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Abstract. The spline collocation method is employed to solve a system of
linear and nonlinear Fredholm and Volterra integro-differential equations.
The solutions are collocated by cubic B-spline and the integrand is approx-
imated by the Newton-Cotes formula. We obtain the unique solution for
linear and nonlinear system (nN + 3n)× (nN + 3n) of integro-differential
equations. This approximation reduces the system of integro-differential
equations to an explicit system of algebraic equations. At the end, some
examples are presented to illustrate the ability and simplicity of the method.
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1 Introduction

In this paper a spline collocation procedure is developed for the numerical
solution of system of linear and nonlinear integro-differential equations of
the Fredholm type

m∑
r=0

Y (r)(t)Pjr(t) +

∫ b

a

Kj(t, x, Y (x))dx+ ψj(t, Y (t)) = gj(t), j = 1, . . . , n,

m ≤ 2, t ∈ [a, b], (1)
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and Volterra type

m∑
r=0

Y (r)(t)Pjr(t) +

∫ t

a

Kj(t, x, Y (x))dx+ ψj(t, Y (t)) = gj(t), j = 1, . . . , n,

m ≤ 2, t ∈ [a, b], (2)

with boundary conditions

m−1∑
r=0

[αdjry
(r)
j (a) + βdjry

(r)
j (b)] = γdj , j = 1, . . . , n, d = 0, . . . ,m− 1, (3)

where Pjr(t) = [p1jr(t), . . . , pnjr(t)]
T , and αdjr, βdjr and γdj are given real

constants. The given Kj and ψj , are continuous and satisfy a uniform
Lipschitz on [a, b]. Y (t) = [y1(t), . . . , yn(t)] is unknown function and gj(t)
and Pjr(t) are the known functions. Boundary value problems of systems of
nonlinear integro-differential equations have various practical applications
in scientific fields such as population and polymer rheology [2,10]. Several
authors have proposed numerical methods to approximate the solutions of
linear and nonlinear Fredholm and Volterra integro-differential equations,
such as the sinc-collocation method [12, 15, 19], the variational iteration
method [3, 18], the homotopy perturbation method [4], the formulation of
the piecewise Tau method [1, 6, 8]. A simple operational approach, using
the Adomian decomposition method, has been proposed for the numerical
solution of systems of nonlinear Volterra integro-differential equations in
[14]. This method leads to a system of linear algebraic equations. A global
approximation to the solution of Fredholm and Volterra integral equation
is constructed by means of the spline quadrature in [9, 11,16,17].

In this article, we consider the equations (1) and (2) with n = 2 and
use the cubic B-spline collocation method to approximate the unknown
function Y (t) = [y1(t), y2(t)], and then apply the Newton-Cotes rule to
approximate the obtained system of linear and nonlinear Fredholm and
Volterra integro-differential equations of second kind. At the end, some
examples are presented to illustrate the ability and simplicity of the method.

2 Cubic B-spline

We introduce the cubic B-spline space and basis functions to construct an
interpolant SN = [s1, s2] to be used in the formulation of the cubic B-spline
collocation method. Let π = {a = t0 < t1< · · · < tN = b} be a uniform
partition of the interval [a, b] with step size h = b−a

N . The cubic B-spline
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space is denoted by

S3(π) =
{
si ∈ C2[a, b] : si |[tk,tk+1]∈ P3, k = 0, 1, . . . , N, i = 1, 2

}
,

where P3 is the class of cubic polynomials. Following [13] we can define a
cubic B-spline si(t) of the form

si(t) =

N+1∑
k=−1

ck,iβ
3
k(t), (4)

where

β3
k(t) =

1

6h3


(t− tk−2)

3, t ∈ [tk−2, tk−1],

h3 + 3h2(t− tk−1) + 3h(t− tk−1)
2 − 3(t− tk−1)

3, t ∈ [tk−1, tk],

h3 + 3h2 (tk+1 − t) + 3h(tk+1 − t)2 − 3(tk+1 − t)3, t ∈ [tk, tk+1],

(tk+2 − t)3, t ∈ [tk+1, tk+2],
0 otherwise,

(5)

satisfying the following interpolatory conditions

si(tk) = yi(tk), 0 ≤ k ≤ N, i = 1, 2,

and the boundary conditions

C1 : s
′
i(t0) = y

′
i(t0), s

′
i(tN ) = y

′
i(tN ), i = 1, 2,

or
C2 : Dmsi(t0) = Dmsi(tN ), i = 1, 2, m = 1, 2,

or
C3 : s

′′
i (t0) = 0, s

′′
i (tN ) = 0, i = 1, 2. (6)

3 The Collocation Method

3.1 Nonlinear Fredholm integro-differential equations sys-
tem

In the given nonlinear Fredholm integro-differential Eq. (1) for n = 2, we
can approximate the unknown function by cubic B-spline (4) as follows

m∑
r=0

(
s
(r)
1 (t)p11r(t) + s

(r)
2 (t)p21r(t)

)
+

∫ b

a
K1(t, x, s1(x), s2(x))dx

+ψ1(t, s1(t), s2(t)) = g1(t),

m∑
r=0

(
s
(r)
1 (t)p12r(t) + s

(r)
2 (t)p22r(t)

)
+

∫ b

a
K2(t, x, s1(x), s2(x))dx

+ψ2(t, s1(t), s2(t)) = g2(t),

(7)
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for t ∈ [a, b] and m ≤ 2. We now collocate Eq. (7) at collocation points
tk = a+ kh, h = (b− a)/N , k = 0, 1, . . . , N , and obtain

m∑
r=0

(
s
(r)
1 (tk)p11r(tk) + s

(r)
2 (tk)p21r(tk)

)
+

∫ b

a

K1(tk, x, s1(x), s2(x))dx

+ψ1(tk, s1(tk), s2(tk)) = g1(tk),

m∑
r=0

(
s
(r)
1 (tk)p12r(tk) + s

(r)
2 (tk)p22r(tk)

)
+

∫ b

a

K2(tk, x, s1(x), s2(x))dx

+ψ2(tk, s1(tk), s2(tk)) = g2(tk),

(8)

for k = 0, 1, . . . , N , and m ≤ 2. To approximate the integro-differential
Eq. (8), we use the Newton- Cotes formula (Simpson rule or Simpson’s 3/8
rule) [5], then we get the following nonlinear system

m∑
r=0

(
s
(r)
1 (tk)p11r(tk) + s

(r)
2 (tk)p21r(tk)

)
+ h

N∑
i=0

wk,iK1(tk, xi, s1(xi), s2(xi))

+ψ1(tk, s1(tk), s2(tk)) = g1(tk),

m∑
r=0

(
s
(r)
1 (tk)p12r(tk) + s

(r)
2 (tk)p22r(tk)

)
+ h

N∑
i=0

wk,iK2(tk, xi, s1(xi), s2(xi))

+ψ2(tk, s1(tk), s2(tk)) = g2(tk),

(9)

for k = 0, 1, . . . , N , with the boundary conditions,

m−1∑
r=0

[αdjry
(r)
j (a) + βdjry

(r)
j (b)] = γdj , j = 1, 2, d = 0, . . . ,m− 1,

where xi = a + ih, i = 0, 1, . . . , N . We need more equations to obtain the
unique solution for Eq. (9). Hence by associating Eq. (9) with (6), we get
the following (nN + 3n)× (nN + 3n) nonlinear system (with n = 2)

m∑
r=0

(s
(r)
1 (tk)p11r(tk) + s

(r)
2 (tk)p21r(tk)) + h

N∑
i=0

wk,iK1(tk, xi, s1(xi), s2(xi))

+ψ1(tk, s1(tk), s2(tk)) = g1(tk), k = 0, 1, . . . , N,

m∑
r=0

(s
(r)
1 (tk)p12r(tk) + s

(r)
2 (tk)p22r(tk)) + h

N∑
i=0

wk,iK2(tk, xi, s1(xi), s2(xi))

+ψ2(tk, s1(tk), s2(tk)) = g2(tk), k = 0, 1, . . . , N,

m−1∑
r=0

[αdjry
(r)
j (a) + βdjry

(r)
j (b)] = γdj , j = 1, 2, d = 0, . . . ,m− 1,

Dmsj(t0) = Dmsj(tN ), m = 1, 2, j = 1, 2,

(10)

where wk,i’s represent the weights for a quadrature rule of Newton-Cotes
type. By solving the above nonlinear system, we can determine the coeffi-
cients in Eq. (4) and by setting coefficients in (4), we obtain the approxi-
mate solutions for Eq. (1).
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3.2 Nonlinear Volterra integro-differential equations system

Now we consider the system of nonlinear Volterra integro-differential equa-
tions

m∑
r=0

(
y
(r)
1 (t)p11r(t) + y

(r)
2 (t)p21r(t)

)
+

∫ t

a

K1(t, x, y1(x), y2(x))dx

+ψ1(t, y1(t), y2(t)) = g1(t),

m∑
r=0

(
y
(r)
1 (t)p12r(t) + y

(r)
2 (t)p22r(t)

)
+

∫ t

a

K2(t, x, y1(x), y2(x))dx

+ψ2(t, y1(t), y2(t)) = g2(t),

(11)

where x, t ∈ [a, b] and m ≤ 2, with the boundary conditions

m−1∑
r=0

[αdjry
(r)
j (a) + βdjry

(r)
j (b)] = γdj , j = 1, 2, d = 0, . . . ,m− 1.

We replace the solutions of Eq. (11) by the cubic B-spline and by collocating
Eq. (11) at collocation points tk = a+ kh, h = (t− a)/N , k = 0, 1, . . . , N,
we get

m∑
r=0

(
s
(r)
1 (tk)p11r(tk) + s

(r)
2 (tk)p21r(tk)

)
+

∫ tk

a

K1(tk, x, s1(x), s2(x))dx

+ψ1(tk, s1(tk), s2(tk)) = g1(tk),

m∑
r=0

(
s
(r)
1 (tk)p12r(tk) + s

(r)
2 (tk)p22r(tk)

)
+

∫ tk

a

K2(tk, x, s1(x), s2(x))dx

+ψ2(tk, s1(tk), s2(tk)) = g2(tk),

(12)

for k = 1, . . . , N, and m ≤ 2. To approximate the integral Eq.(12), we use
the Newton- Cotes formula (Simpson rule or Simpson’s 3/8 rule), then get
the following nonlinear system

m∑
r=0

(
s
(r)
1 (tk)p11r(tk) + s

(r)
2 (tk)p21r(tk)

)
+ h

k∑
i=0

wk,iK1(tk, xi, s1(xi), s2(xi))

+ψ1(tk, s1(tk), s2(tk)) = g1(tk),
m∑

r=0

(
s
(r)
1 (tk)p12r(tk) + s

(r)
2 (tk)p22r(tk)

)
+ h

k∑
i=0

wk,iK2(tk, xi, s1(xi), s2(xi))

+ψ2(tk, s1(tk), s2(tk)) = g2(tk),

(13)

where k = 1, . . . , N, with the boundary conditions,

m−1∑
r=0

[αdjry
(r)
j (a) + βdjry

(r)
j (b)] = γdj , j = 1, 2, d = 0, . . . ,m− 1.

We need more equations to obtain the unique solution for Equation (13).
Hence, by associating Equation (13) with (6) we obtain the following (2N+
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6)× (2N + 6) nonlinear system

m∑
r=0

(s
(r)
1 (tk)p11r(tk) + s

(r)
2 (tk)p21r(tk)) + h

k∑
i=0

wk,iK1(tk, xi, s1(xi), s2(xi))

+ψ1(tk, s1(tk), s2(tk)) = g1(tk), k = 1, . . . , N,

m∑
r=0

(s
(r)
1 (tk)p12r(tk) + s

(r)
2 (tk)p22r(tk)) + h

k∑
i=0

wk,iK2(tk, xi, s1(xi), s2(xi))

+ψ2(tk, s1(tk), s2(tk)) = g2(tk), k = 1, . . . , N,∑m−1
r=0 [αdjry

(r)
j (a) + βdjry

(r)
j (b)] = γdj , j = 1, 2, d = 0, . . . ,m− 1,

Dmsj(t0) = Dmsj(tN ), m = 1, 2, j = 1, 2.

(14)

By solving the above nonlinear system, we can determine the coefficients
in Eq. (4) and by setting coefficients in (4), we obtain the approximate
solutions for Eq. (11).

4 Error analysis

In this section, we consider the error analysis of the system of nonlin-
ear Volterra integro-differential equations of the second kind. Let SN =
[s1, . . . , sn] be the approximation of Y = [y1, . . . , yn]. We firs recall the
following definition from [13].

Definition 1. Let s(t) be the cubic B-spline interpolates y ∈ C4[a, b], then
for all admissible h, there exists a constant Mj < ∞ , independent of h,
such that

‖Dj(y − s)‖2 ≤Mj‖y(4)‖2h4−j−1/2, j = 0, . . . , 3 ,

where Mj = 2/j!, j = 0, . . . , 3, and Dj is the j-th derivative. If p =
4− j − 1/2 is the largest number for which such an inequality holds, then
p is called the order of convergence of the method.

Theorem 1. The approximate method
m∑

r=0

S
(r)
N (tk)Pjr(tk) + h

k∑
i=0

wk,iKj(tk, xi, SN (xi)) + ψj(tk, SN (tk)) = gj(tk),

j = 1, . . . , n, k = 1, . . . , N, m ≤ 2, (15)

for the solution of the system of nonlinear Volterra integro-differential Eq.
(2) is converges and the error bounded is

‖E(m)
Nk
‖ ≤ 1

|Pjm(tk)|

m−1∑
r=0

|E(r)
Nk
||Pjr(tk)|+

hWLj
|Pjm(tk)|

k∑
i=0

|ENi |+
L∗j |ENk

|
|Pjm(tk)|

+
|Ej(h, tk)|
|Pjm(tk)|

.
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Proof. We know that at tk = a + kh, h = (t − a)/N , k = 1, . . . , N , the
corresponding approximate solution for the system of nonlinear Volterra
integro-differential equation (2) is

m∑
r=0

S
(r)
N (tk)Pjr(tk) + h

k∑
i=0

wk,iKj(tk, xi, SN (xi)) + ψj(tk, SN (tk)) = gj(tk),

j = 1, . . . , n, k = 1, . . . , N, m ≤ 2. (16)

By discretizing (2) and approximating the integrand by the Newton-Cotes
formula, we obtain

m∑
r=0

Y (r)(tk)Pjr(tk) + h
k∑
i=0

wk,iKj(tk, xi, Y (xi)) + ψj(tk, Y (tk)) = gj(tk)

+Ej(h, tk), j = 1, . . . , n, k = 1, . . . , N, (17)

where

Ej(h, tk) =

∫ tk

a
Kj(tk, x, Y (x))dx− h

k∑
i=0

wk,iKj(tk, xi, Y (xi)),

j = 1, . . . , n. By subtracting (17) from (16) and using interpolatory condi-
tions of cubic B-spline, we get

m∑
r=0

[S
(r)
N (tk)− Y (r)(tk)]Pjr(tk) + h

k∑
i=0

wk,i[Kj(tk, xi, SN (xi)−Kj(tk, xi, Y (xi))]

+[ψj(tk, SN (tk))− ψj(tk, Y (tk))] = −Ej(h, tk),

k = 1, . . . , N, j = 1, . . . , n, m ≤ 2.

Let W = maxi,k |wk,i| and S
(r)
N (tk) = S

(r)
Nk

, Y (r)(tk) = Y
(r)
k , k = 1, . . . , N,

and suppose that Kj , ψj , j = 1, . . . , n, satisfy a Lipschitz condition in its
third argument of the form

|Kj(t, x, SN )−Kj(t, x, Y )| ≤ Lj |SN − Y |, |ψj(t, SN )− ψj(t, Y )| ≤ L∗j |SN − Y |,

where Lj and L∗j are independent of t, x, SN and Y . Then, we get

|S(m)
Nk
− Y (m)

k ||Pjm(tk)| ≤
m−1∑
r=0

|S(r)
Nk
− Y (r)

k ||Pjr(tk)|+ hWLj

k∑
i=0

|SN (xi)− Y (xi)|

+L∗
j |SNk

− Yk|+ |Ej(h, tk)|.

Since |Pjm(tk)| 6= 0, then we have

‖E(m)
Nk
‖ ≤ 1

|Pjm(tk)|

m−1∑
r=0

|E(r)
Nk
||Pjr(tk)|+ hWLj

|Pjm(tk)|

k∑
i=0

|ENi |+
L∗
j |ENk

|
|Pjm(tk)|

+
|Ej(h, tk)|
|Pjm(tk)|

,
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where E
(r)
Nk

= S
(r)
Nk
− Y (r)

k , k = 1, . . . , N. Now, since by assumption both
the quadrature error and the function approximate error are zero in the
limit , then lim max |Ej(h, tk)| = 0, when h → 0. Therefore, the second
term in the previous equation is zero and the first and third terms tend to
zero due to interpolating Y (t) by cubic B-spline. Thus for a fixed k, we get

|E(m)
Nk
| → 0 as h→ 0,m ≤ 2,

which completes the proof.

5 Numerical examples

In order to test the applicability of the presented method, we consider
four examples of the system of linear and nonlinear Volterra and Fredholm
integro-differential equations with the boundary conditions. We solve them
for several values of N and absolute errors are reported in Tables. The RMS
error in the solutions

ERMS =

√√√√ 1

N

N∑
i=0

[s(xi)− y(xi)]2,

is computed by our purposed method where y(t) is the exact solution and
s(t) is the approximated solution of integral equation. All computations
are performed using Mathematica version 8.

Example 1. ( [14]) Consider the following linear Fredholm integro-differential
equation with exact solution y1(t) = 3t2 + 1, y2(t) = t3 + 2t− 1,

y′′1(t) =
3t

10
+ 6−

∫ 1

0
2xt(y1(x)− 3y2(x))dx,

y′′2(t) = 15t+
4

5
−
∫ 1

0
3(2t+ x2)(y1(x)− 2y2(x))dx,

with the boundary conditions y1(0) = 1, y2(0) = −1, y1(1) = 4, and
y2(1) = 2. This system has been solved by our method with N = 10, 30, 60,
the absolute errors at the particular grid points and the RMS errors are
given in Table 1, which shows that the error in the solutions for our method
decreases by reducing the values of h.



System of Fredholm and Volterra integro-differential equations 227

Table 1: The error ‖E‖ for the solution of Example 1 at particular points.

t N = 10 N = 30 N = 60

Results for y1(x)

0 0 2.22E− 16 0
0.1 3.23E− 07 4.0E− 09 2.50E− 10
0.2 2.58E− 06 3.20E− 08 2.0E− 09
0.3 8.73E− 06 1.08E− 07 6.75E− 09
0.4 2.06E− 05 2.56E− 07 1.60E− 08
0.5 4.04E− 05 5.0E− 07 3.13E− 08
0.6 6.98E− 05 8.64E− 07 5.40E− 08
0.7 1.11E− 04 1.37E− 06 8.58E− 08
0.8 1.65E− 04 2.05E− 06 1.28E− 07
0.9 2.35E− 04 1.51E− 06 1.82E− 07
1 3.23E− 04 4.0E− 06 2.50E− 07

RMS error 1.22E− 04 2.92E− 06 9.73E− 08
Results for y2(x)

0 0 2.22E− 16 0
0.1 8.40E− 06 1.04E− 07 6.50E− 09
0.2 3.70E− 05 4.58E− 07 2.86E− 08
0.3 9.08E− 05 1.12E− 06 7.03E− 08
0.4 1.75E− 04 2.17E− 06 1.35E− 07
0.5 2.95E− 04 3.65E− 06 2.28E− 07
0.6 4.55E− 04 5.63E− 06 3.52E− 07
0.7 6.61E− 04 8.18E− 06 5.11E− 07
0.8 9.17E− 04 1.14E− 05 7.09E− 07
0.9 1.23E− 03 8.11E− 06 9.51E− 07
1 1.60E− 03 1.98E− 05 1.24E− 06

RMS error 6.55E− 04 1.52E− 05 5.19E− 07

Example 2. ( [7]) Consider the following linear Volterra integro-differential
equation with exact solution y1(t) = cos(t) and y2(t) = sin(t),

y′′1(t) = −1− y1(t) + cos(t) +

∫ t

0
y2(x)dx, (18)

y′′2(t) = −y2(t) + sin(t)−
∫ t

0
y1(x)dx (19)

with the boundary conditions y1(0) = 1, y2(0) = 0, y1(1) = cos(1) and
y2(1) = sin(1). The approximate solutions are calculated for different values
of N = 10, 30, 60, the absolute errors at the particular grid points and the
RMS errors are given in Table 2.
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Table 2: The error ‖E‖ in solution of Example 2 at particular points.

t N = 10 N = 30 N = 60

Results for y1(x)

0 2.22E− 16 5.55E− 15 2.26E− 14
0.1 4.15E− 06 4.62E− 07 1.15E− 07
0.2 1.65E− 05 1.84E− 06 4.59E− 07
0.3 3.68E− 05 4.10E− 06 1.03E− 06
0.4 6.48E− 05 7.21E− 06 1.80E− 06
0.5 9.97E− 05 1.11E− 05 2.77E− 06
0.6 1.41E− 04 1.57E− 05 3.92E− 06
0.7 1.87E− 04 2.01E− 05 6.65E− 06
0.8 2.39E− 04 2.66E− 05 7.28E− 06
0.9 2.93E− 04 2.91E− 05 8.17E− 06
1 3.51E− 04 3.25E− 05 9.77E− 06

RMS error 1.83E− 04 1.91E− 05 4.68E− 06
Results for y2(x)

0 4.35E− 16 2.42E− 15 1.02E− 14
0.1 1.94E− 07 1.61E− 08 3.89E− 09
0.2 1.21E− 06 1.24E− 07 3.08E− 08
0.3 3.85E− 06 4.13E− 07 1.03E− 07
0.4 8.87E− 06 6.17E− 07 2.41E− 07
0.5 1.69E− 05 9.66E− 07 4.67E− 07
0.6 2.86E− 05 1.86E− 06 7.89E− 07
0.7 4.44E− 05 3.16E− 06 9.11E− 07
0.8 6.47E− 05 4.92E− 06 1.79E− 06
0.9 8.96E− 05 7.17E− 06 2.48E− 06
1 1.19E− 04 9.94E− 06 3.31E− 06

RMS error 5.44E− 05 5.46E− 06 1.33E− 06

Example 3. ( [20]) Consider the following nonlinear Fredholm integro-
differential equation

−y′′1(t)t+ y′1(t)
t

2
− y1(t)ey2(t) +

∫ 1

0
(x+ t)(y21(x) + y22(x))dx = g1(t)

y′1(t)
−t
3
− y′′2(t)t+ y′2(t) + sin(y1(t)) +

∫ 1

0
xt(y21(x)− y22(x))dx = g2(t),

with the the boundary conditions y1(0) = 0, y2(0) = 0, y1(1) = 0 and
y2(1) = 0, where g1(t) and g2(t) are chosen such that the exact solution is
y1(t) = sin(πt) and y2(t) = t2 − t. The approximate solutions are calcu-
lated for different values of N = 10, 30, 60, and the absolute errors at the
particular grid points and the RMS errors are given in Table 3 .
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Table 3: The error ‖E‖ in solution of Example 3 at particular points

t N = 10 N = 30 N = 60

Results for y1(x)

0.05 0 0 0
0.15 1.12E− 02 1.26E− 03 3.16E− 04
0.25 8.50E− 03 9.57E− 04 2.39E− 04
0.35 5.39E− 03 6.09E− 04 1.52E− 04
0.45 2.42E− 03 2.74E− 04 6.88E− 05
0.55 1.62E− 05 7.54E− 07 2.49E− 10
0.65 1.64E− 03 1.82E− 04 4.56E− 05
0.75 2.33E− 03 2.62E− 04 6.54E− 05
0.85 2.15E− 03 2.41E− 04 6.02E− 05
0.95 1.27E− 03 1.42E− 04 3.55E− 05

RMS error 5.22E− 03 6.28E− 04 4.68E− 05
Results for y2(x)

0.05 3.47E− 18 0 4.33E− 19
0.15 1.36E− 07 1.82E− 09 1.15E− 10
0.25 4.03E− 07 5.14E− 09 3.23E− 10
0.35 6.88E− 07 8.67E− 09 5.43E− 10
0.45 9.37E− 07 1.17E− 08 7.35E− 10
0.55 1.11E− 06 1.39E− 08 8.69E− 10
0.65 1.18E− 06 1.47E− 08 9.23E− 10
0.75 1.13E− 06 1.40E− 08 8.77E− 10
0.85 9.21E− 07 1.15E− 08 7.17E− 10
0.95 5.51E− 07 6.85E− 09 4.28E− 10

RMS error 8.12E− 07 1.01E− 08 6.35E− 10

Example 4. ( [1]) Consider the following nonlinear Volterra integro-differential
equation with exact solution y1(t) = t+ et and y2(t) = t− et,

y′′1(t) +
1

2
y′22 (t)− 1

2

∫ t

0
(y21(x) + y22(x))dx = 1− 1

3
t3,

y1(t)t+ y′′2(t)− 1

4

∫ t

0
(y21(x)− y22(x))dx = −1 + t2,

with the boundary conditions y1(0) = 1, y2(0) = −1, y′1(0) = 2 and y′2(0) =
0. This system has been solved by our method with N = 10, 30, 60. The
absolute errors at the particular grid points and the RMS errors are given
in Table 4.
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Table 4: The error ‖E‖ in solution of Example 4 at particular points.

t N = 10 N = 30 N = 60

Results for y1(x)

0 0 2.22E− 16 0
0.1 4.35E− 06 4.78E− 07 1.11E− 07
0.2 1.78E− 05 1.96E− 06 4.92E− 07
0.3 4.10E− 05 4.55E− 06 1.14E− 06
0.4 7.45E− 05 8.27E− 06 2.07E− 06
0.5 7.18E− 04 1.31E− 05 3.29E− 06
0.6 1.73E− 04 1.93E− 05 4.82E− 06
0.7 2.38E− 04 2.65E− 05 6.63E− 06
0.8 3.14E− 04 3.48E− 05 8.72E− 06
0.9 3.97E− 04 4.42E− 05 1.10E− 05
1 4.87E− 04 5.42E− 05 1.35E− 05

RMS error 2.18E− 04 2.43E− 05 7.33E− 06
Results for y2(x)

0 2.22E− 16 0 0
0.1 4.37E− 06 4.79E− 07 1.19E− 07
0.2 1.79E− 05 1.98E− 06 4.96E− 07
0.3 4.17E− 05 4.62E− 06 1.15E− 06
0.4 7.75E− 05 8.53E− 06 2.13E− 06
0.5 1.24E− 04 1.38E− 05 3.46E− 06
0.6 1.87E− 04 2.07E− 05 5.18E− 06
0.7 2.65E− 04 2.94E− 05 7.36E− 06
0.8 3.62E− 04 4.02E− 05 1.0E− 05
0.9 4.79E− 04 5.31E− 05 1.32E− 05
1 6.20E− 04 1.35E− 05 1.72E− 05

RMS error 2.58E− 04 2.86E− 05 6.19E− 06

6 Conclusion

The spline collocation method was used to solve the system of linear and
nonlinear integro-differential equations with boundary conditions of the
Fredholm and Volterra types. Some examples have been given to show the
effectiveness of the proposed method. The absolute errors in the solutions
of these examples show that this method is efficient.
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