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Abstract. In this paper, we consider a particular class of integral equa-
tions of the fourth kind and show that tractability and differentiability
index of the given system are 3. Tractability and differentiability index
are introduced based on the v-smoothing property of a Volterra integral
operator and index reduction procedure, respectively. Using the notion
of index, we give sufficient conditions for the existence and uniqueness of
the solutions for the index-3 system. Then, a numerical technique based on
the Chebyshev polynomial collocation methods including the matrix-vector
multiplication representation is proposed for the solution of these systems
and the performance of the numerical scheme is illustrated by means of
some test problems.
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1 Introduction

The general form of linear fourth kind integral equations or integral algebraic-
equations (IAEs) is as:
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A(t)z(t) + (va)(t) = f(1), (1)

where the linear Volterra integral operators v are given by:

(vp)(t) = /0 K(t,s)p(s)ds, tel=1[0,T], (2)

the matrices A4, K € R%? and f € R%(d > 2)) are continuous. Moreover,
we assume that
det A(t) =0, Vtel,

rank(A) > 1 and A(0)z(0) = f(0). Integral-algebraic equations of the form
(1) arise in problems of identification of memory kernels in heat conduc-
tion and viscoelasticity (see [2, 5, 19] and a survey therein). The numerical
solution of the integral-algebraic equations is discussed by several authors.
Gear [0] introduced the theory of integral-algebraic equations and “index
reduction procedure” for these systems. Brunner and Liang [14] analyzed
collocation solutions for general systems of index-1 integral-algebraic equa-
tions which was based on the notions of the tractability index and the
v-smoothing property of a Volterra integral operator. Bulatov and Bud-
nikova [3] constructed multistep methods to solve a certain class of linear
IAEs based on the Adams quadratures rules and extrapolation formulas.
Also, the numerical analysis of the two-dimensional IAEs has been inves-
tigated by Bulatov and Lima in [1]. Kauthen [12] applied the polynomial
spline collocation method for a semi-explicit TAEs with index-1 and estab-
lished global convergence as well as local superconvergence. Shiri et al.[15]
studied the existence and uniqueness of the solution to IAEs using a new
index definition and applied the well-known piecewise continuous colloca-
tion methods to solve this system numerically. Pishbin et al.[8, 10, 16, 17]
proposed several efficient numerical algorithms to solve the index-1 and 2
IAEs and investigated convergence analysis of the numerical methods.

The present paper is devoted to the study of numerical solvability of
the semi-explicit system of integral-algebraic equations with index-3. More
precisely, we consider

z(t) = f(t) + (v117)()
y(t) = g(t) + (va1z)(t)
0 = h(t) + (vs2y)(t),

where the linear Volterra integral operators vy, (k,I = 1,2,3) are given

by:

(v12y) (1) + (1132) (1),

+ V12
+ (v22y)(t), (3)

(i) () = / bt s)p(s)ds,  tel=[0,T],
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such that , f: I = R%, y,g: I - R%2, 2 h: I — R®. The matrix ker-
nels ky(.,.) € L(R%), ka(.,.) € L(R¥2 RN ky3(.,.) € LR RO, Koy (.,.) €
L(R% R%) and ksa(.,.) € L(R%,R%) are assumed to be continuous.

The outline of this paper is as follows. In Section 2, we firstly introduce
tractability and differentiability index for system (3) and then obtain the
sufficient conditions for the existence and uniqueness of the solutions of the
IAEs (3). Scaled Chebyshev polynomial collocation method including the
matrix-vector multiplication representation is applied to numerical solution
of system (3) in Section 3. We conclude with the numerical illustrations in
Section 4.

2 Index of IAEs

Similar to differential-algebraic equations (DAEs) (see [1, 7, 9, 11, 13, 15]),
the concept of the index is the key to the theoretical and numerical analysis
of the IAEs. In this section, we consider the definition of tractability and
differentiability index to TAEs (3).

2.1 The tractability index of TAEs

Before introducing the definition of the tractability index of IAEs, we re-
quire the definition of v-smoothing of the Volterra integral operator (2).

Definition 1. ([!4]) The Volterra integral operator (2) corresponding to
the kernel matrix K(t,s) = ( kpq(t, 5) > , with d > 2, is said to be

paq:17"'7d

v-smoothing if there exist integers vy, > 1 with v =  max d{qu} such that
<pg<

the following conditions hold:

1)%%:15:0, tel, izov'”’qu_Q’

vpg—1
2) M&T]z‘p—ql(m ’8:t7é 07 t€I7

3) k() ¢ (D), D= {(t,5),0<s<t<T}.

We set v, = 0 when kp,(t,s) = 0.

A first-kind VIE vu = f is called a v-smoothing problem if v is a
v-smoothing operator and f € CV(I).

Now, we introduce the concept of index-u tractability for a (v + 1)-
smoothing problem of the form (1). Let

K%=K(t,s) Ko=K(tt), Ag=A(t), A=A+ KoQo.
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For [ > 0, if (K')pq |s=t# 0, define (K'T1),,(t,s) = 0, otherwise

0

(KHl)pq(tv s) = a(Kl)pq(tv s).

We set K11 = (Kl+1)pq(t, s) ls=¢t (p,q=1,---,d) and

+1 I
Ag = A+ Y K[ P)Qioivn, 0<1<v—1,
=0 j=0

l—i

Aipo = A + Y K[ [ P)Quir, 12w,

i=0 j=0

where Qo = Qo(t) denotes a projector onto ker(Ag) and for j > 1, Q; is
a projector into kerd; with Q;Qr = 0 (k < j). Also, P; = I — Q; with

-1
17 =1
j=0

Definition 2. ([11]) Assume that the Volterra integral operator (2) is (v+
1)-smoothing with v > 0. Then TAEs (1) is said to be index-u tractable if
all matrices A; = Ay(t), t€ I, I =0,---,u— 1, defined above, are singular
with smooth null space and A, remains nonsingular at all points in 1.

Now, considering IAEs (3) with di = d2 = d3 = 1, we have

100
Ao=[ 0 1 0|, K%,s)=| kn
000

Let Volterra integral operator of system (3) be l-smoothing, then from
Definition 1 k;;(t,t) # 0 (i,j = 1,2,3) and Ko = K°(t,t) # 0. We can take

0 00
Q=100 0
0 01
The corresponding matrix
100
Ay = Ay + KoQp = 010
0 00
k11(t,t) kio(t,t) kis(t,t) 000 1 0 kis(t,t)
+ | ka(t,t)  koo(t,t) 0 00 =101 0 ,
0 k3a(t,t) 0 0 01 00 0
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is singular. Since K° |s—4# 0, define K'(t,s) = 0, and K; = 0. Also, we
have

1 00 1 00
Q1= 0 0 0|, PBP=I-Qy=|(010],
-1
ks 00 000
and
14+ k1 (t, t) 0 ki3 (t, t)
Ay = A1 + KoPoQ1 = kar(t,t) 1 0
0 0 0
We observe that here again As is singular. In the sequel, taking
0 —ky O 0 00
Q= 1| 0 1 0], A=1-Q1= o 10,
(14k11) -1
0 %ks O kg 01

it follows that

1+ kll(t,t) k‘lg(t,t) klg(t,t)
A3 = Ay + KO(POPl)QQ = kgl(t, t) 1+ kQQ(t, t) 0
0 ko (£, 1) 0

We then find that
det(Ag) = k3o (t, t)kgl(t, t)klg(t, t) #£0,
and from Definition 2, the tractability index is 3.

Example 1. Consider IAEs (3) with di = dy = d3 = 1 and let k;(t,t) #

0 (4,5 =1,2), ksa(t,s) = (t — s). From Definition 1, we have

8]{32 (t, S)
ot

then v32 = 2 and the Volterra integral operator of system (3) is 2-smoothing.
Also, we have

k‘32(t, 5) |s:t: 07 |s:t: 17

1 00 k11(t,t)  kio(t,t)  kis(t,t)
Ag=1[ 0 1 0|, Ko=K%tt) = ka(t,t) kan(tt) 0
0 0O 0 0 0
0 00
Thus we can take Qo= 0 0 0 | . The corresponding matrix
0 01
1 0 kis(t,t)
Ay = Ay + KopQo = 0 1 0 )
0 0 0
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is singular. Since for (p,q = 1,2), (K°)pq |s=t# 0, define (K1),4(t,s) = 0.
)

On the other hand, (K0)32 ‘s:t: 0 s then (Kl)gg(t, S) == %(Ko)gg(t,s =1.
Thus, K7 and Q)1 can be defined as:
0 00 1 00
K = 00 0|, Q= 0O 0 0
010 kb 000
Now, from Definition 2, we have
1 0 kis(t,t)
Ay =1 0 1 0
0 0 0
ki1(t,t)  kia(t,t) kis(t,t) 1 00 1 00
+ k?gl(t,t) k?gg(t,t) 0 010 0 0 0
0 0 0 000 kg 00
0 00 0 00
+1 0 0 O 000
010 001
1+k11(t,t) 0 klg(t,t)
= ka1 (t,t) 1 0 ,
0 0 0

which is singular. We can take ()2 as a projector into ker A, with Q2Qk =
0 (k < 2) in the following form

0 —ky' 0 0 00

Q=0 1 0|, P=I-Q = 0 10
(1+k11) —1

0 L k5 01

The corresponding matrix

Az = Ay + Ko(PyP1)Q2 + K1 PyQ1
L+ kn(t,t)  kio(t,t)  Kis(t,t)
= koq (t, t) 1+ koo (t, t) 0 ,
0 0 0

is singular. Taking Q3 = , it follows that

o O O

0
0
0

o O O

Ay = A+ Ko(PoP1P2)Qs + K (PoPr)Q2
1+ k?n(t,t) klg(t,t) klg(t,t)
= kor(t,t) 1+ koo(t,t) 0
0 1 0
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Since A4 is nonsingular, the tractability index is 4.

2.2 The differentiability index of IAEs

The differentiability index is based on the “index reduction procedure” i.e.
a differentiation process of the algebraic constraints which yields a system
of regular VIEs. Differentiating the third equation of (3) with respect to t
and substituting y from its second equation gives

0=hy(t) + /Ot K31(t, 8)x(s)ds + /Ot K3a(t, 8)y(s)ds, (4)

where ?Ll(t) = hl(t) + k32<t,t)g(t), Rgl(t, 8) = k32(t,t)/€21(t, S), Kgg(t, 8) =
ksa(t,t)kaa(t, s) + E)k%gt’s). We differentiate Eq. (4) with respect to t and

substitute x,y from the first and second equations of (3), so we obtain

ho(t) = R} + K31 f + Ksag,

_ _ OK.
H3i(t,s) = K1k + Kaoka1 + 81531’

_ _ 0K
Hs(t,s) = Ksikia + Kaakao + 732»

Hss(t,s) = Ksikis.

Assume that Hs3(t,t) # 0. Differentiating (5) and inserting z,y from the
first and second equations of (3), lead to the following second-kind integral
equation

2(t) = st + /O Ay (4, 5)2(s)ds + /O Aot 5)y(s)ds + /O Has(t, 5)2(s)ds, (6)

where hs(t), Hs1(t, s), Ha(t, s) and Hss(t, s) can be easily computed. Now,
(6) together with the first and second equations of (3) are as a regular
system of Volterra equations. We observe that the number of analytical
differentiations of (3) until it can be formulated as a regular system of
Volterra integral equations is three. Thus the differentiability index is 3.

Remark 1. It is obvious that the tractability index of the 1-smoothing
system (3) is 8 if and only if Hss(t,t) is nonsingular. This implies that if
v =1 and p =3, the differentiability index equals the tractability indez.
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Applying the conditions of existence and uniqueness of solutions related
to the TAEs of index-2 (Theorem 1 [10]), differentiability and tractability
indices, the following theorem gives the relevant conditions for the investi-
gation of the unique solution of IAEs (3):

Theorem 1. Let m > 0 and assume that

1. ky € C™(D) forl=1,2,3,

2. koy € C™TYD) forl=1,2,

3. k3o € Cm+2(D) and ‘det(k?,g(t,t)kgl(t,t)klg(t,t))‘ > kg >0,

4. feC™D), geC™(D), heC™2(D) and h(0) = 0.

Then the integral-algebraic equations (3) possesses a unique solution z,y, z €

cm(I).

Proof. Under appropriate regularity assumptions, we observe that the equa-
tion (4) together with the first and second equations of (3) are as the
integral-algebraic equations of index-2 which has been defined in [10]. Then
proof is completed by appealing [10, Theorem 1]. ]

2.3 The numerical treatment

We consider the scaled Chebyshev polynomials as
TN =6;T;(x), i=0,1,...,N—1,

where T; is the Chebyshev polynomial of degree i and

L L
5’6: f? Z_O7
V260, i=1,...,N—1.

For any u(x) € C[—1,1] , we can define the projection Iy as the inter-
polating polynomial associated with the scaled Chebyshev polynomials

N
(Ivu)(@) =Y bk Ti% (x), (7)
k=1

where the coefficients by are determined by the interpolating conditions:

N
u(r) =) b (7Y, (8)
k=1

) N
and {TZ-N = cos((222_]\})7r)}' . are the Chebyshev-Gauss quadrature points.
1=

Assume that B = [by,...,bn]T, U = [u(n),...,u(ry)]’ and
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C=[TN 1(7'JN )]V._,, then the relation (8) can be written in compact form

i,5=1°
as U = CTB. Note that C is the cosine transform matrix, which is orthog-
onal [20], we have B = CU and the approximation of u(z) can be written
as
N
u(x) ~ (Iyu)(z) = Y _[CULTY (x) = B'D(z) =UTC"D(z),  (9)
k=1

where D(.) = (T (.), -, TN _,()T.
For the sake of applying the theory of orthogonal polynomials, we use
the change of variables

T T
:5(77_‘_1)? tZE(T—i_l)a —-1<n<7<1,

to rewrite the system (3) as follows:

/\

AX (1) =G(r / K(rm)X(n)dy,  7e€[-1,1] (10)

where X(r) = (#.5,2)7,G(r) = (.07, A = diag(Ly,, la,, Og; ) €
L(R?) is a singular block matrix and ( ,n) = {kzw (T, 77)}” ;- From (9)

(INK) (i) = {HT} R CTD() = {HT}” QETvw), ()

where flij = [Eij(Tm,Tl), . ,Eij(Tm,ATN)}T, V is the coefficient matrix of
the scaled Chebyshev polynomials {T,ﬁv}fc\;—(}l and W = (1,n,---,nN 1T,
Using the discrete expansion of X (1)), we can write

N d
Xn(n) = {Z (fi)kfévl(n)} = (T}, @(VW), (12)
i=1

k=1

where Z; = [(Z;)1,- -+, (Z;)n] and Q) represents Kronecker product of ma-
trices. Inserting collocation Gauss points {7,,}N_; and the above approxi-
mations into (10), we obtain:

ARy(r) = Gl + [ Tl’" (I R (7)) X (n)edy = Gi(in) "

+ / Tlm ({a7 }jjzl QT vm)) ({# ), QW) )dn,
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N—1
Let M be a block sparse matrix of the form M = (M](\le)k with

k j—k
—_—— ——
0 01 0 00 0
y® |0 00 1 0 0
J 0
0 0 0 0 10 0
~—— —
N

such that M ](k) isa (V) x(N+j) sparse matrix. Applying the Lemma 1 from

[10] for the matrix vector multiplication representation of (1 NE) (T, 1) X v (n),
the relation (13) can be written as:

d
d
AR (7m) = Glrm) + ;<H5v(<@v>®M)Qm L
(m=1,....N) =

where @, = / W'dn and W' = (1,7m,--- ,7*N=2)T. Finally, by substi-
1

tuting (12) into (14), we end up with a linear system of algebraic equations
for the unknown coefficients {z;}%_,.

3 Numerical examples

In this section, we consider two numerical examples in order to illustrate the
validity of the proposed technique. All the computations were performed
using Mathematica® software. For analyzing the behavior of the error
representations, we define the weighted L?-norm by

1 1
lellsz 1 = ([ lePulontz)”
1

1
1—a2’

where w(z) =

Example 2. Consider the integral-algebraic equations of index-3 in the
form of (3) with dy = dy = d3 = 1:

AX(t)=F(t) + /tK(t, s)X(s)ds, te]|0,1], (15)
0
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Table 1: L2 (—1,1) errors for Example 2.

N 2 =2nllzz 19— 9nlzz 12— 2Nl
3 812x1073 547x1073 1.98x 10T
4 1.66x107% 359x107* 3.12x1072
5 868x107% 284x107° 1.88x1073
6 201x10* 3.64x10% 1.03x1073
7 1.68x107% 283x107® 8.89x 1076
8 1.00x1077 954 x 10710 4.26 x 1077
9 345x107° 4.03x 107" 293 x 1078
where
100
A=|(0 1 0 |,
000
t+2s+1 (s+2)2 s24+t2+2
K(t,s)=| sin(t+s+2) s2+1 0 ,

0 cos (s + 2) 0
X(t) = (=(t),y(t),2(t) )", F(t)=( f(t),9(t),h(t) )",
and f(t), g(t), h(t) such that the exact solution is X (t) = ( €, sinh¢, cosht )T.

Let Xy = (Zn, 9N, 2Znv) denote the approximation of the exact solution
X = (Z,9,2) which is given by (12). We apply the proposed collocation
scheme for the integral-algebraic equations (15) and report the weighted
L2 —norm of errors for several values of N in Table 1.

Example 3. Consider the IAEs of index-3 in the form of (3) with d; =
d2:2andd3:1:

AX (1) = F(t) + / K9 X(s)ds, te 0.1,
0

where

Tisa Oux1 kll(tv S) klZ(t,S) klg(t,s)
A= ( 01X4 0X ) ’ K(t,s) = | ka(t;s) kao(t,s) Oz ,
" O1x2  k3a2(t,s) 0
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Table 2: L2 (—1,1) errors for Example 3.

Nz —aanllpz 32 —2anllpz, 100 —0ainllez, 92 —danllz 12— 2Nz
3 298 x 1072 3.01 x 10—2 4.85 x 1073 2.82 x 1073 6.86 x 10~ 2
4  374x1073 5.08 x 1073 2.85 x 1073 1.48 x 1073 1.54 x 10~2
5 244 %1074 3.12 x 10~4 5.73 x 10~4 3.22 x 10~ 1.10 x 103
6 3.05x10°° 3.13 x 10—5 4.06 x 10~° 2.09 x 10—5 2.35 x 10~4
7 259x10°° 2.95 x 1075 3.14 x 1075 1.85 x 102 1.56 x 10~4
8 362x10°6 3.79 x 10~6 4.50 x 10~6 2.71 x 10~6 2.01 x 10~5
9 261x1077 1.79 x 10~7 4.32x 1077 1.31 x 107 5.11 x 10~6
such that

k’nts

S 24 kot ) = 2+ 4 sin(t + s)
s 243t A= L cos(t+1) s2+124+2 )7

t+s2+4 et?+1 tr+s2+1
k1s(t, ko1 (t =
13(t:9) < 244 ) 21(t: ) ((t+4)2+1 (s+t+1)2 )’
t+1 s+t4+2

et+4 S2+t+2
( T

1’1 (t)7y2(t)7z(t) ) ’
91(6), 92(0), (1) )" .

and F such that the exact solution is x(t) = te', 2a(t) = 24+ 1, yi(t) =

t2+17 y2< ) 2t + 1, Z( ) = Ccos (Qt) Let XN = (i‘lN,{fﬁgN,glN,QgN,ﬁN) be

the collocation approximations of the solutions X = (Z1, 22,71, 72, 2) that

is given by (12). The L2 errors for different values of N are reported in

Table 2.

The proposed collocation scheme based on the Chebyshev polynomials
is a spectral method. However, we note that, spectral methods are global
methods such that the computation at any given point depends not only
on information at neighboring points, but also on information from the
entire domain. Due to the smoothness of the exact solutions for the two
previous examples, the spectral accuracy presented in Tables 1 and 2 have

k‘22t8 ), kgg(t,s):((t2—|—1)2, 82—|—t4—|—4),

been obtained.

4 Conclusion

This work has been concerned with the scaled Chebyshev collocation method
for the numerical solution of the special integral-algebraic equations of the
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semi-explicit form. We showed that tractability and differentiability index
of given TAEs system are identical. The existence and uniqueness theo-
rem related to the IAEs of index-3 was introduced. The extension of our
analysis for two-dimensional IAE systems is left as a future work.
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