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Abstract. Entropy generation in an unsteady hydromagnetic Couette flow
of a viscous incompressible electrically conducting fluid between two infinite
horizontal parallel plates in a rotating system have been analyzed. Both the
lower and upper plates of the channel are subjected to asymmetric convec-
tive heat exchange with the ambient following the Newton’s law of cooling.
A numerical solution for governing equations is developed. The influences
of the pertinent parameters on the fluid velocity components, temperature,
entropy generation and Bejan number are discussed graphically.
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1 Introduction

The flow of an electrically conducting fluid between parallel plates in the
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presence of a magnetic field is of a special technical significance because
of its frequent occurrence in many industrial applications such as mag-
netohydrodynamic power generators, pumps, cooling of nuclear reactors,
geothermal systems,thermal insulators, nuclear waste disposal, petroleum
and polymer technology, heat exchangers and others, Moreau [1]. Use of an
external magnetic field is of considerable importance in many industrial ap-
plications, particularly as a control mechanism in material manufacturing.
Homogeneity and quality of single crystals grown from doped semiconduc-
tor melts is of interest to manufacturers of electronic chips. One of the main
purposes of electromagnetic control is to stabilize the flow and suppress os-
cillatory instabilities, which degrades the resulting crystal. The magnetic
field strength is one of the most important factors for crystal formation.
The scientific treatment of the problems of irrigation, soil erosion and tile
drainage are the present focus of the development of porous channel flow.
The magnetohydrodynamic channel flow with heat transfer has attracted
the attention of many researchers due to its numerous engineering and in-
dustrial applications. Such flows finds applications in thermofluid transport
modeling in magnetic geosystems, meteorology, turbo machinery, solidifi-
cation process in metallurgy and in some astrophysical problems. The
rotating flows of electrically conducting fluid in the presence of a magnetic
field is encountered in cosmical and geophysical fluid dynamics.

The rapid depletion of energy resources worldwide has prompted al-
most every country in the world to focus attention on energy conservation
and improving existing energy systems to minimize the energy waste. The
scientific community has responded to the challenge by developing new
techniques of analysis and design so that the available work destruction is
either eliminated or minimized. Unlike the old approach which relied solely
on the first of thermodynamics, this approach uses a combination of the
first and second laws of thermodynamics. This effort has given birth to the
new discipline of entropy generation minimization. Calculations of the ef-
ficiency of thermal systems are now routinely performed using the concept
of second law efficiency, defined as the ratio of actual thermal efficiency
to reversible thermal efficiency under the same conditions. The popular
approach is to quantify the effect of the irreversible processes occurring in
the systems in terms of the entropy generation rate. Entropy generation
analysis has also proved an effective tool in enhancing the second law based
performance of existing systems. The tool relies on determining the distri-
bution of the entropy generation within the flow field due to momentum
and energy interactions. The study of entropy generation in thermal sys-
tems, such as heat exchangers, nuclear reactors, energy storage devices, and
electronic cooling, has grown exponentially during the last three decades,
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largely as a result of the pioneering contributions of Bejan [2, 3]. Salas et
al. [4] analytically showed a way of applying entropy generation analysis
for modelling and optimization of magnetohydrodynamic induction devices.
They restricted their analysis to only Hartmann model flow in a channel.
Thermodynamics analysis of mixed convection in a channel with transverse
hydromagnetic effect has been investigated by Mahmud et al. [5].

The entropy generation during fluid flow between two parallel plates
with moving bottom plate has been analyzed by Latife et al. [6]. Ibanez
et al. [7] have examined the minimization of entropy generation by asym-
metric convective cooling. The entropy generation inside a porous channel
with viscous dissipation have been investigated by Mahmud [8]. The heat
transfer and entropy generation during compressible fluid flow in a channel
partially filled with porous medium have been analyzed by Chauhan and
Kumar [9]. Tasnim et al. [10] have studied the entropy generation in a
porous channel with hydromagnetic effects. Eegunjobi and Makinde [11]
have studied the combined effect of buoyancy force and Navier slip on en-
tropy generation in a vertical porous channel. The second law analysis
of laminar flow in a channel filled with saturated porous media has been
studied by Makinde and Osalusi [12]. Makinde and Maserumule [13] has
presented the thermal criticality and entropy analysis for Couette flow with
variable viscosity . Makinde and Osalusi [14] have investigated the entropy
generation in a liquid film falling along an incline porous heated plate. Sec-
ond law analysis for a variable viscosity plane Poiseuille flow with asym-
metric convective cooling has been presented by Makinde and Aziz [15].
Cimpean and Pop [16, 17] have presented the parametric analysis of en-
tropy generation in a channel. The effect of an external oriented magnetic
field on entropy generation in natural convection has been investigated by
Jery et al. [18]. Dwivedi et al. [19] have made an analysis on the incom-
pressible viscous laminar flow through a channel filled with porous media.
Numerical study of unsteady hydromagnetic Generalized Couette flow of
a reactive third grade fluid with asymmetric convective cooling has been
carried out by Makindea and Chinyoka [20]. Analysis of entropy generation
rate in an unsteady porous channel flow with Navier slip and convective
cooling has been presented by Chinyoka and Makinde [21]. Chinyoka and
Makinde [22] have presented the transient Generalized Couette flow of a
reactive variable viscosity third-grade liquid with asymmetric convective
cooling.

The objective of the present study is to investigate the entropy gener-
ation in an unsteady MHD Couette flow of a viscous incompressible elec-
trically conducting fluid in the presence of a transverse magnetic field in a
rotating system. The upper plate is moving with a constant velocity while
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the lower plate is kept stationary. The flow is subjected to an external
uniform magnetic field perpendicular to the plates. The induced magnetic
field is neglected by assuming a very small magnetic Reynolds number [23].
The two plates are cooling asymmetrically. The Joule and viscous dissipa-
tions are taken into consideration in the energy equation. The governing
momentum and energy equations are solved numerically using MATLAB
PDE solver. A parametric study is carried out to see how the pertinent
parameters of the problem affect the flow field, temperature field and the
entropy generation. This model is an acceptable representation for some
practical engineering problems such as those involving flows through pipes,
nuclear reactors, pumps and heat exchangers.

2 Mathematical formulation and its solution

Consider the unsteady flow of a viscous incompressible electrically conduct-
ing fluid between two infinite parallel plates when the fluid and the plates
rotate in unison with uniform angular velocity Ω about an axis normal to
the plates. Let d be the distance between the two plates, where d is small
in comparison with the characteristic length of the plates. The upper plate
moves with a uniform velocity U in its own plane in the x-direction, where
the x-axis is taken along the lower stationary plate. The z-axis is taken
normal to the x-axis and the y-axis is taken normal to the zx-plane, ly-
ing in the plane of the lower plate, and it is also assumed that the flow is
fully developed. The top and bottom plates are cooled by convection. The
coolant temperature Ta is the same for both plates but the convection heat
transfer coefficients h0 and h1 are different, thus providing an asymmetric
cooling effect. A uniform transverse magnetic field B0 is applied perpen-
dicular to the channel plates. Since the magnetic Reynolds number which
is the ratio of the fluid flux to the magnetic diffusivity and is one of the
more important parameters in MHD, is very small for most fluid used in
industrial applications, we assume that the induced magnetic field is neg-
ligible. Further, there is no applied pressure gradient as the flow is due to
the motion of the upper plate. Since the plates are infinitely long along the
x- and y-directions, all physical quantities will be functions of z and t only.

Denoting the velocity components u and v along the x- and y-directions
respectively, the Navier-Stokes equations of motion in a rotating frame of
reference are

∂u

∂t
− 2Ω v = ν

∂2u

∂z2
− σ B2

0

ρ
u, (1)
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Figure 1: Geometry of the problem

∂v

∂t
+ 2Ωu = ν

∂2v

∂z2
− σ B2

0

ρ
v, (2)

where ρ is the fluid density, ν the kinematic viscosity and σ the electrical
conductivity of the fluid.

The energy equation is

ρ cp
∂T

∂t
= k

∂2T

∂z2
+ µ

[(
∂u

∂z

)2

+

(
∂v

∂z

)2
]

+ σ B2
0(u2 + v2), (3)

where T is the fluid temperature, µ the coefficient of viscosity, k the thermal
conductivity of the fluid, cp the specific heat at constant pressure. The
second and third terms on the right-hand side represent the Joule and
viscous dissipations respectively.

The initial and boundary conditions for velocity and temperature dis-
tributions are

u = 0, v = 0, T = T0 for 0 ≤ y ≤ d and t ≤ 0,

u = 0, v = 0, k
∂T

∂y
= h0(T − Ta) at y = 0 for t > 0, (4)

u = 0, v = U, −k∂T
∂y

= h1(T − Ta) at y = d for t > 0.
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where T0 is the initial fluid temperature, Ta the ambient temperature, h0

the heat transfer coefficient at the lower plate and h1 the heat transfer
coefficient at the upper plate.

Introducing the non-dimensional variables

η =
y

h
, τ =

ν t

d2
, u1 =

u

U
, v1 =

v

U
, θ =

T − T0

Ta − T0
, (5)

equations (1) and (2) become

∂u1

∂τ
=

∂2u1

∂η2
+ 2K2v1 −M2 u1, (6)

∂v1

∂τ
=

∂2v1

∂η2
− 2K2u1 −M2 v1, (7)

Pr
∂θ

∂τ
=

∂2θ

∂η2
+ Br

[(
∂u1

∂η

)2

+

(
∂v1

∂η

)2

+M2(u2
1 + v2

1)

]
, (8)

where M2 = σ B2 d2

ρ ν is the magnetic parameter, K2 = Ωd2

ν the rotation

parameter, Br = µU2

k(Ta−T0) the Brinkman number and Pr =
ρ ν cp
k the Prandlt

number.
The initial and boundary conditions for velocity and temperature dis-

tributions are

u1 = 0, v1 = 0, θ = 0 for 0 ≤ η ≤ 1 and τ ≤ 0,

u1 = 0, v1 = 0,
∂θ

∂η
= Bi0(θ − 1) at η = 0 for τ > 0, (9)

u1 = 0, v1 = 1,
∂θ

∂η
= Bi1(1 − θ) at η = 1 for τ > 0.

where Bi0 = h0d
k and Bi1 = h1d

k are the Biot numbers at both the lower and
the upper plates, respectively.

3 Results and discussion

The numerical computations are done by a written program which used
a symbolic and computational computer language MATLAB. The entire
procedure is implemented on MATLAB. To study the effects of magnetic
field and Coriolis force on the velocity field we have presented the non-
dimensional velocity u1 against η in Figures 2-5 for several values of mag-
netic parameter M2, rotation parameter K2 and time τ . It is seen from
Figure 2 that both the primary velocity u1 and secondary velocity v1. An
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Figure 2: Primary and secondary velocities for different M2 when τ = 0.2
and K2 = 4.

increase in the magnetic parameter M2 leads to corresponding increases in
damping magnetic properties of the fluid. These forces result in increased
resistance to flow and thus explain the reduction in fluid velocities with
an increase in magnetic parameter M2. Consequently, the electrically con-
ducting fluid receives a push from the magnetic force-the mechanism by
which the magnetic field has the potential to manipulate an electrically
conducting fluid in the micro scale system. Figure 3 shows that the pri-
mary velocity u1 increases whereas the secondary velocity v1 decreases with
an increase in rotation parameter K2. The effect of the Coriolis force is
found to be significant as compared to the inertial and viscous forces in
the equation of motion. The Coriolis and the electromagnetic forces are
of comparable magnitude. The Coriolis force exerts a strong influence on
the hydromagnetic flow in the earth’s liquid core which plays an important
role in the mean geomagnetic field. The primary velocity u1 as well as
secondary velocity v1 increase when time progresses shown in Figure 4.

We have plotted the temperature distribution θ against η in Figures
5-11 for several values of magnetic parameter M2, rotation parameter K2,
Prandtl number Pr, Brinkman number Br, Biot numbers Bi1, Bi2 and time
τ . It is seen from Figure 5 that the fluid temperature θ increases with an
increase in magnetic parameter M2. This is due to the fact that the ap-
plied transverse magnetic field produces a body force such as Lorentz force,
which opposes the motion. Hence, the resistance offered by this body force
to the flow is the cause of enhancing the fluid temperature. At the moving
upper plate (η = 1), the temperature boundary condition is of the Dirichlet
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Figure 3: Primary and secondary velocities for different K2 when M2 = 5
and τ = 0.2.

type, the gradient is the steepest and the heat transfer is maximum as the
physics dictates. Fig.6 illustrates that the fluid temperature θ increases for
increasing values of K2. It is observed that just like in case of magnetic
field, the highest temperature gradient is recorded in regions very close to
the upper plate (η = 1). Larger values of the Prandtl number Pr corre-
spondingly decrease the strength of the source terms in the temperature
equation and hence in turn reduce the overall fluid temperature θ as clearly
illustrated in Figure 7. Figure 8 shows how the Brinkman number Br in-
fluences the velocity distribution in a symmetrically cooled channel. As
the Brinkman number increases, it implies higher viscous dissipation in the
flow, which in turn implies steeper temperature gradient and consequently
the fluid temperature rises.

The effect of asymmetrical cooling of the channel is depicted in Figures
9-10. The fluid temperature θ increases with an increase in Biot numbers
Bi0 and Bi1. Biot number is the ratio of the hot fluid side convection re-
sistance to the cold fluid side convection resistance on a surface. As the
convection at the moving plate (η = 1) becomes dominant, the tempera-
ture gradient is high at the upper plate and hence a proportionately larger
amount of heat is removed through the upper plate. The temperature pro-
files maintain their asymmetry about the centreline of the channel in view
of the asymmetrical cooling conditions imposed at the plates. Figure 11
reveals that the fluid temperature θ increases when time progresses. It
is noted that the heat transfer at the upper plate is greatly affected by
variation in pertinent parameters while that at the lower plate is marginal.
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Figure 4: Primary and secondary
velocities for different time τ
when M2 = 5 and K2 = 4.
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Figure 5: Temperature profiles for
different M2 when τ = 0.2, K2 =
4, Pr = 0.72, Bi0 = 0.1, Bi1 = 0.1
and Br = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

η

θ

K
2
 = 4, 6, 8, 10

Figure 6: Temperature profiles for
different K2 when M2 = 5, τ =
0.2, Pr = 0.72, Bi0 = 0.1, Bi1 =
0.1 and Br = 1.
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Figure 7: Temperature profiles for
different Pr when M2 = 5, K2 =
4, Br = 1, Bi0 = 0.1, Bi1 = 0.1
and τ = 0.2.

4 Entropy generation

In many engineering and industrial processes, entropy production destroys
the available energy in the system. It is therefore imperative to determine
the rate of entropy generation in a system, in order to optimize energy in
the system for efficient operation in the system. The convection process
in a channel is inherently irreversible and this causes continuous entropy
generation. Woods [24] gave the local volumetric rate of entropy generation
for a viscous incompressible conducting fluid in the presence of magnetic
field as follows:

EG =
k

T 2
0

(
∂T

∂z

)2

+
µ

T0

[(
∂u

∂z

)2

+

(
∂v

∂z

)2
]

+
σ B2

0

T0
(u2 + v2). (10)
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Figure 8: Temperature profiles for
different Br when M2 = 5, K2 =
4, Pr = 0.72, Bi0 = 0.1, Bi1 = 0.1
and τ = 0.2.
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Figure 9: Temperature profiles for
different Bi0 when M2 = 5, K2 =
4, Pr = 0.72, τ = 0.2, Bi1 = 0.1
and Br = 1.
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Figure 10: Temperature profiles
for different Bi1 when M2 = 5,
K2 = 4, Pr = 0.72, Bi0 = 0.1,
τ = 0.2 and Br = 1.
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K2 = 4, Pr = 0.72, Bi0 = 0.1,
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The entropy generation equation (10) consists of three terms, the first
term is the irreversibility due to the heat transfer, the second term is en-
tropy generation due to viscous dissipation, while the third term is local
entropy generation due to the effect of magnetic field (Joule heating or
Ohmic heating).

The dimensionless entropy generation number may be defined by the
following relationship:

NS =
T 2

0 d
2EG

k(Ta − T0)2
. (11)

In terms of the dimensionless velocity and temperature, the entropy
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generation number becomes

NS =

(
∂θ

∂η

)2

+
Br

Ω

[{(
∂u1

∂η

)2

+

(
∂v1

∂η

)2
}

+M2(u2
1 + v2

1)

]
, (12)

where Ω = Ta−T0
T0

is the non-dimensional temperature difference.

The entropy generation number NS can be written as a summation of
the entropy generation due to heat transfer denoted by N1 and the entropy
generation due to fluid friction with magnetic field denoted by N2 given as

N1 =

(
∂θ

∂η

)2

,

N2 =
Br

Ω

[{(
∂u1

∂η

)2

+

(
∂v1

∂η

)2
}

+M2(u2
1 + v2

1)

]
. (13)

An alternative irreversibility distribution parameter is the Bejan num-
ber, which gives an idea whether the fluid friction irreversibility dominates
over heat transfer irreversibility or the heat transfer irreversibility dom-
inates over fluid friction irreversibility ( [25]). It is simply the ratio of
entropy generation due to heat transfer to the total entropy generation:

Be =
Entropy generation due to heat transfer

Total entropy generation
=
N1

NS
=

1

1 + Φ
, (14)

where Φ is the irreversibility distribution ratio which is given by:

Φ =
Fluid friction irreversibility + Magnetic field irreversibility

Heat transfer irreversibility

=
N2

N1
(15)

As the Bejan number ranges from 0 to 1, it approaches zero when the en-
tropy generation due to the combined effects of fluid friction and magnetic
field is dominant ( [26]). Similarly, Be > 0.5 indicates that the irreversibil-
ity due to heat transfer dominates, with Be = 1 as the limit at which the
irreversibility is solely due to heat transfer. Consequently, 0 ≤ Φ < 1
indicates that the irreversibility is primarily due to the heat transfer irre-
versibility, whereas for Φ > 1 it is due to the sum of the fluid friction and
magnetic field irreversibility.

The influences of the different governing parameters on entropy gen-
eration within the channel are presented in Figures 12-23. The effect of
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magnetic parameter M2 on the entropy generation number is displayed in
Figure 12. This figure shows that the entropy generation increases with
an increase in magnetic parameter M2. It is indicated that an increase in
magnetic parameter M2 tends to increase the entropy generation number
since the magnetic parameter has an increasing effect on all friction, heat
transfer and magnetic irreversibilities. Figure 13 show that the entropy
generation number NS increases with an increase in rotation parameter
K2. Figure 14 shows that the entropy generation number NS decreases
with an increase in group parameter BrΩ−1. This is attributed to decrease
in fluid friction irreversibility (N2) with an increase in BrΩ−1. The influ-
ence of the Biot numbers on the entropy generation number NS is shown
in Figures 15-16. As the Biot numbers Bi0 and Bi1, the entropy generation
number increases. Figure 17 reveals that the entropy generation number
NS decreases as time τ increase. In Figures 12-17, the entropy generation
is expectedly maximum near the moving plate (η = 1) where fluid velocity
and temperature gradients are highest.

It is seen from Figure 18-19 that the Bejan number Be increases with
an increase in either magnetic parameter M2 or rotation parameter K2. It
is observed that the Bejan number decreases with an increase in magnetic
parameter, due to its significant effect on friction irreversibilities. Figure
20 reveals that the Bejan number Be increases with an increase in group
parameter BrΩ−1. An increase in the values of the group parameter BrΩ−1

due to the combined effects of viscous heating and temperature difference
yields a higher entropy generation number. The group parameter is an
important dimensionless number for irreversibility analysis. It determines
the relative importance of viscous effects to that of temperature gradient
entropy generation. Generally, it is observed that an increase in group
parameter strengthens the effect of fluid friction irreversibility, but heat
transfer irreversibility dominates over fluid friction irreversibility. Because
of asymmetric cooling, the entropy generation profiles are asymmetrical
about the centreline of the channel (η = 0.5) shown in Figures 12-20. Fig-
ures 21-22 show that the Bejan number Be increases with an increase in
Biot numbers Bi0 and Bi1. An increase in the values of the Biot number re-
sults in an increase in the dominant effect of heat transfer irreversibility at
the plate surface. This means that the plate surface acts as a strong source
of irreversibility. The Bejan number is asymmetric about the centerline of
the channel due to the asymmetric temperature distribution. From Figure
23, it is noted that the Bejan number increases when time increases.
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Figure 12: NS for different M2

when τ = 0.2, K2 = 4, Pr = 0.71,
Bi0 = 1, Bi1 = 1 and BrΩ−1 = 1.
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Figure 13: NS for different K2

when M2 = 5, τ = 0.2, Pr = 0.71,
Bi0 = 1, Bi1 = 1 and BrΩ−1 = 1.
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Figure 14: NS for different BrΩ−1

when M2 = 5, K2 = 4, Pr = 0.71,
Bi0 = 1, Bi1 = 1 and τ = 0.2.
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Figure 15: NS for different Bi0
when M2 = 5, K2 = 4, Pr = 0.71,
τ = 0.2, Bi1 = 1 and BrΩ−1 = 1.

5 Conclusion

A numerical study of unsteady hydromagnetic Couette flow and heat trans-
fer of of viscous incompressible electrically conducting fluid between paral-
lel insulated plates with asymmetric convective cooling in the presence of
a transverse applied magnetic field has been performed. The model also
accommodates the presence of viscous and Joule dissipations. The veloc-
ity and temperature profiles are used to evaluate the entropy generation
profiles in the flow field. The study leads to the following conclusions.

• The velocities decrease with the increased magnetic field whereas the
temperature is noticed to increase under these conditions.

• The fluid temperature decreases for increasing values of Prandtl num-
ber.

• The fluid temperature increases for increasing values of Biot numbers.
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Figure 16: NS for different Bi1
when M2 = 5, K2 = 4, Pr = 0.71,
Bi0 = 1, τ = 0.2 and BrΩ−1 = 1.
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Figure 17: NS for different τ when
M2 = 5, K2 = 4, Pr = 0.71,
Bi0 = 1, Bi1 = 1 and BrΩ−1 = 1.
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Figure 18: Bejan number for dif-
ferent M2 when τ = 0.2, K2 = 4,
Pr = 0.71, Bi0 = 1, Bi1 = 1 and
BrΩ−1 = 1.
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Figure 19: Bejan number for dif-
ferent K2 when M2 = 5, τ = 0.2,
Pr = 0.71, Bi0 = 1, Bi1 = 1 and
BrΩ−1 = 1.

• It is noted that the entropy generation number decreases for increas-
ing values of magnetic parameter.

• Slip parameters controls the entropy generation.

• With the use of asymmetric cooling of the plates, it is possible to
operate the system with reduced entropy generation rates.

• The plate surfaces act as strong source of entropy and heat transfer
irreversibility.

• The results show that heat transfer irreversibility dominates over fluid
friction irreversibility and viscous dissipation has no effect on the
entropy generation rate at the centerline of the channel.

• The results of the study provide valuable fundamental information
on the physics of the simultaneously developing transient laminar
convection in a parallel plate channel with moving bottom plate to
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Figure 20: Bejan number for dif-
ferent BrΩ−1 whenM2 = 5, K2 =
4, Pr = 0.71, Bi0 = 1, Bi1 = 1 and
τ = 0.2.
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Figure 21: Bejan number for dif-
ferent Bi0 when M2 = 5, K2 = 4,
Pr = 0.71, Bi0 = 1, τ = 0.2 and
BrΩ−1 = 1.
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Figure 22: Bejan number for dif-
ferent Bi1 when M2 = 5, K2 = 4,
Pr = 0.71, Bi0 = 1, τ = 0.2 and
BrΩ−1 = 1.
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Figure 23: Bejan number for dif-
ferent τ when M2 = 5, K2 =
4,Pr = 0.71, Bi0 = 1, Bi1 = 1
and BrΩ−1 = 1.

improve the corresponding engineering applications. The designers
under the responsibilities for the design and optimization of corre-
sponding thermal systems can employ the results given about the
entropy generation to reduce the loss of available work.
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