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Abstract. It is well known that the matrix exponential function has prac-
tical applications in engineering and applied sciences. In this paper, we
present some new explicit identities to the exponential functions of a spe-
cial class of matrices that are known as central-symmetric X-form. For
instance, eAt, tA and aAt will be evaluated by the new formulas in this
particular structure. Moreover, upper bounds for the explicit relations will
be given via subordinate matrix norms. Eventually, some numerical illus-
trations and applications are also adapted.
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1 Introduction

The initial value problem in the form

d

dt
y(t) = Ay(t), y(0) = c, (1)

where A ∈ Cn×n, and y(t), c ∈ Cn has the solution y(t) = eAtc. In
the general case, with appropriate assumptions on the smoothness of f , the
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solution of the inhomogeneous system

d

dt
y(t) = Ay(t) + f(t, y), y(0) = c, (2)

satisfy

y(t) = eAtc +

∫ t

0
eA(t−s)f(s, y)ds,

which is an explicit formula for y. These formulas do not essentially pro-
vide the best technique for the numerical solutions. Thus, the extensive
literature on the numerical solutions of ordinary differential equations pro-
vide alternative techniques to approximate eAt [2,7]. From the other point
of view, it is known that the matrix exponential functions have signifi-
cant roles in engineering and science such as nuclear magnetic resonance,
Markov models, differential equations, exponential integrators, and Control
theory [2, 6, 7]. Many numerical analysist investigated the computational
methods for the matrix exponential functions, among them is the most
important fundamental paper written by Moler and Van Loan [3]. They
have proposed numerous approaches such as series method, Padé approx-
imation method, scaling and squaring method, single ordinary differen-
tial equation (ODE) method, Cayley Hamilton method, Newton interpo-
lation method, Vandermonde matrix method, inverse Laplace transforms
method, Companion matrix method, matrix decomposition methods, and
Krylov subspace methods. It is mentioned that the ODE’s approach, scal-
ing and squaring method, and Schur decomposition methods are more suit-
able methods. It must be emphasized that in MATLAB, the exponential
function is approximated by scaling and squaring method.

The central-symmetric X-form matrices were first introduced by Nazari
et. al in [4]. These matrices are in the following forms

An =



αn βn
. . . . .

.

α2 β2

α1

β2 α2

. .
. . . .

βn αn


∈ C(2n−1)×(2n−1), (3)
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and

Bn =



αn βn
. . . . .

.

α2 β2

α1 β1

β1 α1

β2 α2

. .
. . . .

βn αn


∈ C(2n)×(2n). (4)

This paper is organized as follows. In Section 2, we develop some results
about linear algebra operations for the central-symmetric X-form matrices.
The main contributions of this paper are given in Section 3, by proposing
several new formulas and by proving different theorems to the exponentials
of the argued matrices. In Section 4, some examples are given for the
capability of the matrix exponential functions such as eAt, tA, and aAt.
Finally, concluding remarks are presented in Section 5.

2 Preliminary

This section is devoted to properties of the central-symmetric X-form ma-
trices that are used in this paper. It is noted that some properties of this
kind of matrices such as Dollitle factorization, determinant, inverse and
singular values have been given in [4]. Firstly, we express the following
theorem:

Theorem 1. Let A and B be two central-symmetric X-form matrices.
Then the following properties hold:

1. AH or AT are central-symmetric X-form matrices.

2. AB is a central-symmetric X-form matrix.

3. adj(A) is a central-symmetric X-form matrix.

4. A−1 is a central-symmetric X-form matrix.

5. Aq and A1/q for (q > 0) are central-symmetric X-form matrices.

6. eA, tA and aA are central-symmetric X-form matrices.

7. The Gamma matrix function which is defined by Γ(A) =
∫ 1

0 e
−ttA−Idt

and the Beta matrix function which is defined by B(A,B) =
∫ 1

0 t
A−I(1−

t)B−Idt, are both central-symmetric X-form matrices [5].
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Proof. The proof can be easily done by considering the elements of the
matrices A and B.

The factors for An and Bn are as follows:

LAn =



√
αn

. . .
√
α2 √

α1

β2√
α2

√
α2
2−β2

2
α2

. .
. . . .

βn√
αn

√
α2
n−β2

n
αn


,

and

LBn =



√
αn

. . .
√
α1

β1√
α1

√
α2
1−β2

1
α1

. .
. . . .

βn√
αn

√
α2
n−β2

n
αn


.

The next two lemmas deal with the determinants and eigenvalues of An

and Bn [4].

Lemma 1. If An and Bn are odd and even dimensions central-symmetric
X-form matrices respectively, then

det(An) = α1

n∏
i=2

(α2
i − β2

i ), (5)

det(Bn) =
n∏
i=1

(α2
i − β2

i ).

Since An ∈ C(2n−1)×(2n−1), it is straightforward to see that p2n−1(λ) =
det(An − λI2n−1) = 0. Thus, according to Eq. (5), we have

det(An − λI2n−1) = (α1 − λ1)
n∏
i=2

[
(αi − λi)2 − β2

i

]
= 0.

Consequently, the eigenvalues of An are given by λ = α1, λ = αi ± βi, i =
2, . . . , n. The eigenvalues of Bn can be computed in a similar way.
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Lemma 2. The eigenvalues of An lie in the set {α1} ∪ {αi ± βi, i ∈
{2, . . . , n}}, and the eigenvalues of Bn lie in the set {αi ± βi, i ∈ {1, . . . , n}}.
Theorem 2. The 1, 2,∞ and Frobenius norms of An and Bn are given as
following:

1. ‖An‖1 = ‖An‖∞ = max
2≤i≤n

{|α1|, |αi|+ |βi|},

‖Bn‖1 = ‖Bn‖∞ = max
1≤i≤n

{|αi|+ |βi|}.

2. ‖An‖2 =
√

max
2≤i≤n

{
(αi + βi)

2, α2
1, (αi − βi)2)

}
,

‖Bn‖2 =
√

max
1≤i≤n

{
(αi + βi)

2, (αi − βi)2)
}

.

3. ‖An‖F =

√√√√2
n∑
i=2

(α2
i + α2

1 + β2
i ),

‖Bn‖F =

√√√√2

n∑
i=1

(α2
i + β2

i ).

Proof. Parts (1) and (3) are obvious. In order to prove part (2), it is
sufficient to consider the maximum eigenvalue of the matrices AT

nAn and
BT
nBn that are both central-symmetric X-form matrices.

3 Main results

Suppose that f(z) is an analytic function over a closed contour Γ which
encircles σ(A), denotes the set of eigenvalues of matrix A. A function of
matrix is defined by using Cauchy integral definition [1]:

f(A) =
1

2πi

∮
Γ
f(ξ)(ξI−A)−1dξ.

The entries of (ξI − A)−1 are analytic on Γ, thus f(A) is analytic in a
neighborhood of σ(A). The exponential of a matrix is one of the most
applicable functions that is deduced in the following definition:

Definition 1. [1, 7] The matrix exponential for A ∈ Cn×n is defined by

eAt =

∞∑
k=0

(At)k

k!
.

In the sequel, we provide new formulations for the exponential func-
tions of central symmetric X-form matrices. In addition, error analysis of
exponential functions are performed with details.
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3.1 Explicit formula for eAt

In this subsection, we are going to derive an explicit formula for the expo-
nential functions of central-symmetric X-form matrices. For this purpose,
we first have the following theorem:

Theorem 3. Assume that An ∈ C(2n−1)×(2n−1) and Bn ∈ C(2n)×(2n) are
central-symmetric X-form matrices. Then, the exponential functions of
Ant and Bnt are given by

eAnt =



ϕn ψn
. . . . . .

ϕ2 ψ2

ζ1

ψ2 ϕ2

. . . . . .

ψn ϕn


,

eBnt =



ϕn ψn
. . . . . .

ϕ2 ψ2

ϕ1 ψ1

ψ1 ϕ1

ψ2 ϕ2

. . . . . .

ψn ϕn


,

where, ζ1 = eα1t, and for i = 1, . . . , n:

ϕi = eαit cosh(βit),

ψi = eαit sinh(βit).

Proof. To prove the assertion, we split the matrix An into two matrices
Dn and D′n such that An = Dn + D′n, whereas

Dn = diag(2n−1)(αn, . . . , α2, α1, α2, . . . , αn),

and
D′n = antidiag(2n−1)(βn, . . . , β2, 0, β2, . . . , βn).

Furthermore, the powers of D′n for q ∈ {2, 4, 6, . . .} are

(D′n)q = diag(2n−1)(β
q
n, . . . , β

q
2, 0, β

q
2, . . . , β

q
n),
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and for q ∈ {1, 3, 5, . . .} are

(D′n)q = antidiag(2n−1)(β
q
n, . . . , β

q
2, 0, β

q
2, . . . , β

q
n).

Accordingly, from series definition for the matrix exponential, we have

eD
′
nt =

∞∑
k=0

(D′nt)
k

k! =
∑

k∈{2n}

(D′nt)
k

k! +
∑

k∈{2n+1}

(D′nt)
k

k!

=



ξn ηn
. . . . .

.

ξ2 η2

1
η2 ξ2

. .
. . . .

ηn ξn


,

wherein,

ξi =
∞∑
k=0

(βit)
2k

(2k)! = cosh(βit), ηi =
∞∑
k=0

(βit)
2k+1

(2k+1)! = sinh(βit),

for i = 2, 3, . . . n. In addition, as we know eΛ = diag(eλ1 , . . . , eλn), then

eDnt = diag(2n−1)(e
αnt, . . . , eα2t, eα1t, eα2t, . . . , eαnt).

Moreover, according to the facts that eDn+D′n = eDneD
′
n and DnD

′
n =

D′nDn, we have
eAnt = eDnt+D′nt = eDnteD

′
nt.

This further gives

eAnt =


eαnt cosh(βnt) eαnt sinh(βnt)

. .
. .

. .

eα2t cosh(β2t) eα2t sinh(β2t)

eα1t

eα2t sinh(β2t) eα2t cosh(β2t)

.
.
. .

.
.

eαnt sinh(βnt) eαnt cosh(βnt)

.
By a similar technique, we have

eBnt =


eαnt cosh(βnt) eαnt sinh(βnt)

.
.
. .

.
.

eα1t cosh(β1t) eα1t sinh(β1t)

eα1t sinh(β1t) eα1t cosh(β1t)

.
. . . .

.

eαnt sinh(βnt) eαnt cosh(βnt)

,
which completes the proof.
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Example 1. Assume that A = t
(

0 Jn
Jn 0

)
a matrix 2n × 2n, where Jn is

exchange matrix, that is defined by

Jn = (jij)n×n =

{
1, j = n− i+ 1,

0, j 6= n− i+ 1.

Hence, we obtain the following block form of the matrix exponential, similar
as

eAt =

(
(cosh t)In (sinh t)Jn
(sinh t)Jn (cosh t)In

)
(2n)×(2n)

.

In this part, we are interested to give an upper bound for the exponential
functions of central-symmetric X-form matrices. According to references
[1, 7], consider the following sets:

α(A) = min {Re(z) : z ∈ σ (A)} , β(A) = max {Re(z) : z ∈ σ (A)} .

Now, by utilizing the Schur decomposition of A, we have

‖eAt‖ ≤ eα(A)t
n−1∑
k=0

(‖A‖
√
nt)k

k!
.

If we consider Φ(An) = max
2≤i≤n

{αi + βi, α1}, then after simplifying, we get

‖eAnt‖∞ ≤ eα(A)t
n−1∑
k=0

(‖A‖∞
√
nt)k

k!
≤ eα(A)t

n−1∑
k=0

(Φ(An)
√
nt)k

k!
.

Furthermore, if we consider Ψ(Bn) = max
1≤i≤n

{αi + βi}, then we deduce that

‖eBnt‖∞ ≤ eα(A)t
n−1∑
k=0

(‖A‖∞
√
nt)k

k!
≤ eα(A)t

n−1∑
k=0

(Ψ(Bn)
√
nt)k

k!
.

Since, ‖An‖∞ = ‖An‖1 and ‖Bn‖∞ = ‖Bn‖1, the results can be expressed
for the 1-norm, too.

3.2 Explicit formula for tA

In primitive Calculus, it is well known that ta = ea ln t. Then for matrix A
we deduced that

tA = e(ln t)A, t > 0.

In the following theorem, we identify some important properties of tA.
This theorem can be easily proved by some properties of the exponential
functions. Thus, we omited the proof to save space.



The exponential functions of central-symmetric X-form matrices 27

Theorem 4. Let A and B be two square matrices. Then the following
properties hold:

1. t0n×n = In and tIn = tIn.

2. tA+B = tAtB, provided AB = BA.

3. If P is nonsingular matrix, then tPAP−1
= PtAP−1.

4. t−AtA = tAt−A = In.

5. (tA)H = tA
H

, it follows that if A is Hermitian, then tA is also Her-
mitian, and if A is skew-Hermitian, then tA is unitary.

6. (tA)T = tA
T

, it follows that if A is symmetric, then tA is also sym-
metric, and if A is skew-symmetric, then tA is orthogonal.

7. det(tA) = exp ((ln t)Tr(A)).

8.
d

dt
(tA) = At−1tA.

9. tA⊗In = tA ⊗ tIn, tIn⊗B = tIn ⊗ tB.

10. tA⊕B = t(tA ⊗ tB).

It should be noted that Kronecker product of matrices A and B is
defined by A⊗B = aijB, and alternatively Kronecker sum of matrices A
and B is defined by A⊕B = (I⊗A) + (B⊗ I). Now, explicit formulas for
computing tAn and tBn are given in the following theorem.

Theorem 5. Let An ∈ C(2n−1)×(2n−1) and Bn ∈ C(2n)×(2n) be central-
symmetric X-form matrices. Then, the functions tAn and tBn are computed
by

tAn =



ϕn ψn
. . . . . .

ϕ2 ψ2

ζ1

ψ2 ϕ2

. . . . . .

ψn ϕn


,

tBn =



ϕn ψn
. . . . . .

ϕ2 ψ2

ϕ1 ψ1

ψ1 ϕ1

ψ2 ϕ2

. . . . . .

ψn ϕn


,
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where, ζ1 = eα1(ln t), and for i = 1, . . . , n, we have

ϕi = eαi(ln t) cosh(βi(ln t)),

ψi = eαi(ln t) sinh(βi(ln t)).

Proof. The proof is similar to that of Theorem 3 and omitted here.

Example 2. Let A be the 4× 4 matrix [8]:

A =


1 π

2 0 π
−π

2 1 −π 0
0 0 1 5π

2
0 0 −5π

2 1

 .

It can be observed that

eA+AT
=


e2 cosh(π) 0 0 e2 sinh(π)

0 e2 cosh(π) −e2 sinh(π) 0
0 −e2 sinh(π) e2 cosh(π) 0

e2 sinh(π) 0 0 e2 cosh(π)



=


85.6536 0 0 85.3343

0 85.6536 −85.3343 0
0 −85.3343 85.6536 0

85.3343 0 0 85.6536

 .

Notice that eA+AT
is a central symmetric X-form matrix. Furthermore,

by employing Theorem 5, we obtain

tA+AT
=


t2+π+t2−π

2 0 0 t2+π−t2−π
2

0 t2+π+t2−π

2 − t2+π−t2−π
2 0

0 − t2+π−t2−π
2

t2+π+t2−π

2 0
t2+π−t2−π

2 0 0 t2+π+t2−π

2



=

 t2 cosh(π ln t) 0 0 t2 sinh(π ln t)
0 t2 cosh(π ln t) −t2 sinh(π ln t) 0
0 −t2 sinh(π ln t) t2 cosh(π ln t) 0

t2 sinh(π ln t) 0 0 t2 cosh(π ln t)

.
In what follows, we give upper bound for the matrices tAn and tBn .

Since ta = ea ln t, let Φ(An) = max
2≤i≤n

{αi + βi, α1}, then

‖tAn‖∞ = ‖eAn ln t‖ ≤ tα(A)
n−1∑
k=0

(Φ(An)
√
n ln t)k

k!
, t ≥ 1,
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‖tAn‖∞ = ‖e−An(− ln t)‖ ≤ tβ(A)
n−1∑
k=0

(Φ(An)
√
n ln t)k

k!
, 0 < t ≤ 1.

Moreover, let Ψ(Bn) = max
1≤i≤n

{αi + βi}, we then have

‖tBn‖∞ ≤ tα(A)
n−1∑
k=0

(Ψ(Bn)
√
n ln t)k

k!
, t ≥ 1,

‖tBn‖∞ ≤ tβ(A)
n−1∑
k=0

(Ψ(Bn)
√
n ln t)k

k!
, 0 < t ≤ 1.

The results is also valid for 1-norm.

3.3 Explicit formula for aAt

In calculus, it is known that at = et ln a. Then for the matrix A, we can
write

aAt = e(ln a)At, a > 0.

In the next theorem, some valuable properties of aAt will be characterized.
They can be easily proved by some properties of the exponential functions.
Thus, we omited the proof.

Theorem 6. Let A and B be two square matrices and a > 0. Then the
following properties hold:

1. a0n×n = In and aInt = atIn.

2. If P is nonsingular matrix, then aPAP−1
= PaAP−1.

3. a(A+B)t = aAtaBt, provided AB = BA.

4. aA(t+s) = aAtaAs.

5. a−AtaAt = aAta−At = In.

6. (aA)H = aAH
, it follows that if A is Hermitian, then aA is Hermitian

too, and if A is skew-Hermitian, then aA is unitary.

7. (aA)T = aAT
, it follows that if A is symmetric, then aA is symmetric

too, and if A is skew-symmetric, then aA is orthogonal.

8. det(aA) = exp ((ln a)Tr(A)).

9. d
dt(a

At) = ln(a)AaAt.

10. aA⊗In = aA ⊗ aIn, and aIn⊗B = aIn ⊗ aB.

11. aA⊕B = a(aA ⊗ aB).

Consequently, in the following theorem, we compute aAnt and aBnt:
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Theorem 7. Let An ∈ C(2n−1)×(2n−1) and Bn ∈ C(2n)×(2n) be central-
symmetric X-form matrices. Then, the functions aAnt and aBnt are com-
puted by

aAnt =



ϕn ψn
. . . . . .

ϕ2 ψ2

ζ1

ψ2 ϕ2

. . . . . .

ψn ϕn


,

aBnt =



ϕn ψn
. . . . . .

ϕ2 ψ2

ϕ1 ψ1

ψ1 ϕ1

ψ2 ϕ2

. . . . . .

ψn ϕn


,

wherein, ζ1 = eα1t(ln a), and for i = 1, . . . , n:

ϕi = eαit(ln a) cosh(βit(ln a)),

ψi = eαit(ln a) sinh(βit(ln a)).

Proof. It can be proved similar to Theorem 3 and omitted here.

Example 3. Considering matrix A in Example 2, after application and
simplification of relations, we obtain

aA+AT
=


a2t+πt+a2t−πt

2
0 0 a2t+πt−a2t−πt

2

0 a2t+πt+a2t−πt

2
−a

2t+πt−a2t−πt
2

0

0 −a
2t+πt−a2t−πt

2
a2t+πt+a2t−πt

2
0

a2t+πt−a2t−πt
2

0 0 a2t+πt+a2t−πt

2



=

(
a2t cosh(πt ln a) 0 0 a2t sinh(πt ln a)

0 a2t cosh(πt ln a) −a2t sinh(πt ln a) 0

0 −a2t sinh(πt ln a) a2t cosh(πt ln a) 0

a2t sinh(πt ln a) 0 0 a2t cosh(πt ln a)

)
,

which is central symmetric X-form matrix.
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4 Applications

This section is devoted to applications of the exponential function of a
square matrix. In order to achieve this purpose, we consider the central-
symmetric X form matrices.

Example 4. Consider the initial value problem

d

dt
y(t) = Ay(t),

whenever y(0) = (1, . . . , 1)t ∈ R202 and A is 202 × 202 central-symmetric
X-form matrix as follows:

A =



201 200
. . . . .

.

5 4
3 2

1 1
1 1

2 3
4 5

. .
. . . .

200 201


,

Thus, according to Theorem 3, we obtain the following solution:

y(t) =



G200
201 H200

201
. . . . .

.

G2
3 H2

3

G1
1 H1

1

H1
1 G1

1

H2
3 G2

3

. .
. . . .

H200
201 G200

201





1
...
1
1
1
1
...
1


,

where

Gβα = eαt cosh(βt), Hβ
α = eαt sinh(βt).

After multiplication and simplification of the last expression, we have:

y(t) =
(
e401t, . . . , e5t, e2t, e2t, e5t, . . . , e401t

)t
.
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Example 5. In this example we illustrate the computation of the Gamma
and Beta matrix functions. In order to reach this aim, consider 3 × 3
central-symmetric X-form matrices

A =

 3 0 1
0 2 0
1 0 3

 , B =

 2 0 1
0 5 0
1 0 2

 .

Hence, for 0 < t < 1, it is concluded that

tA−I = t


2 0 1
0 1 0
1 0 2


= exp

 2 ln t 0 ln t
0 ln t 0

ln t 0 2 ln t



=

 t(t2+1)
2 0 t(t2−1)

2
0 t 0

t(t2−1)
2 0 t(t2+1)

2

 ,

(1− t)B−I = (1− t)


1 0 1
0 4 0
1 0 1



= exp

 ln(1− t) 0 ln(1− t)
0 4 ln(1− t) 0

ln(1− t) 0 ln(1− t)



=

 (t−1)2+1
2 0 (t−1)2+1

2

0 (t− 1)4 0
(t−1)2+1

2 0 (t−1)2+1
2

 .

Consequently, we obtain

Γ(A) =

∫ 1

0
e−t

 t(t2+1)
2 0 t(t2−1)

2
0 t 0

t(t2−1)
2 0 t(t2+1)

2

 dt

=

 7
2 − 9e−1 0 5

2 − 7e−1

0 1− 2e−1 0
5
2 − 7e−1 0 7

2 − 9e−1

 ,
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and

B(A,B) =

∫ 1

0

 t(t2+1)
2 0 t(t2−1)

2
0 t 0

t(t2−1)
2 0 t(t2+1)

2


 (t−1)2+1

2 0 (t−1)2+1
2

0 (t− 1)4 0
(t−1)2+1

2 0 (t−1)2+1
2

 dt

=

∫ 1

0

 t(t3−2t3+t2−1)
2 0 t(t3−2t3+t2+1)

2

0 t(t− 1)4 0
t(t3−2t3+t2+1)

2 0 t(t3−2t3+t2−1)
2

 dt

=

 31
120 0 − 29

120
0 1

30 0
− 29

120 0 31
120

 .

It should be mentioned that Γ(A) and B(A,B) are also central symmetric
X-form matrices.

5 Conclusions

In this paper, we explored various properties of the especial forms of ma-
trices that are called central symmetric X-form matrices. It could be ob-
served that the proposed class of matrices are not particular case of centro-
symmetric matrices. In spite of the existence of many procedures that can
compute the exponential of a matrix, according to our knowledge there
is not any relation which can evaluate the matrix exponential of central
symmetric X-form matrices explicitly. The most important merit of the
proposed formulas are avoiding the computation of Jordan form or Schur
decomposition of matrices. Moreover, upper bounds of the exponential ap-
proximations are given with details by using ‖eAt‖. At the end, an initial
value problem and also Gamma and Beta matrix functions by central sym-
metric X-form matrices have shown in examples.
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