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Abstract. In this paper, we deal to obtain some new complexity results for
solving semidefinite optimization (SDO) problem by interior-point methods
(IPMs). We define a new proximity function for the SDO by a new ker-
nel function. Furthermore we formulate an algorithm for a primal dual
interior-point method (IPM) for the SDO by using the proximity function
and give its complexity analysis, and then we show that the worst-case

iteration bound for our IPM is O(6(m + 1)
3m+4

2(m+1) Ψ
m+2

2(m+1)

0
1
θ log nµ0

ε ), where
m > 4.
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1 Introduction

Infeasible interior-point methods (IIPMs) start with an arbitrary positive
point and feasibility is reached as optimality is approached. The choice of
the starting point in IPMs is crucial for the performance. Lustig [8] and
Tanabe [16] were the first to present IPMs for LO. Kojima et al. [6] were
the first that proved the global convergence of a primal–dual IPM for LO.
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Zhang [18] was the first who presented a primal–dual IPM with polynomial
iteration complexity for LO. Primal–dual interior-point methods (IPMs) for
semidefinite optimization have been widely studied, the reader is referred to
Klerk [4]. Recently a full-Newton step infeasible interior-point algorithm
for linear programming (LP) was presented by Roos [14]. The result of
polynomial complexity coincides with the best known one for IIPMs. Man-
souri and Roos [9,10] extended this algorithm to semidefinite optimization
by using a specific feasibility step. The barrier function is determined by
a simple univariate function, called its kernel function. Bai et al. [2] intro-
duced a new barrier function which is not a barrier function in the usual
sense.

In this paper, we define a new proximity function for the SDO by
a new kernel function. Also, we formulate an interior-point algorithm
for SDO by using a new proximity function and give its complexity
analysis, and then we show that the worst-case iteration bound for our

IPM is O(6(m + 1)
3m+4

2(m+1) Ψ
m+2

2(m+1)

0
1
θ log nµ0

ε ). Furthermore, the complex-

ity bounds obtained by the algorithm are O(m
3m+1

2m n
m+1
2m log Tr(X0S0)

ε ) and

O(m
3m+1

2m
√
n log Tr(X0S0)

ε ), for large and small-update methods, respectively.
The paper is organized as follows. In Section 2, we recall the prelimi-

naries. In Section 3, we define a new kernel function and give its properties
which are essential for the complexity analysis. In Section 4, we derive
the complexity result for both large-update and small-update methods. Fi-
nally, concluding remarks are given in Section 5.

Some of the notations used throughout the paper are as follows: <n,
<n+ and <n++ denote the set of vectors with n components, the set of non-
negative vectors and the set of positive vectors, respectively. <n×n denotes
the set of n×n real matrices. ‖.‖F and ‖.‖2 denote the Frobenius norm and
the spectral norm for matrices, respectively. Sn, S+

n and S++
n denote the

cone of symmetric, symmetric positive semidefinite and symmetric positive
definite n×n matrices, respectively. E denotes n×n identity matrix. The
Löwner partial order � (or �) on positive semidefinite (or positive defi-
nite) matrices means A � B (or A � B) if A − B is positive semidefinite
(or positive definite). We use the matrix inner product A •B = Tr(ATB).

For any Q ∈ S++
n , the expression Q

1
2 (or

√
Q) denotes its symmetric square

root. For any V ∈ S+
n , we define λmin(V ) to be the minimal eigenvalue of

V .
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2 Preliminaries

2.1 The central path

We consider the semidefinite optimization problem in the following form:

min {Tr(CX) : Tr(AiX) = bi, i = 1, ...,m, X � 0} , (SDO)

and its dual

max

{
bty :

m∑
i=1

yiAi + S = C, S � 0

}
, (SDD)

where Ai ∈ Rm×n, i = 1, ...,m and C are symmetric n × n matrices, and
b, y ∈ <m.
Throughout the paper, we make the following assumptions:

Assumption 1: The matrices Ai ∈ Rm×n, i = 1, ...,m are linearly in-
dependent.

Assumption 2: The initial iterate (X0, y0, S0) is strictly feasible:

Tr(AiX
0) = bi, i = 1, ...,m, X0 � 0,

m∑
i=1

y0
iAi + S0 = C, S � 0.

We have the following well-known lemma:

Lemma 1. [13] The following statements are equivalent:

1) X � 0, S � 0 and Tr(XS) = 0,

2) X � 0, S � 0 and
∥∥∥X 1

2S
1
2

∥∥∥2
= 0,

3) X � 0, S � 0 and XS = 0.

It is well known that finding an optimal solution (X∗, y∗, S∗) of SDO
and SDD is equivalent to solve the following system:

Tr(AiX) = bi, i = 1, ...,m, X � 0,
m∑
i=1

yiAi + S = C, S � 0,

XS = 0.

(1)

The basic idea of primal dual IPMs is to replace the third equation
in (1), the so-called complementarity condition for SDO and SDD, by the
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parameterized equation XS = µE with µ > 0, where E denotes the n× n
identity matrix. Thus we consider the system:

Tr(AiX) = bi, i = 1, ...,m, X � 0,
m∑
i=1

yiAi + S = C, S � 0,

XS = µE.

(2)

If both SDO and SDD satisfy IPC, then for each µ > 0 the param-
eterized system (2) has a unique solution (X(µ), y(µ), S(µ)) (see [7, 17]),
which is called µ-center of SDO and SDD. The set of µ-centers, that is,
Λ = {(X(µ), y(µ), S(µ)) /µ > 0}, is called the central path of SDO and
SDD. The central path converges to the solution pair of SDO and SDD as
reduces to zero [11,15].

In general, IPMs for the SDO consist of two strategies: The first one,
which is called the inner iteration scheme, is to keep the iterative sequence in
a certain neighborhood of the central path or to keep the iterative sequence
in a certain neighborhood of the µ-center and the second one is called the
outer iteration scheme, is to decrease the parameter µ to µ+ = (1 − θ)µ,
for some θ ∈ (0, 1) .

2.2 The search directions

IPMs follow the central path approximately. We briefly describe the usual
approach. Without loss of generality, we assume that (X(µ), y(µ), S(µ)) is
known for some positive µ. For example, due to the above assumption, we

may assume this for µ0 = Tr(X0S0)
n , with X0 � 0 and S0 � 0. We then

decrease µ to µ+ = (1 − θ)µ, for some θ ∈ (0, 1), and solve the following
Newton system: 

Tr(Ai4X) = 0, i = 1, ...,m,
m∑
i=1
4yiAi +4S = 0,

X4S +4XS = µE −XS.

(3)

We consider the symmetrization scheme that yields the Nesterov-Todd
(NT ) direction, let us define the matrix:

P = X
1
2 (X

1
2SX

1
2 )−

1
2X

1
2 = S−

1
2 (S

1
2XS

1
2 )

1
2S−

1
2 , (4)

and also define D = P
1
2 , the matrix D can be used to scale X and S to

same matrix V because
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V =
1
√
µ
D−1XD−1 =

1
√
µ
DSD. (5)

Note that the matrices D and V are symmetric and positive semidefinte,
similary to the SDO [10]. We can conclude that the system (1) has a unique
symmetric solution, let use define

Ai := 1√
µDAiD, i = 1, . . . ,m,

DX := 1√
µD
−14XD−1,

DS := 1√
µD4SD.

(6)

The NT− search direction are obtained from the system:
Tr(AiDX) = 0, i = 1, ...,m,
m∑
i=1
4yiAi +DS = 0,

DX +DS = V −1 − V = −∇Ψl(V ).

(7)

Clearly, Tr(DXDS) = 0 which is concluded from the first and second equa-
tions of (7) or from the orthogonality of 4X and 4S. The classical kernel
function defined as follows:

ψl(t) =
1

2
(t2 − 1)− log t.

2.3 The generic interior-point algorithm for SDO

We call ψl(t) the kernel function of the logarithmic barrier function Ψl(V ).
In this paper, we replace ψl(t) with a new kernel function ψ(t) which is
defined in the next Section and assume that τ ≥ 1.

The new interior-point algorithm works as follows. Assume that we are
given a strictly feasible point (X, y, S) which is in a τ -neighborhood of
the given µ-center. Then we decrease µ to µ+ = (1 − θ)µ, for some fixed
θ ∈ (0, 1) and then we solve the Newton system (3) to obtain the unique
search direction. The positivity condition of a new iterate is ensured with
the right choice of the step size α which is defined by some line search rule.
This procedure is repeated until we find a new iterate (X+, y+, S+) that
is in a τ -neighborhood of the µ+-center. Then µ is again reduced by the
factor 1−θ and we solve the Newton system targeting at the new µ+-center,
and so on. This process is repeated until µ is small enough, i.e., nµ ≤ ε.

The parameters τ, θ and the step size α should be chosen in such a way
that the algorithm is optimized in the sense that the number of iterations
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required by the algorithm is as small as possible. The choice of the so-
called barrier update parameter θ plays an important role both in theory
and practice of IPMs. Usually, if θ is a constant independent of the dimen-
sion n of the problem, for instance θ = 1

2 , then we call the algorithm a
large-update (or long-step) method. If θ depends on the dimension of the
problem, such as θ = 1√

n
, then the algorithm is named a small-update (or

short-step) method.
The algorithm for our primal-dual IPM for the SDO is given as follows:

Primal-Dual IPM for the SDO

Begin algorithm
Input:
An accuracy parameter ε > 0,
An update parameter θ, 0 < θ < 1,
A threshold parameter τ, 0 < τ < 1,

A strictly feasible point (X0, y0, S0) and µ0 = Tr(X0S0)
n

such that Ψ(X0S0, µ0) ≤ τ.
begin

X := X0, S := S0, µ := µ0,
While (nµ) ≥ ε do

begin
mu = (1− θ)µ
While (Ψ(V ) > τ) do

begin
Solve system (3) to obtain (4X,4y,4S),
Determine a step size α
X := X + α4X
y := y + α4y
S := S + α4S

End While.
End While

End algorithm.

In the next section, we define a new kernel function and give its properties
which are essential to our complexity analysis.
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3 The new kernel function

We call ψ : <++ → <+ a kernel function if ψ is twice differentiable and
satisfies the following conditions [1]:

ψ
′
(1) = ψ(1) = 0,

ψ
′′
(t) > 0,

lim
t→0+

ψ(t) = lim
t→∞

ψ(t) = 0.
(8)

For our IPM, we use the following new kernel function:

ψ(t) = (m+ 1)t2 − (m+ 2)t+
1

tm
, for all t > 0, (9)

where m > 4. Then we have the following:

ψ
′
(t) = 2(m+ 1)t− (m+ 2)−mt−m−1,

ψ
′′
(t) = 2(m+ 1)−m(−m− 1)t−m−2,

ψ
′′′

(t) = −m(−m− 1)(−m− 2)t−m−3.

(10)

From (8), ψ(t) is clearly a kernel function and

ψ
′′
(t) > 2(m+ 1), for all t > 0. (11)

In this paper, we replace the function Ψl(V ) in (7) with the function Ψ(V )
as follows:

DX +DS = −∇Ψ(V ), (12)

where Ψ(V ) = Tr(ψ(V )) =
n∑
i=1

ψ(λi(V )), ψ(t) is defined in (9). Hence, the

new search direction (4X,4y,4S) is obtained by solving the following
modified Newton system:

Tr(Ai4X) = 0, i = 1, ...,m,
m∑
i=1
4yiAi +4S = 0,

X4S +4XS = −µV∇Ψ(V ).

(13)

Note that DX and DS are orthogonal because matrix DX belongs to null
space and matrix DS to the row space of the matrix Ai, i = 1, ...,m. Since
DX and DS are orthogonal, we have

DX = DS = 0⇔ ∇Ψ(V ) = 0
⇔ V = E
⇔ X = X(µ), S = S(µ).

(14)
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We use Ψ(V ) as the proximity function to measure the distance between
the current iterate and the µ-center for given µ > 0. We also define the
norm-based proximity measure, δ(V ) : <++ → <+, as follows:

δ(XS, µ) = δ(V ) =
1

2
‖∇Ψ(V )‖ =

1

2
‖DX +DS‖ . (15)

Lemma 2. For ψ(t), we have the following.
(i) ψ(t) is exponentially convex for all t > 0,

(ii) ψ
′′
(t) is monotonically decreasing for all t > 0,

(iii) tψ
′′
(t)− ψ′(t) > 0, for all t > 0.

Proof. For (i), by lemma 1 in [11], it suffices to show that the function ψ(t)
satisfies tψ

′′
(t) + ψ

′
(t) ≥ 0, for all t > 0. Using (10), we have

tψ′′(t) + ψ′′′(t) = t
(
2(m+ 1)−m(−m− 1)t−m−2

)
+
(
2(m+ 1)t− (m+ 2)−mt−m−1

)
= 4(m+ 1)t+m2t−m−1 − (m+ 2).

Let

g(t) = 4(m+ 1)t+m2t−m−1 − (m+ 2).

Then

g
′
(t) = 4(m+ 1)−m2(m+ 1)t−m−2,

g
′′
(t) = m2(m+ 1)(m+ 2)t−m−3 > 0, for all t > 0.

Let g
′
(t) = 0, we get t = (m

2

4 )
1

m+2 . Since g(t) is strictly convex and has a

global minimum, g((m
2

4 )
1

m+2 ) > 0. And by lemma 1 in [13], we have the
result.

For (ii), using (10), we have ψ
′′′

(t) > 0 , so we have the result.
For (iii), using (10), we have

tψ
′′
(t)− ψ′(t) = m(m+ 2)t−m−1 + (m+ 2) > 0, for all t > 0.

Lemma 3. For ψ(t), we have the following.

(m+ 1)(t− 1)2 ≤ ψ(t) ≤ 1

4(m+ 1)
ψ
′
(t)2, for all t > 0, (16)

ψ(t) ≤ (m+ 1)(m+ 2)

2
(t− 1)2, for all t ≥ 1. (17)
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Proof. For (16), using (8) and (11), we have

ψ(t) =

t∫
1

ξ∫
1

ψ
′′
(ζ)dζdξ ≥ 2(m+ 1)

t∫
1

ξ∫
1

dζdξ = (m+ 1)(t− 1)2,

also,

ψ(t) =

t∫
1

ξ∫
1

ψ
′′
(ζ)dζdξ

≤ 1

2(m+ 1)

t∫
1

ξ∫
1

ψ
′′
(ξ)ψ

′′
(ζ)dζdξ

=
1

2(m+ 1)

t∫
1

ψ
′′
(ξ)ψ

′
(ξ) dξ

=
1

2(m+ 1)

t∫
1

ψ
′
(ξ) d(ψ

′
(ξ))

=
1

4(m+ 1)
ψ
′
(t)2.

For (17), using Taylor’s Theorem, we have

ψ(t) = ψ(1) + ψ
′
(1)(t− 1) +

1

2
ψ
′′
(1)(t− 1)2 +

1

6
ψ
′′′

(ξ)(ξ − 1)3

=
1

2
ψ
′′
(1)(t− 1)2 +

1

6
ψ
′′′

(ξ)(ξ − 1)3

≤ 1

2
ψ
′′
(1)(t− 1)2

=
(m+ 1)(m+ 2)

2
(t− 1)2.

Now, we define γ : (0,∞)→ (1,∞), be the inverse function of ψ(t) for
all t ≥ 1, and ρ : (0,∞) → (0, 1), be the inverse function of −1

2ψ
′
(t) for

all t ∈ (0, 1). Then we have the following lemma.

Lemma 4. For ψ(t), we have the following√
s

m+ 1
+ 1 ≤ γ(s) ≤ 1 +

√
s

m+ 1
, s ≥ 0, (18)
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and

ρ(s) ≥ (
m

2s+m
)

1
m+1 , s ≥ 0. (19)

Proof. For (18), let s = ψ(t), t ≥ 1, i.e., γ(s) = t, t ≥ 1, then we have

(m+ 1)t2 = s+ (m+ 2)t− t−m.

Because (m + 2)t − t−m is monotone increasing with respect to t ≥ 1, we
have

(m+ 1)t2 ≥ s+m+ 1,

which implies that

t = γ(s) ≥
√

s

m+ 1
+ 1.

By (16), we have

s = ψ(t) ≥ (m+ 1)(t− 1)2,

so

t = γ(s) ≤ 1 +

√
s

m+ 1
.

For (19), let z = −1
2ψ
′
(t) for all t ∈ (0, 1). By the definition of ρ, we have

ρ(z) = t and 2z = −ψ′(t). Then

mt−m−1 = 2z + 2(m+ 1)t− (m+ 2).

Because 2(m+1)t−(m+2) is monotone increasing with respect to t ∈ (0, 1),
we have

mt−m−1 ≤ 2z +m,

which implies that

ρ(z) = t ≥ (
m

2z +m
)

1
m+1 .

Lemma 5. Let γ : (0,∞)→ (1,∞),be the inverse function of ψ(t) for all
t ≥ 1. Then we have

Ψ(βV ) ≤ nψ
(
βγ

(
Ψ(V )

n

))
, V ∈, β ≥ 1. (20)

Proof. Using Theorem 3.2 in [1], we get the result. This completes the
proof.
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Lemma 6. Let 0 ≤ θ ≤ 1, V + = 1√
1−θV. If Ψ(V ) ≤ τ, then we have

Ψ(V +) ≤ (m+ 1)(m+ 2)

2(1− θ)

(√
nθ +

√
τ

m+ 1

)2

. (21)

Proof. Since 1√
1−θ ≥ 1 and γ

(
Ψ(V )
n

)
≥ 1, we have

γ
(

Ψ(V )
n

)
√

1−θ ≥ 1. Using

lemma 5, with β =
√

1− θ, (17), (18) and Ψ(V ) ≤ τ, we have

Ψ(V +) ≤ nψ

(
1√

1− θ
γ

(
Ψ(V )

n

))
≤ n

(m+ 1)(m+ 2)

2

(
1√

1− θ
γ

(
Ψ(V )

n

)
− 1

)2

= n
(m+ 1)(m+ 2)

2(1− θ)

(
γ

(
Ψ(V )

n

)
−
√

1− θ
)2

≤ n
(m+ 1)(m+ 2)

2(1− θ)

(
1 +

√
Ψ(V )

(m+ 1)n
−
√

1− θ

)2

≤ n
(m+ 1)(m+ 2)

2(1− θ)

(
θ +

√
τ

(m+ 1)n

)2

≤ n
(m+ 1)(m+ 2)

2(1− θ)

(√
nθ +

√
τ

(m+ 1)n

)2

.

Denote

Ψ0 = L(n, θ, τ) = n
(m+ 1)(m+ 2)

2(1− θ)

(√
nθ +

√
τ

(m+ 1)n

)2

, (22)

then Ψ0 is an upper bound for Ψ(V ) during the process of the algorithm.

4 Analysis of algorithm

The aim of this paper is to define a new kernel function and to obtain
new complexity results for an SDO problem using the proximity function
defined by the kernel function and following the approach of Bai et al. [1].
Using the concept of a matrix function [3], the definition of kernel function
ψ can be extended to any diagonalizable matrix with positive eigenvalues.
In particular, for a given eigen-decomposition
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V = Q−1
V diag (λ1(V ), λ2(V ), ..., λn(V ))QV ,

of V with a nonsingular matrix QV , the matrix function ψ(V ) is defined by

ψ(V ) = Q−1
V diag (ψ(λ1(V )), ψ(λ2(V )), ..., ψ(λn(V )))QV . (23)

In this section, we compute a proper step size α and the decrease of
the proximity function during an inner iteration and give the complexity
results of the algorithm.

4.1 Determining a default step size

Taking a step size α, we have new iterates

X+ = X + α4X, y+ = y + α4y and S+ = S + α4S.

Let

X+ = X

(
I + α

4X
X

)
= X

(
I + α

DX

V

)
=
X

V
(V + αDX) ,

S+ = S

(
I + α

4S
S

)
= S

(
I + α

DS

V

)
=
S

V
(V + αDS) .

So, we have

V + =
(

(V + αDX)
1
2 (V + αDS) (V + αDX)

1
2

) 1
2
.

Since the proximity after one step is defined by

Ψ(V +) = Ψ

((
(V + αDX)

1
2 (V + αDS) (V + αDX)

1
2

) 1
2

)
.

By (i) in Lemma 2, we have

Ψ(V +) = Ψ
(

((V + αDX) (V + αDS))
1
2

)
,

≤ 1

2
(Ψ (V + αDX) + Ψ(V + αDS)) .

Define, for α > 0

f(α) = Ψ(V +)−Ψ(V ).

Therefore, we have f(α) ≤ f1(α), where
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f1(α) =
1

2
(Ψ (V + αDX) + Ψ(V + αD))−Ψ(V ). (24)

Obviously,

f(0) = f1(0) = 0.

Now, we deal with another concepts relevant to matrix functions in
matrix theory [5].

Definition 1. [5] A matrix X(t) is said to be a matrix of functions if each
entry of X(t) is a function of t, that is, X(t) = [Xij(t)] .

The concepts of continuity, differentiability and integrability naturally
extended to matrix-valued functions of a scalar by interpreting them component-
wise. Thus we can say that

d

dt
X(t) =

d

dt
[Xij(t)] = X

′
(t).

Suppose that the matrix-valued functions H(t) and G(t) are differentiable
with respect to t. Then we have

d

dt
(Tr(G(t)) = Tr

(
d

dt
G(t)

)
= Tr

(
G
′
(t)
)
,

d

dt
((G(t)H(t)) = G

′
(t)H(t) +G(t)H

′
(t).

For any function ψ(t), let us denote by 4ψ(t) the divided difference of
ψ(t) :

4ψ(t1, t2) =
ψ(t1)− ψ(t2)

t1 − t2
, ∀t1 6= t2 ∈ <∗.

If t1 = t2, we simply write 4ψ(t1, t2) = ψ
′
(t).

Let us define that Qα is orthogonal matrix such that

V + αDX = QTα diag (λ1(V + αDX), λ2(V + αDX), ..., λn(V + αDX))Qα,

and let us denote by Di the diagonal matrix that has one in its (i, i) position
and all other components of Di equal to zero. It follows from [5,12,13] that
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d
dα (ψ(V + αDX)) = QTα

(
n∑

j,k=1

4ψ (λj(V + αDX), λk (V + αDX))

Dj

(
Qα(V + αDX)′QTα

)
Dk

)
Qα.

(25)

Now by the choice of Di, it holds Tr
(
Dj

(
Qα(V + αDX)

′
QTα

)
Dk

)
= 0,

for j 6= k. Thus it follows that

d
dα (ψ(V + αDX))

=
n∑
i=1

ψ′ (λi(V + αDX))Di

(
Qα(V + αDX)′QTα

)
Di

= Tr

(
QTα

(
n∑
i=1

Diψ
′ (λi(V + αDX))Di

)
Qα(V + αDX)′

)
= Tr (ψ′(V + αDX)DX) ,

and

d
dα (ψ(V + αDS)) = QTα

(
n∑

j,k=1

4ψ(λj(V + αDS), λk(V + αDS))

Dj

(
Qα(V + αDS)

′
QTα

)
Dk

)
Qα.

(26)

Now by the choice of Di, it holds Tr
(
Dj

(
Qα(V + αDS)

′
QTα

)
Dk

)
= 0,

for j 6= k. Thus it follows that

d
dα (ψ(V + αDS))

= Tr

(
n∑
i=1

ψ
′
(λi(V + αDS))Di

(
Qα(V + αDS)

′
QTα

)
Di

)
= Tr

(
QTα

(
n∑
i=1

Diψ
′
(λi(V + αDS))Di

)
Qα(V + αDS)

′
)

= Tr
(
ψ
′
(V + αDS)DS

)
.

Now, we can write

f
′
1(α) =

1

2
Tr
(
ψ
′
(V + αDX)DX) + ψ

′
(V + αDS)DS

)
.

This gives

f
′
1(0) = −2δ2.
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Furthermore,

d2

dα2 (Tr (ψ (V + αDX)))

= Tr
(
d
dα

(
ψ
′
(V + αDX)DX

))
= Tr

(
QTα

(
n∑

j,k=1

4ψ′(λj(V + αDX), λk(V + αDX))Dj(
Qα(V + αDX)

′
QTα

)
Dk

)
QαDX

)

= Tr

(
n∑

j,k=1

4ψ′(λj(V + αDX), λk(V + αDX))Dj(QαDXQ
T
α)

Dk(QαDXQ
T
α)

)

= Tr

(
n∑

j,k=1

4ψ′(λj(V + αDX), λk(V + αDX))(QαDXQ
T
α)2
jk

)
≤ max

{∣∣∣4ψ′(λj(V + αDX), λk(V + αDX))
∣∣∣ , j, k = 1, ..., n

}
‖DX‖2 .

Also, we have

d2

dα2 (Tr (ψ (V + αDS)))

= Tr
(
d
dα

(
ψ
′
(V + αDS)DS

))
= Tr

(
QTα

(
n∑

j,k=1

4ψ′(λj(V + αDS), λk(V + αDS))Dj(
Qα(V + αDS)

′
QTα

)
Dk

)
QαDS

)

= Tr

(
n∑

j,k=1

4ψ′(λj(V + αDS), λk(V + αDS))Dj(QαDSQ
T
α)

Dk(QαDSQ
T
α)

)

= Tr

(
n∑

j,k=1

4ψ′(λj(V + αDS), λk(V + αDS))(QαDSQ
T
α)2
jk

)
≤ max

{∣∣∣4ψ′(λj(V + αDS), λk(V + αDS))
∣∣∣ , j, k = 1, ..., n

}
‖DS‖2 .

We denote by

ω1 = max
{∣∣∣4ψ′(λj(V + αDX), λk(V + αDX))

∣∣∣ , j, k = 1, ..., n
}
,
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and

ω2 = max
{∣∣∣4ψ′(λj(V + αDS), λk(V + αDS))

∣∣∣ , j, k = 1, ..., n
}
.

Therefore,

f
′′
(α) = 1

2
d2

dα2Tr (ψ (V + αDX) + ψ (V + αDS))

≤ 1
2

(
ω1 ‖DX‖2 + ω2 ‖DS‖2

)
.

(27)

Lemma 7. Let δ(V ) be as defined in (15). Then we have

δ(V ) ≥
√

(m+ 1)Ψ(V ).

Proof. Using (16), we have

Ψ(V ) = Tr(ψ(V )) =

n∑
i=1

ψ(λi(V )) ≤
n∑
i=1

1

4(m+ 1)
ψ
′
(λi(V ))2

=
1

4(m+ 1)
‖∇Ψ(V )‖2 =

1

m+ 1
δ(V )2.

This gives
δ(V ) ≥

√
(m+ 1)Ψ(V ).

Throughout the paper, we assume that τ ≥ 1. Using lemma 7 and
the assumption that Ψ(V ) ≥ τ , we have δ(V ) ≥

√
(m+ 1). We have the

following lemma.

Lemma 8. Let f1(α) be as defined in (24), δ(V ) be as defined in (15) and
ψ the kernel function be as defined in (9). Then we have

f
′′
1 (α) ≤ 2δ2ψ

′′
(λmin(V )− 2αδ).

Proof. We have
f
′′
1 (α) ≤ 2 max {ω1, ω2} δ2.

It suffices to prove the following inequality:

max {ω1, ω2} ≤ ψ
′′
(λmin(V )− 2αδ).

We can choose j∗, k∗ ∈ {1, 2, ..., n} such that

ω1 =

∣∣∣∣∣ψ
′
(λj∗(V + αDX)− ψ′(λk∗(V + αDX)

λj∗(V + αDX)− λk∗(V + αDX)

∣∣∣∣∣ .
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Using the Mean value theorem, there exists

η ∈
[

min (λj∗(V + αDX), λk∗(V + αDX)) ,

,max (λj∗(V + αDX), λk∗(V + αDX))
]
,

such that
ψ
′′
(η) = 4ψ′(λj∗(V + αDX), λk∗(V + αDX)).

Since DX are symmetric matrices, from the definition of δ and Frobenius
norm, we have

η ≥ min {λj∗(V + αDX), λk∗(V + αDX)}
≥ λmin(V )− 2αδ,

because, ψ
′′

is monotonically decreasing, then we obtain

ω1 ≤ ψ
′′
(λmin(V )− 2αδ).

By the same method to get ω1, we obtain

ω2 =

∣∣∣∣∣ψ
′
(λj∗(V + αDS)− ψ′(λk∗(V + αDS)

λj∗(V + αDS)− λk∗(V + αDS)

∣∣∣∣∣ .
Using the Mean value theorem, there exists

η ∈
[

min (λj∗(V + αDS), λk∗(V + αDS)) ,

max (λj∗(V + αDS), λk∗(V + αDS))
]
,

such that
ψ
′′
(η) = 4ψ′(λj∗(V + αDS), λk∗(V + αDS)).

Since DS are symmetric matrices, from the definition of δ and Frobenius
norm, we have

η ≥ min {λj∗(V + αDS), λk∗(V + αDS)}
≥ λmin(V )− 2αδ,

because, ψ
′′

is monotonically decreasing, then we obtain

ω2 ≤ ψ
′′
(λmin(V )− 2αδ).

Therefore,
max {ω1, ω2} ≤ ψ

′′
(λmin(V )− 2αδ).

This gives
f
′′
1 (α) ≤ 2δ2ψ

′′
(λmin(V )− 2αδ).
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Since f1(0) = 0 and f
′
1(0 ) = −2δ(V )2, we have

f(α) ≤ f1(α) := f1(0) + f
′
1(0)α+

α∫
0

ξ∫
0

f
′′
1 (ζ)dζdξ

≤ f2(α) := f1(0) + f
′
1(0)α+ 2δ2

α∫
0

ξ∫
0

ψ
′′
(λmin(V )− 2ζδ)dζdξ.

Note that f2(0) = 0. Furthermore, since

f
′
2(α) = −2δ2 + δ

(
ψ
′
(λmin(V ))− ψ

′
(λmin(V )− 2αδ)

)
,

then, we have f
′
2(0) = −2δ2, which is the same value of the f

′
1(0) and

f
′′

2 (α) = 2δ2ψ
′′
(λmin(V )− 2αδ), which is increasing on α ∈

[
0, λmin(V )

2δ

]
. So

we can rewrite f2(α) as follows:

f2(α) = f2(0) + f
′
2(0)α+ 2δ2

α∫
0

ξ∫
0

ψ
′′
(λmin(V )− 2ζδ)dζdξ.

Now, using f
′
1(0) = f

′
2(0) and f

′′

1 (α) ≤ f
′′

2 (α), we can easily check that

f
′
1(α) = f

′
1(0) +

α∫
0

f
′′
(ξ)dξ ≤ f ′2(α).

This gives that

f
′
1(α) ≤ 0, if f

′
2(α) ≤ 0.

For each µ > 0, we compute a feasible iterate such that the proximity
measure is decreasing. We want to compute the step size α which satisfies

that f
′
2(α) ≤ 0 holds with α as large as possible. Since f

′′

2 (α) > 0, that
is, f

′
2(α) is monotonically increasing at α, the largest possible value at α

satisfying f
′
2(α) ≤ 0 occurs when f

′
2(α) = 0, that is,

ψ
′
(λmin(V ))− ψ

′
(λmin(V )− 2αδ) = 2δ. (28)

Since ψ
′′
(t) is monotonically decreasing, the derivative of the left-hand side

in (28) with respect to λmin(V ) is
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ψ
′′

(λmin(V ))− ψ
′′
(λmin(V )− 2αδ) ≤ 0.

So, the left-hand side in (28) is decreasing at λmin(V ). This implies that if
λmin(V ) gets smaller, then α gets smaller with fixed δ. Note that

δ =

√√√√ n∑
i=1

(ψ′(λi(V )))
2 ≥

∣∣∣ψ′ (λmin(V ))
∣∣∣ ≥ −ψ′ (λmin(V )),

and the equality is true if and only if λmin(V ) is only the cordinate in
(λ1(V ), λ2(V ), ..., λn(V )) which is different from 1 and λmin(V ) < 1, that

is, ψ
′
(λmin(V )) < 0. Hence, the worst situation for the largest step size

α occurs when λmin(V ) satisfies

− ψ
′
(λmin(V )) = δ. (29)

In that case, the largest satisfying (28) is minimal. For our purpose, we
need to deal with the worst case and so we assume that (29) holds. This
implies

λmin(V ) = ρ(δ). (30)

By using (28) and (29) we immediately obtain

−ψ
′
(λmin(V )− 2αδ) = 4δ.

By the definition of ρ and using (30), the largest step size of the worst case
is given as follows:

α∗ =
ρ(δ)− ρ(2δ)

2δ
. (31)

Lemma 9. Let the definition of ρ and α∗ be as defined in (31), then we
have

α∗ ≥ 1

(m+ 1)(m+ 2)
m+2
m+1

.

Proof. Using lemma 4.4 in [1], the definition of ψ
′′
(t) and (19), we have

α∗ ≥ 1

ψ′′(ρ(2δ))
=

1

2(m+ 1) + m(m+1)
ρ(2δ)m+2

≥ 1

2(m+ 1) +m(m+ 1)(4δ+m
m )

m+2
m+1

≥ 1

2(m+ 1)δ + 3m(m+ 2)δ
m+2
m+1

≥ 1

3(m+ 1)(m+ 2)δ
m+2
m+1

,
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which completes the proof.

For using α as the default step size in the algorithm, define the α as
follows

α =
1

3(m+ 1)(m+ 2)δ
m+2
m+1

. (32)

4.2 Decrease of the proximity function during an inner it-
eration

Now, we show that our proximity function Ψ with our default step size α
is decreasing. It can be easily established by using the following result:

Lemma 10. [12] Let h(t) be a twice differentiable convex function with
h(0) = 0, h

′
(0) < 0 and let h(t) attain its (global) minimum at t > 0. If

h
′′
(t) is increasing for t ∈ [0, t∗] , then

h(t) =
th
′
(0)

2
.

Let the univariate function h be such that

h(0) = f1(0) = 0, h
′
(0) = f

′
1(0) = −2δ2, h

′′
(α) = 2δ2ψ

′′
(λmin(V )− 2αδ).

Since f2(α) satisfies the condition of the above lemma,

f(α) ≤ f1(α) ≤ f2(α) ≤ f
′
2(0)

2
α, for all 0 ≤ α ≤ α∗.

We can obtain the upper bound for the decreasing value of the proximity
in the inner iteration by the above lemma.

Theorem 1. Let α be a step size as defined in (32) and δ = Ψ(V ) ≥ τ =
1. Then we have

f(α) ≤ −(m+ 1)
−m−2
2(m+1)

3(m+ 2)
Ψ(V )

m
2(m+1) .
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Proof. For all α ≤ α∗, we have

f(α) ≤ −αδ2 = − 1

3(m+ 1)(m+ 2)δ
m+2
m+1

δ2

= − 1

3(m+ 1)(m+ 2)
δ

m
m+1

≤ − 1

3(m+ 1)(m+ 2)

(√
(m+ 1)Ψ(V )

) m
m+1

≤ − (m+ 1)
m

2(m+1)

3(m+ 1)(m+ 2)
Ψ(V )

m
2(m+1) ≤ (m+ 1)

−m−2
2(m+1)

3(m+ 2)
Ψ(V )

m
2(m+1) .

4.3 Iteration bound

We need to count how many inner iterations are required to return to the
situation where Ψ(V ) ≤ τ after a µ−update. We denote the value of Ψ(V )
after µ−update as Ψ0 the subsequent values in the same outer iteration
are denoted as Ψk, k = 1, 2, .... If K denotes the total number of inner
iterations in the outer iteration, then we have

Ψ0 ≤ L = O(n, θ, τ), ΨK−1 > τ , 0 ≤ ΨK ≤ τ.

and according to (20),

Ψk+1 ≤ Ψk −
(m+ 1)

−m−2
2(m+1)

3(m+ 2)
Ψ

m
2(m+1)

k .

At this stage we invoke the following lemma from [12]

Lemma 11. [12] Let t0, t1, ..., tk be a sequence of positive numbers such
that

tk+1 ≤ tk − βt1−νk , k = 0, 1, ...,K − 1,

where β > 0, 0 < ν ≤ 1. Then

K ≤ tν0
βν
.

Letting

tk = Ψk, β =
(m+ 1)

−m−2
2(m+1)

3(m+ 2)
and ν =

m+ 2

2(m+ 1)
,

we can get the following lemma.
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Lemma 12. Let K be the total number of inner iterations in the outer
iteration. Then we have

K ≤ 6(m+ 1)
3m+4

2(m+1) Ψ
m+2

2(m+1)

0 .

Proof. Using lemma 11, we have

K ≤ Ψν
0

βν
= 6(m+ 1)

3m+4
2(m+1) Ψ

m+2
2(m+1)

0 .

Now we estimate the total number of iterations of our algorithm.

Theorem 2. If τ ≥ 1, the total number of iterations is not more than

6(m+ 1)
3m+4

2(m+1) Ψ
m+2

2(m+1)

0

1

θ
log

nµ0

ε
.

Proof. In the algorithm, nµ ≤ ε, µk = (1 − θ)kµ0 and µ0 = Tr(X0S0)
n . By

simple computation, we have

K ≤ 1

θ
log

nµ0

ε
.

Therefore, the number of outer iterations is bounded above by 1
θ log nµ0

ε .
Multiplying the number of outer iterations by the number of inner itera-
tions, we get an upper bound for the total number of iterations, namely,

6(m+ 1)
3m+4

2(m+1) Ψ
m+2

2(m+1)

0

1

θ
log

nµ0

ε
.

5 Conclusion

We propose a new barrier function and primal–dual interior point algo-
rithms for SDO problems and analyze the iteration complexity of the algo-

rithm based on the kernel function. We have O(m
3m+1

2m n
m+1
2m log Tr(X0S0)

ε )

for large-update methods and O(m
3m+1

2m
√
n log Tr(X0S0)

ε ) for small-update
methods which are the best known iteration bounds for such methods.
Future research might focus on the extension to symmetric cone optimiza-
tion. Finally, the numerical test is an interesting work for investigating
the behavior of the algorithms so as to be compared with other existing
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approaches.
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