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Abstract. This work investigates the response of two-dimensional, tur-
bulent boundary layer characteristics over a flat plate to the presence of
suspended particulate matter. Both phases are assumed to be interacting
continua. That is, the carrier fluid equations are considered to be coupled
with the particle-phase equations. A finite-difference technique with non-
uniform grid has been employed for the solution of the governing equations
and therefore, interpretation of the results and comparison of the present
result with the results of other references. The results clearly demonstrate
that the presence of particles damped the fluid turbulence and apparently
affects the skin friction and heat transfer characteristics equally.
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Nomenclature

(x, y) → Space coordinates i.e. distance along the perpendicular
to plate length

→
q (u, v) → Velocity components for the fluid phase in x- and

y- directions, respectively
→
qp (up, vp) → Velocity components for the particle phase in x- and

y- directions, respectively
(T, Tp) → Temperature of fluid and particle phase, respectively
(Tw, T∞) → Temperature at the wall and free-stream, respectively
(v, vp) → Kinematic coefficient of viscosity of fluid and particle

phase, respectively
(ρ, ρp) → Density of fluid and particle phase, respectively
(ρs, ρm) → Material density of particle and mixture, respectively
(µs, µm) → Coefficient of viscosity of fluid and particle phase,

respectively
(τp, τT ) → Velocity and thermal equilibrium time, respectively
(cp, cs) → Specific heat of fluid and particle phase, respectively
(κ, κs) → Thermal conductivity of fluid and particle phase,

respectively
(Re,Rep) → Fluid and particle phase Reynolds number, respectively
(Nu,Nup) → Fluid and particle phase Nusselt number, respectively
Pr → Prandtl number
Ec → Eckert number
cf → Skin friction coefficient
τw → Skin friction (Shear stress for clear fluid)
ϕ → Volume fraction of Suspended particulate matter (SPM)
P → Pressure of fluid phase
D → Diameter of the particle
δ → Boundary layer thickness
α → Loading ratio
ε → Diffusion parameter
F → Friction parameter between the fluid and

the particle(F = 18µ
ρpD2 )

Jmax → Maximum number of grid points along y-axis
L → Reference Characteristic length
W → Dummy variable
ry → Grid growth ratio
r.m.s → Root mean square error
U → Free stream velocity
UB → Initial velocity profile of carrier fluid
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1 Introduction

Prediction of turbulence levels of a continuous phase in two-phase flows
is important for modeling dispersion of solid particles or droplets, particle
collisions or mixing of gaseous species. The gas-suspension flows have been
obtained in Batchelor [1,2], Marble [15] and Soo [32] within the frame work
of the Eulerian approach. The modeling of turbulent gas-suspension flows
by using the Eulerian approach was obtained by many authors Gharraei et.
al. [10], Han et al. [11], Hossain & Naser [13], Ozbelge & Eraslan [24] and
Shotorban & Balachandar [31]. The effects of small particles on fluid turbu-
lence over a flat plate turbulent boundary layer in air have been investigated
by Rogers & Eaton [29]. Their measurements clearly demonstrated that
the particles suppressed fluid turbulence and showed a strong correlation
between the degree of turbulence suppression and particle concentration
in the log region of the boundary layer. In this case, one of the principal
problems is the determination of the turbulent stress and the turbulent
heat flux in the dispersed phase. Melville and Bray [16,17] have presented
a model of two-phase turbulent jet. They have taken the mass fraction
of the particles is at most of order unity where as the volume fraction is
much less than unity. They have developed a model consisting of a set of
differential equations where the mean velocities of the phases are equal. A
first-order closure scheme is used and the resulting equations are solved nu-
merically. But they have not developed a model to accommodate the heat
transfer analysis. Panda et. al. [25, 26] have studied the turbulent free jet
with Suspended Particulate Matter(SPM) by taking the volume fraction
and diffusion of particles through the carrier fluid. They have used first-
order closure and resulting equations have been solved numerically. They
have compared the velocity profile of the carrier fluid with that of the pro-
file given by Schlichting [30]. The computed profile agrees well in the core
of the jet but differs outside the core due to the presence of SPM. They
have pointed out that the velocity distribution differs from the one that
have been computed using the mixing length theory and using the mixing
length theory gives a better structure of the turbulent two-phase bound-
ary layer flow. But they have not considered the heat transfer aspects in
the modeling effort. Fessler and Eaton [9] have studied experimentally to
extend the knowledge gained from turbulence modification. They have ob-
served that moderate mass loadings of small dense particles can reduce the
intensity of the gas-phase velocity fluctuations in the channel flow unlike in
previous studies. They found that the trend of increasing the attenuation of
turbulence with the particle Reynolds number cannot, however, continue
indefinitely. But a Reynolds number greater than 400 will enhance the



172 P. K. Tripathy, S. K. Mishra and Ali J. Chamkha

turbulence in the flow.

Understanding the dynamics of a multiphase system has long been an
issue of scientific and engineering interest. Of particular interest to this
study is the numerical simulation of particle diffusion due to turbulence in
the continuous phase, where the density of the particles is assumed to be
much greater than the density of the surrounding fluid. The particle laden
turbulent jet is also of practical interest because of its presence in a broad
range of engineering applications such as combustion, aerosol reaction, jet
propulsion and air pollution control. In these processes, the inter-particle
collision which is one of the most interesting problems in two-phase flows
plays an important role for improving the design of engineering systems and
particle transport. Chamkha [7] reported on particulate diffusion effects on
the thermal flat plate boundary layer of a two-phase suspension. Chamkha
[8] studied the particulate viscous effects on the compressible boundary-
layer two-phase flow over a flat plate. Later, Chamkha [6] studied the effects
of combined particle-phase diffusivity and viscosity on the compressible
boundary layer of a particulate suspension over a flat surface.

In the presence of a solid boundary, the flow behavior and turbulent
structure are considerably different from free turbulent flows. In regions
close to a solid wall, the structure is dominated by shear due to wall fric-
tion and damping of turbulent velocity fluctuations perpendicular to the
boundary. This results in a complex flow structure characterized by rapid
changes in the mean and fluctuating velocity components concentration
within a very narrow region in the immediate vicinity of the wall.

In this correlation, moments of the dispersed-phase velocity fluctuations
are directly expressed in terms of the Reynolds stress of the carrier-fluid
flow, Ozbelge & Eraslan [24]; for example relations of the gradient type,
analogues to the Boussinesq hypothesis in single-phase turbulent stresses
in the dispersed phase. In a similar way, for deriving the stress tensor

τij = µσij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Boussinesq proposed in 1877 that the Reynolds stress be proportional to
the strain rate of the mean flow. Thus,

σ′ij = −ρu′iu′j = ρε

(
∂ui
∂xj

+
∂uj
∂xi

)
,

where ε is called the eddy viscosity. ε is found to be numerically much
greater than kinematic viscosity ν.
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Using the Prandtl’s mixing theory, Schlichting [30], Hinze [12],

∣∣v′∣∣ = const.
∣∣u′∣∣ = const.l

du

dy
,

∣∣v′p∣∣ = const.
∣∣u′p∣∣ = const.lp

dup
dy

,

∣∣ρ′p∣∣ = const.lc
dρp
dy

, (1)

∣∣T ′∣∣ = const.lt
dT

dy
,

∣∣T ′p∣∣ = const.ltp
dTp
dy

,

where lp, lc, lt and ltp are the mixing lengths for the particle velocity, particle
density, fluid temperature and particle temperature, respectively.
Using the Prandtl’s mixing hypothesis, Schlichting [30], Hinze [12], the
closure equations take the following form:

u′v′ = −ll
∣∣∣∣dudy

∣∣∣∣ dvdy ,
T ′v′ = −ltl

∣∣∣∣dTdy
∣∣∣∣ dvdy ,

ρ′pu
′ = −lcl

∣∣∣∣dρpdy
∣∣∣∣ dudy ,

ρ′pv
′ = −lcl

∣∣∣∣dρpdy
∣∣∣∣ dvdy , (2)

ρ′pu
′
p = −lclp

∣∣∣∣dρpdy
∣∣∣∣ dupdy ,

ρ′pv
′
p = −lclp

∣∣∣∣dρpdy
∣∣∣∣ dvpdy ,

u′pv
′
p = −lclp

∣∣∣∣dupdy
∣∣∣∣ dvpdy ,

T ′pv
′
p = −ltp lp

∣∣∣∣dTpdy
∣∣∣∣ dvpdy .
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Due to the lack of experimental data on different mixing lengths, all the
mixing lengths are assumed approximately equal to each other as these ap-
proximations have been used successfully by numerous previous researchers
Michaelide & Farmer [18]

u′v′ = −l2
∣∣∣∣dudy

∣∣∣∣ dudy ,
T ′v′ = −l2

∣∣∣∣dTdy
∣∣∣∣ dudy ,

ρ′pu
′ = −l2

∣∣∣∣dρpdy
∣∣∣∣ dudy ,

ρ′pv
′ = −l2

∣∣∣∣dρpdy
∣∣∣∣ dudy , (3)

ρ′pu
′
p = −l2

∣∣∣∣dρpdy
∣∣∣∣ dupdy ,

ρ′pv
′
p = −l2

∣∣∣∣dρpdy
∣∣∣∣ dupdy ,

u′pv
′
p = −l2

∣∣∣∣dupdy
∣∣∣∣ dupdy ,

T ′pv
′
p = −l2

∣∣∣∣dTpdy
∣∣∣∣ dupdy .

2 Mathematical Modeling

In describing a turbulent flow in mathematical form, it is convenient to sep-
arate it into a mean motion and into a fluctuation or eddy motion. Denoting
the mean quantities by u, v, up, vp,etc. and fluctuations by u′, v′, u′p, v

′
p, etc.

respectively, we can write

u = u+ u′, v = v + v′, T = T + T ′, ρ = ρ+ ρ′, p = p+ p′,

uj = uj + u′j , up = up + u′p, vp = vp + v′p, Tp = Tp + T ′p, ρp = ρp + ρ′p. (4)

The Reynold’s forms of boundary layer equations for two-phase flow after
introducing the non-dimensional variables

x∗ =
x

L
, y∗ =

y

L
, u∗ =

u

U
, v∗ =

v

U
, u∗p =

up
U
, v∗p =

vp
U
,
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ρ∗p =
ρp
ρp0

, p∗ =
p

ρ0U2
, T ∗ =

T − T∞
Tw − T∞

, T ∗p =
Tp − T∞
Tw − T∞

, (5)

and after dropping stars can be written as

∂u

∂x
+
∂v

∂y
= 0, (6)

up
∂ρp
∂x

+ vp
∂ρp
∂y

=
1

Rep

∂2ρp
∂y2

+
∂

∂y

(
−ρ′pv′p

)
, (7)

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

∂2u

∂y2
− α 1

1− ϕ
FL

U
ρpfp (u− up)

− α 1

1− ϕ
FL

U
fp
(
ρ′pu
′ − ρ′pu′p

)
+

∂

∂y

(
−u′v′

)
, (8)

up
∂up
∂x

+ vp
∂up
∂y

=
1

Rep

∂2up
∂y2

+
FL

U
fp (u− up)−

1

ρp
ρ′pv
′
p

∂up
∂y

− ∂

∂y

(
u′pv
′
p

)
− 1

ρp
u′pv
′
p

∂ρ′p
∂y

, (9)

up
∂vp
∂x

+ vp
∂vp
∂y

=
1

Rep

∂

∂y

[
2
∂vp
∂y
− 2

3

(
∂up
∂x

+
∂vp
∂y

)]
+

∂

∂y

(
−v′2p

)
+
FL

U
fp (v − vp)−

1

ρp
ρ′pv
′
p

∂vp
∂y

, (10)

u
∂T

∂x
+ v

∂T

∂y
= −Ec u

(
u
∂u

∂x
+ v

∂u

∂y

)
+

1

Pr.Re

∂2T

∂y2
+

2α

3Pr

1

1− ϕ

× FL

U
ρsfp (Tp − T )− ∂

∂y

(
v′T ′

)
− Ec u ∂

∂y

(
u′v′

)
− Ec u′v′∂u

∂y
, (11)

up
∂Tp
∂x

+ vp
∂Tp
∂y

= −3

2
PrEcu

(
up
∂up
∂x

+ vp
∂up
∂y

)
+

3

2

1

αρpRe

∂2Tp
∂y2

− FL

U
fp (Tp − T )− ∂

∂y

(
v′pT

′
p

)
− 3

2
Pr.Ec up

∂

∂y

(
u′pv
′
p

)
− 3

2
Pr.Ec u′pv

′
p

∂up
∂y

, (12)
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where fp is the correction factor and is given by, Gharraei et al. [10]

fp =


1 + 0.15Re0.687

p , 0 < Rep ≤ 200,

0.914Re0.282
p + 0.0135Rep, 200 < Rep ≤ 2500,

0.0167Rep, Rep > 2500,

(13a)

and the particle Reynolds number,

Rep =
D |up − u|

ν
. (13b)

After using the simple algebraic closure proposed by Boussinesq in equa-
tions 6 to 12, the governing Reynolds equations can be written as

∂u

∂x
+
∂v

∂y
= 0, (14)

up
∂ρp
∂x

+ vp
∂ρp
∂y

=
1

Rep

∂2ρp
∂y2

+
∂

∂y

(
l2
∣∣∣∣∂ρp∂y

∣∣∣∣ ∂up∂y
)
, (15)

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

∂2u

∂y2
− α 1

1− ϕ
FL

U
ρpfp (u− up)

+ α
1

1− ϕ
FL

U
fpl

2

∣∣∣∣∂ρp∂y
∣∣∣∣ (∂u∂y − ∂up

∂y

)
± l2∂

2u

∂y2

∂u

∂y
+ l2

∣∣∣∣∂u∂y
∣∣∣∣ ∂2u

∂y2
, (16)

up
∂up
∂x

+ vp
∂up
∂y

=
1

Rep

∂2up
∂y2

+
FL

U
fp (u− up) +

1

ρp
l2
∣∣∣∣∂ρp∂y

∣∣∣∣ (∂up∂y
)2

+
∂

∂y

(
l2
∣∣∣∣∂up∂y

∣∣∣∣ ∂up∂y
)

+
1

ρp
l2
∣∣∣∣∂up∂y

∣∣∣∣ ∂up∂y ∂ρp
∂y

, (17)

up
∂vp
∂x

+ vp
∂vp
∂y

=
FL

U
fp (v − vp) +

1

ρp
l2
∣∣∣∣∂ρp∂y

∣∣∣∣ ∂up∂y ∂vp
∂y
− 2l

∂up
∂y

∂2up
∂y2

+
4

3Rep

∂2vp
∂y2

− 2

3Rep

∂2up
∂y∂x

, (18)

u
∂T

∂x
+ v

∂T

∂y
= −Ec u

(
u
∂u

∂x
+ v

∂u

∂y

)
+

1

PrRe

∂2T

∂y2

+
2α

3Pr

1

1− ϕ
FL

U
ρpfp (Tp − T )± l2∂

2T

∂y2

∂u

∂y

+ l2
∣∣∣∣∂T∂y

∣∣∣∣ ∂2u

∂y2
± Ec u l2∂

2u

∂y2

∂u

∂y

+ Ec u l2
∣∣∣∣∂u∂y

∣∣∣∣ ∂2u

∂y2
+ Ec l2

∣∣∣∣∂u∂y
∣∣∣∣ (∂u∂y

)2

, (19)
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up
∂Tp
∂y

+ vp
∂Tp
∂y

= −3

2
PrEc up

(
up
∂up
∂x

+ vp
∂up
∂y

)
+

3

2

1

αρpRe

∂2T

∂y2

− FL

U
fp (Tp − T ) +

∂

∂y

(
l2
∣∣∣∣∂Tp∂y

∣∣∣∣ ∂u∂y
)

+
3

2
PrEc up

∂

∂y

(
l2
∣∣∣∣∂up∂y

∣∣∣∣ ∂up∂y
)
− 3

2
Pr.Ec l2

∣∣∣∣∂up∂y
∣∣∣∣ (∂up∂y

)2

. (20)

3 Method of Solution

To develop a computational algorithm with non-uniform grids,
finite-difference expressions are introduced for the various terms in
equations 14 to 20 as, Mishra & Tripathy [22] and Tanhehill et al. [33],

∂W

∂x
=

1.5Wn+1
j − 2Wn

j + 0.5Wn−1
j

∆x
+ o

(
∆y2

)
, (21)

∂W

∂y
=
Wn+1
j+1 −

(
1− r2

y

)
Wn+1
j − r2

yW
n+1
j−1

ry (ry + 1) ∆yj
+ o

(
∆y2

)
, (22)

∂2W

∂y2
= 2

Wn+1
j+1 − (1 + ry)W

n+1
j + ryW

n+1
j−1

ry (ry + 1) ∆y2
j

+ o
(
∆y2

)
, (23)

∂2W

∂y∂x
=

1

∆y∆x

[
1.5
(
up
n+1
j+1 − up

n+1
j

)
− 2

(
up
n
j+1 − up

n
j

)
+0.5

(
up
n−1
j+1 − up

n−1
j

)]
, (24)

Wn+1
j = 2Wn

j −Wn−1
j + o

(
∆x2

)
, (25)

and

yj+1 − yj = ry (yj − yj−1) = ry∆yj , (26)

where W stands for either u or up or vp or T or Tp or ρp. Here a general
three-point representation of dW

dy on a non-uniform grid that produces the
smallest truncation error is used. In this way, equation 14 reduces into the
difference equation

vn+1
j = vn+1

j−1 −
1

2

∆y

∆x

×
(

1.5un+1
j − 2unj + 0.5un−1

j + 1.5un+1
j−1 − 2unj−1 + 0.5n−1

j−1

)
, (27)
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and each of the equations 15 to 20 reduces to a form,

ajW
n+1
j−1 + bjW

n+1
j + cjW

n+1
j+1 = dj , j = 2 to jmax − 1. (28)

4 Boundary and Initial Conditions

Due to the no-slip condition at the wall, the wall boundary conditions of
the gaseous phase are given by

u = v = 0, T = Tw. (29)

On the other hand, the particles may be in a slip motion at the wall.
Assuming that the particle mass is concentrated pointy at the center of
the particle; particles cannot exist in the region within the distance from
the wall smaller than the radius of the particle. Therefore, the velocity,
temperature and particle density for the particulate phase at the wall may
be approximated as follows:

up = upw (x) , vp = 0, Tp = Tpw (x) , ρp = ρpw (x) . (30)

By using the non-dimensional quantities 5, equations 14 to 20 will be solved
subjected to the boundary conditions

y = 0 : u = 0, v = 0, up = upw (x) , ρp = ρpw (x) , T = 1, Tp = Tpw (x) ,
(31)

y =∞ : u = up = U (x) , ρp = 1, vp = 0, T = 0, Tp = 0. (32)

The initial value of velocity, density, and temperature of the particle phase
on the wall can be calculated by Mishra & Tripathy [22] as

upw = −2

3

FL

U
∆x+

4

3
unp1 −

1

3
un−1
p1 , (33)

ρpw =
2ρnp1 − 0.5ρn−1

p1

1.5−
FL
U

∆x

un+1
p1

, (34)

Tpw =
2Tnp1 − 0.5Tn−1

p1 + FL
U

∆x
un+1
p1

1.5 + FL
U

∆x
un+1
p1

. (35)
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The shear stress coefficient and the wall heat transfer rate for the fluid
phase can be calculated as

cf =
2

U2
√
Re

[
un+1

3 −
(
1− r2

y

)
un+1

2 − r2
yu

n+1
1

ry (1 + ry) ∆y

]
, (36)

Nu = −
√
Re

[
Tn+1

3 −
(
1− r2

y

)
Tn+1

2 − r2
yT

n+1
1

ry (1 + ry) ∆y

]
. (37)

5 Computational Results and Discussion

In this problem, the basic features of the gas-particulate thermal boundary
layer flow over a semi-infinite flat plate have been studied numerically by
employing the finite difference technique.We choose the following values of
the various parameters involved.
U = 60.96, 160.96, 260.96, 360.96;L = 3.048;Rep = 1.0× 10−04;
ρ = 0.94;Ec = 0.1;µ = 21.85× 10−06;ϕ = 1.01× 10−05;
ε = 0.05, 0.1, 0.2;D = 100, 50µm; ρs = 800, 2403, 8010;Pr = 0.71, 1.0, 7.0
From some typical outputs of the programme for the carrier fluid without
SPM, we conclude that the result for ry = 1.110 which gives the least r.m.s.
error. Therefore the result for ry = 1.110 is accepted and used for the
physical interpretation of the result. Similarly, the computational results
for the flow of fluids with SPM are also obtained. It is observed that the
result obtained for ry = 1.680 is acceptable as the r.m.s. error is least. Fig.
1 shows the laden and un-laden fluid mean velocity profile at both x = 26
locations downstream of the boundary layer. The free stream velocity at
the leading edge was set to be the same in both laden and un-laden flows.
The comparison of the single-phase and two-phase flows mean velocities
shows that there exists a decrease in magnitude of the carrier fluid mean
fluid velocity inside the boundary layer by the particles. That is, the two-
phase interaction will decrease the velocity gradient inside the boundary
layer, and this fact leads to decreases in the skin friction coefficient and the
surface heat transfer rate (shown in Fig. 13 and Table 1). Qualitatively, this
result has many similarities to that documented by Rogers & Eaton [29].
This produces a turbulent suppression by the particles in the region of
the boundary layer. This suppression is most likely a result of the drag
loading, particle initial conditions, fluid length scale and the particle/wall
interactions. The velocity and temperature profiles of the carrier fluid are
shown in Fig. 2.

In the analysis, we have examined the effects on the flow properties
by varying the particle diameter for fixed values of the other parameters.
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Figure 1: Velocity distribution
(u) of carrier fluid with and with-
out SPM.

Figure 2: Variation of velocity (u)
and Temperature(T) distribution
of carrier fluid.

Figure 3: Variation of particle ve-
locity (up) with diameter(D) of
particles.

Figure 4: Variation of tempera-
ture (T ) of carrier fluid with di-
ameter (D) of the particles.

This is equivalent to examining the effects of varying the total surface area
of the particles by fixing the volume fraction but changing their number.
Doubling the particle diameter while fixing the volume fraction reduces
the number of particles by a factor of 8 and the total surface area by a
factor of 2 and hence reduces the two-way coupling effects. It is clear from
Fig. 3 that the particle-phase mean velocity profile for various sizes of the
particles. It is observed that the larger particles flow faster than that of the
smaller ones near the wall. From Fig. 4, it is concluded that the presence
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Figure 5: Variation of tempera-
ture (Tp) of particle phase with
diameter (D) of particles.

Figure 6: Variation of tempera-
ture (Tp) of particle phase with
Prandtl number (Pr).

Figure 7: Variation of particle
Nusselt number (Nup) with free
stream velocity (U).

Figure 8: Variation of par-
ticle Nusselt number (Nup)with
Prandtl number (Pr).

of the larger particles increases the mean temperature of the carrier fluid
than that of the presence of small particles inside the boundary layer. Fig.
5 depicts the temperature profile of the dispersed phase for various sizes
of the particles. It is observed that the mean temperature of the dispersed
phase with smaller particles is less than that of the dispersed phase with
larger particles. The variation of the particle-phase temperature with the
Prandtl number (Pr) is shown in the Fig.6. In general, it is predicted that
the particle-phase temperature decreases as the Prandtl number increases.
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Figure 9: Variation of particle
Nusselt number (Nup) with diffu-
sion parameter(ε)

Figure 10: Variation of skin
friction (cf ) with material
density(ρs) of particles

Figure 11: Variation of skin fric-
tion (cf ) with diameter(D) of par-
ticles

Figure 12: Variation of skin fric-
tion (cf ) with free stream velocity
(U)

The variation of the particle-phase Nusselt number (Nup) calculated on
the basis of the formula given by Han et al. [11],

Nup = 2 + 0.6Re0.5
p Pr0.33 (38)

with the free stream velocity(U), Prandtl number(Pr), the diffusion pa-
rameter (ε) are presented in Figs. 7, 8 and 9. The magnitude of Nup goes
on increasing with the increase of U and Pr for fixed values of the other
parameters but decreases with the increase of the diffusion parameter in-
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Figure 13: Variation of skin fric-
tion (cf ) with & without SPM

dicating that the heat transfer from the particle phase to the fluid phase
is more in case of larger values of the parameters U and Pr but less in
case when the diffusion of particles is more. Fig. 10 shows the response of
the skin friction coefficient in the presence of particles of different material
density and clearly, it depicts a decrease in magnitude of the skin friction
coefficient as the material density of the particles increases. The presence
of smaller particles increases the skin friction coefficient, which is observed
from Fig. 11. Fig. 12 depicts that the magnitude of the skin friction coef-
ficient goes on decreasing with the increase of the free stream velocity(U).
From which we conclude that a larger free stream velocity stabilizes the
flow and the turbulent character is diminished. Finally, we draw a con-
clusion from Fig. 13 that the presence of SPM decreases the magnitude
of the skin friction coefficient and also from Table 1, it is concluded that
the presence of SPM decreases the heat transfer from the plate to the fluid
towards the leading edge of the plate whereas it increases the heat transfer
towards the far down stream of the plate.

6 Conclusion

In this paper, a two-dimensional, turbulent boundary layer flow with SPM
is numerically simulated. An algorithm based on the Eulerian-Eulerian
approach was developed, and the governing Reynolds forms of the equations
were solved by using a finite-difference technique with non-uniform grids.
The results obtained in this work were found to be in agreement with those
of previous investigations. It was found that the heat transfer from the
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Table 1: Comparison of fluid Nusselt number(Nu) with and without SPM
x Nu without SPM Nu with SPM

1.20 6.67E+02 2.86E+02
1.40 7.28E+02 3.38E+02
1.60 7.57E+02 3.57E+02
1.80 7.70E+02 3.77E+02
2.00 7.88E+02 3.86E+02
2.20 8.10E+02 3.76E+02
2.40 8.32E+02 3.12E+02
2.50 8.46E+02 1.03E+02
3.00 5.66E+04 4.69E+04
3.50 4.00E+03 5.24E+03
4.00 1.46E+03 4.83E+02
4.50 1.44E+03 2.07E+03
5.00 1.40E+03 2.07E+03

particle phase to the fluid phase was higher for larger values of the free
stream velocity and Prandtl number but it was predicted to be lower in
the case when the diffusion of particles increased. Also, it was predicted
that a larger free stream velocity stabilized the flow and that the turbulent
character of the flow was diminished. In addition, it was concluded that
the presence of suspended particulate material damped the fluid turbulence
and caused reductions in both the skin friction and the heat transfer.
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