the performance of the force sensor, represented by the distorted output
charges as shown in Figure 5, and hence, should be avoided in the cutting
force measurement. From Figure 4 and Figure 5, it can be seen that the
force sensor can provide a linear operating range of approaching 10 kHz
which is sufficient for providing the required 8.3 kHz frequency bandwidth.
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Table 3: Parameters of A2 (304) Used in the Simulations [3].

Thickness-
Shear Mode
Vibration
due to FX

Thickness-
Shear Mode
Vibration
due to FY

Thickness-
Stretch Mode
Vibration
due to FZ

Mass density (kg/m3) ρ1 = 8030

Elastic constants c144 = 7.80 c155 = 7.80 c133 = 22.64
(1010N/m2) ĉ1444 = 0 ĉ1555 = 0 ĉ1333 = 22.64

ĉ14444 = 11.32 ĉ15555 = 11.32 ĉ13333 = 11.32

Note: Compact indices are used for elastic and piezoelectric stress con-
stants in Tables 2 and 3.

Figure 3: Fundamental Natural Frequencies W.R.T. Sensing Element
Thickness.

5.3 Sensing resolution

Figure 6 presents the amplitude of the output charges with respect to input
cutting forces for excitation frequency ranging up to 8.3 kHz, corresponding
to the required frequency bandwidth. From Figure 6, it can be seen that the
output charges possess a linear relationship with the input cutting forces
within the frequency bandwidth. From the slope of the output charges, the
sensitivity of the force sensor is defined as 325 pC/N while measuring FX
and FY , and 160 pC/N while measuring FZ . This sensitivity indicates that
for a unit output charge of 1pC, the force sensor can detect a 3 mN change
in the input force signal while measuring FX and FY , and 6 mN change in
the input force signal while measuring FZ . Namely, a sensing resolution of
3 mN is predicted when measuring FX and FY and 6 mN, when measuring
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Figure 4: Mechanical Deformation W.R.T. Excitation Frequency Ap-
proaching Fundamental Natural Frequencies (with Force Amplitude of
15N).

Figure 5: Output Charges W.R.T. Excitation Frequency Approaching Fun-
damental Natural Frequencies (with Force Amplitude of 10 mN).

FZ .

6 Conclusion

This paper develops a mathematical model for use in the vibration analysis
of a three-component piezoelectric force sensor which is designed for mea-
suring the three-component cutting forces in meso-milling process. The vi-
bration analysis model describes the nonlinear three dimensional vibrations
in the sensory system due to the excitation of the oscillating input cutting
forces. The analytical solutions of the vibration analysis model determine
the sensor response, namely mechanical deformation and output charges,
to the input cutting forces. The sensor response is then used to analyze
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Figure 6: Output Charges W.R.T. Cutting Forces (with Oscillating Fre-
quency of up to 8.3 kHz).

the sensor performance, including frequency bandwidth and sensing reso-
lution, while measuring the three-component cutting forces in meso-milling
process. Simulations with respect to the sensor response predict that the
designed force sensor can provide required sensing resolution and frequency
bandwidth needed for use in the proposed cutting force measurement.
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Apendix

Integration by parts is applied to the quadratic terms in (1) for the first
variation. The procedures are illustrated herein for the quadratic term with
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parameter ρ0:

δ

∫ t1

t0

dt

∫ V0

0

ρ0
2
ẏ2mdV = ρ0

∫ V0

0
dV

∫ t1

t0

δ

(
1

2
ẏ2m

)
dt

= ρ0

∫ V0

0
dV

∫ t1

t0

ẏmδẏmdt

= ρ0

∫ V0

0
dV

∫ t1

t0

δẏmdym

= ρ0

∫ V0

0
dV

∫ t1

t0

ẏmdδym

= ρ0

∫ V0

0
dV

{
(δymẏm) |t1t0 −

∫ t1

t0

δymdẏm

}

= ρ0

∫ V0

0
dV

{
0−

∫ t1

t0

δymÿmdt

}

=

∫ t1

t0

dt

∫ V0

0
{−ρ0ÿmδym} dV

The method and procedures also apply to the quadratic term with param-
eter ρ1.
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