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Abstract. In this paper, a high-order and conditionally stable stochastic
difference scheme is proposed for the numerical solution of Itô stochas-
tic advection diffusion equation with one dimensional white noise process.
We applied a finite difference approximation of fourth-order for discretiz-
ing space spatial derivative of this equation. The main properties of de-
terministic difference schemes, i.e. consistency, stability and convergence,
are developed for the stochastic case. It is shown through analysis that
the proposed scheme has these properties. Numerical results are given to
demonstrate the computational efficiency of the stochastic scheme.

Keywords: stochastic partial differential equations, consistency, stability, conver-

gence.
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1 Introduction

Physical phenomena of interest in science and technology are very often the-
oretically simulated by means of models which correspond to deterministic
partial differential equations (PDEs). PDEs are widely used as models to
describe complex physical phenomena in various fields of science, for exam-
ple, chemical physics, fluid mechanics, solid-state physics, plasma physics,
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plasma wave, biology and economics [11, 16]. As in the case of determin-
istic PDEs, only a few, very simple PDE can be solved analytically, as a
consequence, there is a need for the numerical schemes for approximat-
ing their solution. Moreover, most frequently some of the parameters and
initial data are not known with complete certainty due to lack of infor-
mation, uncertainty in the measurements or incomplete knowledge of the
mechanism themselves and therefore, the behaviour of the system might be
far away from the ideal deterministic representation. To compensate this
lack of information and make description of the system more realistic, one
introduces random inputs which may be random variables or stochastic
processes. This leads to stochastic partial differential equations (SPDEs).
Stochastic partial differential equations have many applications in chem-
istry, physics, engineering, mathematical biology and finance. Analytical
solution can be obtained for very few SPDEs, see for example [6,7,12]. One
hope is that using numerical methods to generate solutions to such equa-
tions will lead to better understanding of the equations. For numerical
simulation of solution of SPDEs, some authors have used the finite element
approximation [1,17] and others have used finite difference scheme [4,5,18].
Roth used an explicit finite difference method to approximate the solu-
tion of some stochastic hyperbolic equations [13]. Soheili et al. presented
two methods for solving linear parabolic SPDEs based on the Saul,yev
method and a high order finite difference scheme [14]. In [3], Soheili and
Bishehniasar considered the approximation of stochastic advection diffu-
sion equation using compact finite difference technique, and investigated
their numerical results. Kamrani and Hosseini reported explicit and im-
plicit finite difference method for general SPDE [8]. Some authors used
spectral method for spatial variable discertization and solved the resulting
system of stochastic ordinary differential equation (SODEs) via the Crank-
Nicolson scheme or stochastic Runge-Kutta method [2,9]. In this paper, we
extend one kind of the finite difference methods to stochastic case in order
to approximate the solution of stochastic advection diffusion equation. This
paper is organized as follows. An explicit finite difference scheme to ap-
proximate stochastic advection diffusion equations is introduced in Section
2. In addition, consistency, stability and convergence, important proper-
ties of a deterministic difference scheme, are developed for the stochastic
scheme. In Section 3, consistency, stability and convergence of the proposed
stochastic difference scheme is established. Finally, numerical results are
given in Section 4.
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2 Finite Difference Approximation for Advection
Diffusion Equations

Consider the following stochastic advection diffusion equation

ut(x, t) + νux(x, t) = γuxx(x, t) + σu(x, t) Ẇ (t), x ∈ [0, X], t ∈ [0, T ], (1)

u(x, 0) = u0(x), u(0, t) = u(X, t) = 0,

where ν, γ and σ are random variables such that E(ν2) < ∞, E(γ2) <
∞, E(σ2) < ∞ and W (t) is a one–dimensional standard Wiener pro-
cess such that the white noise Ẇ (t) is a Gaussian distribution with zero
mean [10]. Numerically, finite difference methods have vast applications in
approximating the solution of SPDEs. These schemes discretize continuous
space and time into an evenly distributed grid system, and the values of
the state variables are evaluated at each node of the grid. Considering a
uniform space grid ∆x and time grid ∆t in the time–space lattice, we can
estimate the solution of the equation at the points of this lattice. The value
of the approximate solution at the point (k∆x, n∆t) will be denoted by unk
where n and k are integers. In the explicit method, the time and space
derivatives in the SPDE are approximated by finite difference replacements
in the following form [15]:

ux(k∆x, n∆t) ≈
unk+1 − unk

∆x
, ut(k∆x, n∆t) ≈

un+1
k − unk

∆t
,

uxx(x, t) ≈ 1

∆x2
(− 1

12
u(x− 2∆x, t) +

4

3
u(x−∆x, t)− 5

2
u(x, t) (2)

+
4

3
u(x+ ∆x, t)− 1

12
u(x+ 2∆x, t)).

In fact, (2) is a fourth order approximation of uxx, with the truncation
error being O(∆x4). Therefore, the scheme approximates the stochastic
advection diffusion equation is given by

un+1
k =

(
1 + νλ− 5

2
γρ

)
unk +

(
4

3
γρ− νλ

)
unk+1 (3)

+γρ

(
− 1

12
unk−2 +

4

3
unk−1 −

1

12
unk+2

)
+ σunk∆Wn,

where λ = ∆t
∆x , ρ = ∆t

∆x2
, ∆Wn = W ((n+ 1)∆t)−W (n∆t) and ∆Wn is a

Gaussian distribution with mean 0 and variance ∆t, i.e., ∆Wn ∼ N(0,∆t).

Remark 1. For the proposed scheme, we assume that the random variables
ν, γ and σ are independent of the Wiener process and the states unk .
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Consistency, stability and convergence are important properties of in-
terest in deterministic theory for the stochastic case and we aim to ap-
propriate these concepts to the stochastic case. To get a higher degree of
generality in the following definitions, it is useful to introduce the follow-
ing notations. Consider an SPDE in the following form Lv = G, where
L denotes the differential operator and G ∈ L2(R) is an inhomogeneity.
Let unk be a solution that is approximated by a stochastic finite differ-
ence scheme denoted by Lnk , and applying the stochastic scheme to the
SPDE, we have Lnku

n
k = Gnk , where Gnk is the approximation of the inhomo-

geneity. For consistency, stability and convergence, we will need a norm.
Hence for a sequence u = {. . . , u−1, u0, u1, . . .}, the sup–norm is defined as

‖u‖∞ =
√

sup
k
|uk|2. Based on [13], we propose the following definitions

of stochastic difference scheme.

Definition 1. A stochastic difference scheme Lnku
n
k = Gnk is pointwise

consistent with the SPDE Lv = G at point (x, t), if for any continuously
differentiable function Φ = Φ(x, t), in mean square

E‖ (LΦ−G) |nk − [LnkΦ(k∆x, n∆t)−Gnk ] ‖2 → 0,

as ∆x→ 0, ∆t→ 0, and (k∆x, (n+ 1)∆t)→ (x, t).

Definition 2. A stochastic difference scheme is said to be stable with re-
spect to a norm in mean square if there exist some positive constants ∆x0

and ∆t0 and non–negative constants K and β such that

E‖un+1‖2 ≤ KeβtE‖u0‖2,

for all 0 ≤ t = (n+ 1)∆t, 0 ≤ ∆x ≤ ∆x0, and 0 ≤ ∆t ≤ ∆t0, where

un+1 =
(
. . . , un+1

k−2 , u
n+1
k−1 , u

n+1
k , un+1

k+1 , u
n+1
k+2 , . . .

)T
.

Definition 3. A stochastic difference scheme Lnku
n
k = Gnk approximating

the SPDE Lv = G is convergent in mean square at time t, if as (n+ 1)∆t
converges to t, E‖un+1 − vn+1‖2 → 0, for (n + 1)∆t = t, ∆x → 0 and
∆t→ 0.

3 Convergence analysis of the stochastic scheme

Theorem 1. The stochastic difference scheme (3) is consistent in mean
square in the sense of Definition 1.
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Proof. Let Φ(x, t) be a smooth function, then we have:

L(Φ)|nk = Φ(k∆x, (n+ 1)∆t)− Φ(k∆x, n∆t)

+ ν

∫ (n+1)∆t

n∆t
Φx(k∆x, s) ds

− γ
∫ (n+1)∆t

n∆t
Φxx(k∆x, s) ds− σ

∫ (n+1)∆t

n∆t
Φ(k∆x, s) dW (s),

and

LnkΦ = Φ(k∆x, (n+ 1)∆t)− Φ(k∆x, n∆t)

+ν∆t

(
Φ((k + 1)∆x, n∆t)− Φ(k∆x, n∆t)

∆x

)
−γ ∆t

∆x2

(
− 1

12
Φ((k − 2)∆x, n∆t) +

4

3
Φ((k − 1)∆x, n∆t)

−5

2
Φ(k∆x, n∆t) +

4

3
Φ((k + 1)∆x, n∆t)

− 1

12
Φ((k + 2)∆x, n∆t)

)
−σΦ(k∆x, n∆t)(W ((n+ 1)∆t)−W (n∆t)).

Therefore, if we use the square property of Itô integral, then we obtain:

E|L(Φ)|nk − LnkΦ|2

= E

∣∣∣∣∣ν
∫ (n+1)∆t

n∆t

(
Φx(k∆x, s)− Φ((k + 1)∆x, n∆t)− Φ(k∆x, n∆t)

∆x

)
ds

− γ
∫ (n+1)∆t

n∆t

(
Φxx(k∆x, s)

− 1

∆x2

[
− 1

12
Φ((k − 2)∆x, n∆t) +

4

3
Φ((k − 1)∆x, n∆t)

−5

2
Φ(k∆x, n∆t) +

4

3
Φ((k + 1)∆x, n∆t)− 1

12
Φ((k + 2)∆x, n∆t)

])
ds

− σ

∫ (n+1)∆t

n∆t
(Φ(k∆x, s)− Φ(k∆x, n∆t)) dW (s)

∣∣∣∣∣
2

≤ 4E(ν2)E

∣∣∣∣∣
∫ (n+1)∆t

n∆t

(
Φx(k∆x, s)
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−Φ((k + 1)∆x, n∆t)− Φ(k∆x, n∆t)

∆x

)
ds

∣∣∣∣2
+ 4E(γ2)E

∣∣∣∣∣
∫ (n+1)∆t

n∆t

(
Φxx(k∆x, s)

− 1

∆x2

[
− 1

12
Φ((k − 2)∆x, n∆t) +

4

3
Φ((k − 1)∆x, n∆t)

− 5

2
Φ(k∆x, n∆t) +

4

3
Φ((k + 1)∆x, n∆t)

− 1

12
Φ((k + 2)∆x, n∆t)

])
ds

∣∣∣∣2
+ 4E(σ2)

∫ (n+1)∆t

n∆t
E|Φ(k∆x, s)− Φ(k∆x, n∆t)|2 ds.

Since Φ(x, t) is a deterministic function, hence E|L(Φ)|nk − LnkΦ|2 → 0, as
n, k →∞.

Theorem 2. The stochastic difference scheme (3) with t = (n + 1)∆t
and 3

4νλ ≤ γρ ≤ 2
5(1 + νλ), (note that νλ ≤ 8

7), is stable with respect to

‖ · ‖∞ =
√

sup
k
| · |2.

Proof. Applying E| · |2 in (3) and using the independence of the Wiener
process increments, we get

E|un+1
k |2 = E

∣∣∣∣(1 + νλ− 5

2
γρ

)
unk +

(
4

3
γρ− νλ

)
unk+1

+γρ

(
− 1

12
unk−2 +

4

3
unk−1 −

1

12
unk+2

)∣∣∣∣2 + E(σ2)∆tE|unk |2.

By using 3
4νλ ≤ γρ ≤

2
5(1 + νλ), we arrive at

E|un+1
k |2 ≤ E

((
1 + νλ− 5

2
γρ

)2
)
E|unk |2 + E

((
4

3
γρ− νλ

)2
)
E|unk+1|2

+ E
(
(γρ)2

)
E
∣∣∣∣− 1

12
unk−2 +

4

3
unk−1 −

1

12
unk+2

∣∣∣∣2
+ 2E

((
1 + νλ− 5

2
γρ

)(
4

3
γρ− νλ

))
E|unkunk+1|
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+ 2E
((

1 + νλ− 5

2
γρ

)
γρ

)
E
∣∣∣∣unk (− 1

12
unk−2 +

4

3
unk−1 −

1

12
unk+2

)∣∣∣∣
+ 2E

((
4

3
γρ− νλ

)
γρ

)
E
∣∣∣∣unk+1

(
− 1

12
unk−2 +

4

3
unk−1 −

1

12
unk+2

)∣∣∣∣
+ E(σ2)∆tE|unk |2.

Also, we can use the following inequalities

E|X + Y + Z| ≤ E|X|+ E|Y |+ E|Z|,
E|X + Y + Z|2 ≤ 4(E|X|2 + E|Y |2 + E|Z|2), (4)

so we conclude that

E|un+1
k |2 ≤ E

((
1 + νλ− 5

2
γρ

)2
)
E|unk |2 + E

((
4

3
γρ− νλ

)2
)
E|unk+1|2

+
E
(
(γρ)2

)
144

(
4E|unk−2|2 + 1024E|unk−1|2 + 4E|unk+2|2

)
+ 2E

((
1 + νλ− 5

2
γρ

)(
4

3
γρ− νλ

))
E|unkunk+1|

+
1

6
E
((

1 + νλ− 5

2
γρ

)
γρ

)(
E|unkunk−2|+ 16E|unkunk−1|+ E|unkunk+2|

)
+

1

6
E
((

4

3
γρ− νλ

)
γρ

)(
E|unk+1u

n
k−2|+ 16E|unk+1u

n
k−1|+ E|unk+1u

n
k+2|

)
+ E(σ2)∆tE|unk |2

≤

{
E

((
1 + νλ− 5

2
γρ

)2
)

+ E

((
4

3
γρ− νλ

)2
)

+
1032

144
E
(
(γρ)2

)
+ 2E

((
1 + νλ− 5

2
γρ

)(
4

3
γρ− νλ

))
+ 3E

((
1 + νλ− 5

2
γρ

)
γρ

)
+ 3E

((
4

3
γρ− νλ

)
γρ

)
+ E(σ2)∆t

}
sup
k

E|unk |2

=

{
1 +

2

3
E(γρ) +

181

36
E
(
(γρ)2

)
+ E(σ2)∆t

}
sup
k

E|unk |2,

where the first inequality follows from (4). It is sufficient to select δ such
that 2

3E(γρ) + 181
36 E

(
(γρ)2

)
+ E(σ2)∆t ≤ δ2∆t holds, for all k. Therefore

sup
k

E|un+1
k |2 ≤ (1 + δ2∆t) sup

k
E|unk |2 ≤ · · · ≤ (1 + δ2∆t)n+1 sup

k
E|u0

k|2,

and by substituting ∆t with t
n+1 ,

E‖un+1‖2∞ ≤
(

1 +
δ2t

n+ 1

)n+1

E‖u0‖2∞ ≤ eδ
2tE‖u0‖2∞. (5)
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So, the stochastic difference scheme (3) is stable for 3
4νλ ≤ γρ ≤

2
5(1 +νλ),

according to Definition (2), with K = 1 and β = δ2.

Theorem 3. The stochastic difference scheme (3) for

3

4
νλ ≤ γρ ≤ 2

5
(1 + νλ),

is convergent with respect to ‖ · ‖∞–norm.

Proof. The stochastic finite difference scheme is given by

un+1
k = unk − ν∆t

unk+1 − unk
∆x

+ γ
∆t

∆x2

(
− 1

12
unk−2 +

4

3
unk−1 −

5

2
unk +

4

3
unk+1 −

1

12
unk+2

)
+ σunk(W ((n+ 1)∆t)−W (n∆t)).

The solution vn+1
k can be represented by the Taylor expansion vxx(x, s)

with respect to the space variable as

vn+1
k = vnk − ν

∫ (n+1)∆t

n∆t
vx(x, s)|x=xk ds+ γ

∫ (n+1)∆t

n∆t
vxx(xk, s) ds

+ σ

∫ (n+1)∆t

n∆t
v(x, s)|x=xk dW (s)

= vnk − ν
∫ (n+1)∆t

n∆t

(
vnk+1 − vnk

∆x
− ∆x

2
vxx((k + α)∆x, s)

)
ds

+ γ

∫ (n+1)∆t

n∆t

(
1

∆x2

(
− 1

12
vnk−2 +

4

3
vnk−1 −

5

2
vnk +

4

3
vnk+1 −

1

12
vnk+2

)
+

∆x4

135

(
v(6)((k + θ)∆x, s) + v(6)((k + µ)∆x, s)

)
−∆x4

540

(
v(6)((k + θ′)∆x, s) + v(6)((k + µ′)∆x, s)

))
ds

+ σ

∫ (n+1)∆t

n∆t
v(x, s)|x=xk dW (s),

where α, θ, µ, θ′, µ′ ∈ (0, 1). Let znk = vnk − unk , then we have

zn+1
k =

(
1 + νλ− 5

2
γρ

)
znk +

(
4

3
γρ− νλ

)
znk+1

+ γρ

(
− 1

12
znk−2 +

4

3
znk−1 −

1

12
znk+2

)
+ ν

∆x

2

∫ (n+1)∆t

n∆t
vxx((k + α)∆x, s) ds
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+ γ

∫ (n+1)∆t

n∆t

(
∆x4

135

(
v(6)((k + θ)∆x, s) + v(6)((k + µ)∆x, s)

)
− ∆x4

540

(
v(6)((k + θ′)∆x, s) + v(6)((k + µ′)∆x, s)

))
ds

+ σ

∫ (n+1)∆t

n∆t
(v(x, s)|x=xk − u

n
k) dW (s). (6)

Applying E| · |2 to (6), we arrive at the following inequality

E|zn+1
k |2 ≤ 4E

∣∣∣∣(1 + νλ− 5

2
γρ

)
znk +

(
4

3
γρ− νλ

)
znk+1

+γρ

(
− 1

12
znk−2 +

4

3
znk−1 −

1

12
znk+2

)∣∣∣∣2
+ 4E

∣∣∣∣∣ν∆x

2

∫ (n+1)∆t

n∆t
vxx((k + α)∆x, s) ds

+ γ

∫ (n+1)∆t

n∆t

(
∆x4

135

(
v(6)((k + θ)∆x, s) + v(6)((k + µ)∆x, s)

)
− ∆x4

540

(
v(6)((k + θ′)∆x, s) + v(6)((k + µ′)∆x, s)

))
ds

∣∣∣∣2
+ 2E

∣∣∣∣∣σ
∫ (n+1)∆t

n∆t
(v(x, s)|x=xk − u

n
k) dW (s)

∣∣∣∣∣
2

≤ 4E
∣∣∣∣(1 + νλ− 5

2
γρ

)
znk +

(
4

3
γρ− νλ

)
znk+1

+γρ

(
− 1

12
znk−2 +

4

3
znk−1 −

1

12
znk+2

)∣∣∣∣2
+ 4E

∣∣∣∣∣ν∆x

2

∫ (n+1)∆t

n∆t
vxx((k + α)∆x, s) ds

+ γ

∫ (n+1)∆t

n∆t

(
∆x4

135

(
v(6)((k + θ)∆x, s) + v(6)((k + µ)∆x, s)

)
− ∆x4

540

(
v(6)((k + θ′)∆x, s) + v(6)((k + µ′)∆x, s)

))
ds

∣∣∣∣2
+ 2E(σ2)

∫ (n+1)∆t

n∆t
E|v(x, s)|x=xk − v

n
k + vnk − unk |2 ds.

Assuming 3
4νλ ≤ γρ ≤

2
5(1 + νλ), introducing the notation ψ1k = vxx((k +

α)∆x, s) <∞, ψ2k = v(6)((k+θ)∆x, s) <∞, ψ3k = v(6)((k+µ)∆x, s) <∞,
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ψ4k = v(6)((k + θ′)∆x, s) <∞, ψ5k = v(6)((k + µ′)∆x, s) <∞ and also

∫ (n+1)∆t

n∆t
E|v(x, s)|x=xk − v

n
k |2 ds = E

∫ (n+1)∆t

n∆t
|v(x, s)|x=xk − v

n
k |2 ds

≤ sup
s∈[n∆t,(n+1)∆t]

|v(x, s)|x=xk − v(k∆x, n∆t)|2∆t ≤ ψ1∆t,

we conclude that

E|zn+1
k |2 ≤ 4

(
1 +

2

3
E(γρ) +

181

36
E
(
(γρ)2

))
sup
k

E|znk |2

+ 4 sup
k

E

∣∣∣∣∣
∫ (n+1)∆t

n∆t

(
ν

∆x

2
ψ1k + γ

∆x4

135
(ψ2k + ψ3k)

−γ∆x4

540
(ψ4k + ψ5k)

)
ds

∣∣∣∣2
+ 4E(σ2) sup

k

∫ (n+1)∆t

n∆t
E|v(x, s)|x=xk − v

n
k |2 ds

+ 4E(σ2) sup
k

∫ (n+1)∆t

n∆t
E|vnk − unk |2 ds

≤ 4

(
1 +

2

3
E(γρ) +

181

36
E
(
(γρ)2

)
+ E(σ2)∆t

)
sup
k

E|znk |2

+ 4 sup
k

E|Ψ1∆t|2 + ψ2∆t

≤ 4

(
1 +

2

3
E(γρ) +

181

36
E
(
(γρ)2

)
+ E(σ2)∆t

)
sup
k

E|znk |2 + Ψ∆t.

By selecting δ such that

2

3
E(γρ) +

181

36
E
(
(γρ)2

)
+ E(σ2)∆t ≤ δ2∆t,

yields

E|zn+1
k |2 ≤ 4(1 + δ2∆t) sup

k
E|znk |2 + Ψ∆t,

and

sup
k

E|zn+1
k |2 ≤ 4(1 + δ2∆t) sup

k
E|znk |2 + Ψ∆t.
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It follows that

E‖zn+1‖2∞ ≤ 4(1 + δ2∆t)E‖zn‖2∞ + Ψ∆t

≤
(

1 + δ2 t

n+ 1

)n+1 n∑
j=1

(4Ψ∆t)j + Ψ∆t

≤ eδ2t
n∑
j=1

(4Ψ∆t)j + Ψ∆t.

When time step, i.e. ∆t, tends to zero, we obtain

E‖zn+1‖2∞ ≤ (n− 1)eδ
2t(4Ψ∆t)2 + 4eδ

2tΨ∆t+ Ψ∆t

≤ teδ2t(4Ψ)2∆t+ 4eδ
2tΨ∆t+ Ψ∆t

= (teδ
2t(4Ψ)2 + 4eδ

2tΨ + Ψ)∆t,

and consequently E‖zn+1‖2∞ → 0.

4 Numerical results

In this section, we present the numerical results of the stochastic difference
scheme (3) on two test problems. Also, the convergence and stability of
the stochastic difference scheme (3) is numerically investigated. For com-
putional purpose, it is useful to consider the discrete Brownian motion,
where W (t) is specified at discrete t values.

Example 1. Consider

ut(x, t) = 0.001uxx(x, t)− u(x, t)Ẇ (t), x ∈ [0, 1], t ∈ [0, 1],

with u(x, 0) = x2(1− x)2 as the initial condition and the boundary condi-
tions u(0, t) = u(1, t) = 0. The discrete form of the stochastic difference
scheme is

un+1
k = unk +

ρ

1000
(− 1

12
unk−2 +

4

3
unk−1 −

5

2
unk +

4

3
unk+1 −

1

12
unk+2)

−unk(W ((n+ 1)∆t)−W (n∆t)),

where ∆t = 1
N and ∆x = 1

M , for some positive integer N and M . The
above form is conditionally stable with β = δ2 and K = 1 and for γρ ≤ 2

5 ,
γ ≥ 0. Therefore, if M = 150, then for the stability (or convergence)
condition, we must have ∆t ≤ 1

56 or N ≥ 56. We have shown this in Figure
1.
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Figure 1: Representation of conditional convergence, u(x, 1) for different
values of N.

Table 1: δ2 for stability.

N 5× 102 103 2× 103 4× 103 8× 103 16× 103

δ2 21.0906 18.5453 17.2727 16.6363 16.3182 16.1591

In the proof of Theorem 3, we assumed that 2
3E(γρ) + 181

36 E
(
(γρ)2

)
+

E(σ2)∆t ≤ δ2∆t, and for different values of N , we obtained the least value
of δ2 in Table 1. Figure 2 shows that the approximation of the stochastic
advection diffusion equation using the stochastic difference scheme on a 150
by 1000 grid during the time interval [0, 1]. On the other hand, in (5) we
had

E‖un+1‖2∞ ≤ eδ
2tE‖u0‖2∞ ⇒ y = ln(

E‖un+1‖2∞
E‖u0‖2∞

) ≤ δ2t, (n+ 1)∆t = t.

(7)
According to (7) and Figure 3 (or Figure 1) and Table 1, the stability
condition is satisfied for N ≥ 56. In Figure 4, we investigate the convergence
of the solutions. We do not have the exact solution for this example, and
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Figure 2: Mean solutions of stochastic advection diffusion equation using
stochastic difference scheme.

so the numerical approximation at t = 1, for N = 120, is chosen as a
basic fixed solution (Figure 4, left). The right hand side of Figure 4, gives
the log–scale of the difference between the numerical approximations with
N = 60 and N = 500 having the basic fixed solution at the mesh points.

Example 2. Consider the equation

ut(x, t) = 0.001uxx(x, t) + ux(x, t)− 2u(x, t)Ẇ (t), x ∈ [0, 1], t ∈ [0, 1],

subject to the following initial condition

u(x, 0) = x2(1− x)2, x ∈ [0, 1],

with the boundary conditions

u(0, t) = u(1, t) = 0, t ∈ [0, 1].

Therefore, the stochastic difference scheme can be written as:

un+1
k = (1−λ)unk +λunk+1 +γρ(− 1

12
unk−2 +

4

3
unk−1−

5

2
unk +

4

3
unk+1−

1

12
unk+2)

(8)
−2unk(W ((n+ 1)∆t)−W (n∆t)).

Let M and N be the total number of grid points for the space and time
discretizations, respectively. The above form is conditionally stable for
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Figure 3: Figures of y in (7) against t.
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Figure 4: Log difference numerical approximation (right figure) for N = 60
and N = 500 with N = 120 (left figure) and common value M = 150.

γρ ≤ 2
5(1 − λ), γ ≥ 0, and 0 < λ ≤ 1. Therefore, if M = 200, then for the

stability (or convergence) condition, we must have N ≥ 300. The conver-
gence of the scheme at the end of time interval t = 1, for the fixed space grid
points M = 200 and various time grid points N = 300, 350, 400, 450, 500 is
considered. Note that the scheme is unstable for N = 250.

It is clear from Figures 5–7 that the numerical solution obtained for
the stochastic advection diffusion equation for the different time steps is
convergent at time t = 1. In the proof of Theorem 3, we assumed that
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Figure 5: Representation of conditional convergence, u(x, 1) for different
values of N.
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Figure 6: Representation of conditional convergence, u(x, 1) for different
values of N.
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Figure 7: Representation of conditional convergence, u(x, 1) for different
values of N.
.

2
3E(γρ) + 181

36 E
(
(γρ)2

)
+E(σ2)∆t ≤ δ2∆t, and for different values of N , we

obtained the least value of δ2 in Table 2. In order to qualify the numerical
results of the considered stochastic advection diffusion equation, we plot,
in Figure 8, the stochastic solution using stochastic scheme (8) on a 200 by
1000 grid during the time interval [0, 1].
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Table 2: δ2 for stability.

N 5× 102 103 2× 103 4× 103 8× 103 16× 103

δ2 46.7556 38.7111 34.6889 32.6778 31.6277 31.1694

Figure 8: Mean solutions of stochastic advection diffusion equation using
stochastic difference scheme.

5 Conclusion

This paper has provided a stochastic finite difference scheme for the numer-
ical solution of stochastic advection diffusion equations. Consistency of the
stochastic finite difference scheme is established. Stability conditions and
convergence of the proposed stochastic difference scheme are given. Some
numerical results are included to show the efficiency of the scheme.
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