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Abstract. In this paper, we consider a particular class of integral equa-
tions of the fourth kind and show that tractability and differentiability
index of the given system are 3. Tractability and differentiability index
are introduced based on the υ-smoothing property of a Volterra integral
operator and index reduction procedure, respectively. Using the notion
of index, we give sufficient conditions for the existence and uniqueness of
the solutions for the index-3 system. Then, a numerical technique based on
the Chebyshev polynomial collocation methods including the matrix-vector
multiplication representation is proposed for the solution of these systems
and the performance of the numerical scheme is illustrated by means of
some test problems.
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1 Introduction

The general form of linear fourth kind integral equations or integral algebraic-
equations (IAEs) is as:
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A(t)x(t) + (νx)(t) = f(t), (1)

where the linear Volterra integral operators ν are given by:

(νϕ)(t) =

∫ t

0
K(t, s)ϕ(s)ds, t ∈ I = [0, T ], (2)

the matrices A,K ∈ Rd×d and f ∈ Rd(d ≥ 2)) are continuous. Moreover,
we assume that

detA(t) = 0, ∀t ∈ I,

rank(A) ≥ 1 and A(0)x(0) = f(0). Integral-algebraic equations of the form
(1) arise in problems of identification of memory kernels in heat conduc-
tion and viscoelasticity (see [2, 5, 19] and a survey therein). The numerical
solution of the integral-algebraic equations is discussed by several authors.
Gear [6] introduced the theory of integral-algebraic equations and “index
reduction procedure” for these systems. Brunner and Liang [14] analyzed
collocation solutions for general systems of index-1 integral-algebraic equa-
tions which was based on the notions of the tractability index and the
ν-smoothing property of a Volterra integral operator. Bulatov and Bud-
nikova [3] constructed multistep methods to solve a certain class of linear
IAEs based on the Adams quadratures rules and extrapolation formulas.
Also, the numerical analysis of the two-dimensional IAEs has been inves-
tigated by Bulatov and Lima in [4]. Kauthen [12] applied the polynomial
spline collocation method for a semi-explicit IAEs with index-1 and estab-
lished global convergence as well as local superconvergence. Shiri et al.[18]
studied the existence and uniqueness of the solution to IAEs using a new
index definition and applied the well-known piecewise continuous colloca-
tion methods to solve this system numerically. Pishbin et al.[8, 10, 16, 17]
proposed several efficient numerical algorithms to solve the index-1 and 2
IAEs and investigated convergence analysis of the numerical methods.

The present paper is devoted to the study of numerical solvability of
the semi-explicit system of integral-algebraic equations with index-3. More
precisely, we consider

x(t) = f(t) + (ν11x)(t) + (ν12y)(t) + (ν13z)(t),
y(t) = g(t) + (ν21x)(t) + (ν22y)(t),

0 = h(t) + (ν32y)(t),
(3)

where the linear Volterra integral operators νkl, (k, l = 1, 2, 3) are given
by:

(νklϕ)(t) =

∫ t

0
kkl(t, s)ϕ(s)ds, t ∈ I = [0, T ],
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such that x, f : I → Rd1 , y, g : I → Rd2 , z, h : I → Rd3 . The matrix ker-
nels kll(., .) ∈ L(Rdl), k12(., .) ∈ L(Rd2 ,Rd1), k13(., .) ∈ L(Rd3 ,Rd1), k21(., .) ∈
L(Rd1 ,Rd2) and k32(., .) ∈ L(Rd2 ,Rd3) are assumed to be continuous.

The outline of this paper is as follows. In Section 2, we firstly introduce
tractability and differentiability index for system (3) and then obtain the
sufficient conditions for the existence and uniqueness of the solutions of the
IAEs (3). Scaled Chebyshev polynomial collocation method including the
matrix-vector multiplication representation is applied to numerical solution
of system (3) in Section 3. We conclude with the numerical illustrations in
Section 4.

2 Index of IAEs

Similar to differential-algebraic equations (DAEs) (see [1, 7, 9, 11, 13, 15]),
the concept of the index is the key to the theoretical and numerical analysis
of the IAEs. In this section, we consider the definition of tractability and
differentiability index to IAEs (3).

2.1 The tractability index of IAEs

Before introducing the definition of the tractability index of IAEs, we re-
quire the definition of υ-smoothing of the Volterra integral operator (2).

Definition 1. ([14]) The Volterra integral operator (2) corresponding to

the kernel matrix K(t, s) =

(
kpq(t, s)

p, q = 1, · · · , d

)
, with d ≥ 2, is said to be

υ-smoothing if there exist integers υpq ≥ 1 with υ = max
1≤p,q≤d

{υpq} such that

the following conditions hold:

1) ∂ikpq(t,s)
∂ti

|s=t= 0, t ∈ I, i = 0, · · · , υpq − 2,

2) ∂υpq−1kpq(t,s)

∂tυpq−1 |s=t 6= 0, t ∈ I,

3) ∂υpqkpq(t,s)
∂tυpq ∈ C(D), D = {(t, s), 0 ≤ s ≤ t ≤ T}.

We set υpq = 0 when kpq(t, s) ≡ 0.

A first-kind VIE νu = f is called a υ-smoothing problem if ν is a
υ-smoothing operator and f ∈ Cυ(I).

Now, we introduce the concept of index-µ tractability for a (υ + 1)-
smoothing problem of the form (1). Let

K0 = K(t, s) K0 = K(t, t), A0 = A(t), A1 = A0 +K0Q0.
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For l ≥ 0, if (K l)pq |s=t 6= 0, define (K l+1)pq(t, s) = 0, otherwise

(K l+1)pq(t, s) =
∂

∂t
(K l)pq(t, s).

We set Kl+1 = (K l+1)pq(t, s) |s=t (p, q = 1, · · · , d) and

Al+2 = Al+1 +

l+1∑
i=0

Ki(

l−i∏
j=0

Pj)Ql−i+1, 0 ≤ l ≤ υ − 1,

Al+2 = Al+1 +

υ∑
i=0

Ki(

l−i∏
j=0

Pj)Ql−i+1, l ≥ υ,

where Q0 = Q0(t) denotes a projector onto ker(A0) and for j ≥ 1, Qj is
a projector into kerAj with QjQk = 0 (k < j). Also, Pj = I − Qj with
−1∏
j=0

Pj = 1.

Definition 2. ([14]) Assume that the Volterra integral operator (2) is (υ+
1)-smoothing with υ ≥ 0. Then IAEs (1) is said to be index-µ tractable if
all matrices Al = Al(t), t ∈ I, l = 0, · · · , µ− 1, defined above, are singular
with smooth null space and Aµ remains nonsingular at all points in I.

Now, considering IAEs (3) with d1 = d2 = d3 = 1, we have

A0 =

 1 0 0
0 1 0
0 0 0

 , K0(t, s) =

 k11(t, s) k12(t, s) k13(t, s)
k21(t, s) k22(t, s) 0

0 k32(t, s) 0

 .

Let Volterra integral operator of system (3) be 1-smoothing, then from
Definition 1 kij(t, t) 6= 0 (i, j = 1, 2, 3) and K0 = K0(t, t) 6= 0. We can take

Q0 =

 0 0 0
0 0 0
0 0 1

 .

The corresponding matrix

A1 = A0 +K0Q0 =

 1 0 0
0 1 0
0 0 0


+

 k11(t, t) k12(t, t) k13(t, t)
k21(t, t) k22(t, t) 0

0 k32(t, t) 0

 0 0 0
0 0 0
0 0 1

 =

 1 0 k13(t, t)
0 1 0
0 0 0

 ,
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is singular. Since K0 |s=t 6= 0, define K1(t, s) = 0, and K1 = 0. Also, we
have

Q1 =

 1 0 0
0 0 0

k−113 0 0

 , P0 = I −Q0 =

 1 0 0
0 1 0
0 0 0

 ,

and

A2 = A1 +K0P0Q1 =

 1 + k11(t, t) 0 k13(t, t)
k21(t, t) 1 0

0 0 0

 .

We observe that here again A2 is singular. In the sequel, taking

Q2 =

 0 −k−121 0
0 1 0

0 (1+k11)
k21k13

0

 , P1 = I −Q1 =

 0 0 0
0 1 0

−k−113 0 1

 ,

it follows that

A3 = A2 +K0(P0P1)Q2 =

 1 + k11(t, t) k12(t, t) k13(t, t)
k21(t, t) 1 + k22(t, t) 0

0 k32(t, t) 0

 .

We then find that

det(A3) = k32(t, t)k21(t, t)k13(t, t) 6= 0,

and from Definition 2, the tractability index is 3.

Example 1. Consider IAEs (3) with d1 = d2 = d3 = 1 and let kij(t, t) 6=
0 (i, j = 1, 2), k32(t, s) = (t− s). From Definition 1, we have

k32(t, s) |s=t= 0,
∂k32(t, s)

∂t
|s=t= 1,

then ν32 = 2 and the Volterra integral operator of system (3) is 2-smoothing.
Also, we have

A0 =

 1 0 0
0 1 0
0 0 0

 , K0 = K0(t, t) =

 k11(t, t) k12(t, t) k13(t, t)
k21(t, t) k22(t, t) 0

0 0 0

 .

Thus we can take Q0 =

 0 0 0
0 0 0
0 0 1

 . The corresponding matrix

A1 = A0 +K0Q0 =

 1 0 k13(t, t)
0 1 0
0 0 0

 ,



On the numerical solution of IAEs of high index 161

is singular. Since for (p, q = 1, 2), (K0)pq |s=t 6= 0, define (K1)pq(t, s) = 0.
On the other hand, (K0)32 |s=t= 0 , then (K1)32(t, s) = ∂

∂t(K
0)32(t, s) = 1.

Thus, K1 and Q1 can be defined as:

K1 =

 0 0 0
0 0 0
0 1 0

 , Q1 =

 1 0 0
0 0 0

k−113 0 0

 .

Now, from Definition 2, we have

A2 =

 1 0 k13(t, t)
0 1 0
0 0 0


+

 k11(t, t) k12(t, t) k13(t, t)
k21(t, t) k22(t, t) 0

0 0 0

 1 0 0
0 1 0
0 0 0

 1 0 0
0 0 0

k−113 0 0


+

 0 0 0
0 0 0
0 1 0

 0 0 0
0 0 0
0 0 1


=

 1 + k11(t, t) 0 k13(t, t)
k21(t, t) 1 0

0 0 0

 ,

which is singular. We can take Q2 as a projector into kerA2 with Q2Qk =
0 (k < 2) in the following form

Q2 =

 0 −k−121 0
0 1 0

0 (1+k11)
k21k13

0

 , P1 = I −Q1 =

 0 0 0
0 1 0

−k−113 0 1

 .

The corresponding matrix

A3 = A2 +K0(P0P1)Q2 +K1P0Q1

=

 1 + k11(t, t) k12(t, t) k13(t, t)
k21(t, t) 1 + k22(t, t) 0

0 0 0

 ,

is singular. Taking Q3 =

 0 0 0
0 0 0
0 0 0

, it follows that

A4 = A3 +K0(P0P1P2)Q3 +K1(P0P1)Q2

=

 1 + k11(t, t) k12(t, t) k13(t, t)
k21(t, t) 1 + k22(t, t) 0

0 1 0

 .
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Since A4 is nonsingular, the tractability index is 4.

2.2 The differentiability index of IAEs

The differentiability index is based on the “index reduction procedure” i.e.
a differentiation process of the algebraic constraints which yields a system
of regular VIEs. Differentiating the third equation of (3) with respect to t
and substituting y from its second equation gives

0 = h̄1(t) +

∫ t

0
K̄31(t, s)x(s)ds+

∫ t

0
K̄32(t, s)y(s)ds, (4)

where h̄1(t) = h′(t) + k32(t, t)g(t), K̄31(t, s) = k32(t, t)k21(t, s), K̄32(t, s) =

k32(t, t)k22(t, s) + ∂k32(t,s)
∂t . We differentiate Eq. (4) with respect to t and

substitute x, y from the first and second equations of (3), so we obtain

0 = h̄2(t) +

∫ t

0

H31(t, s)x(s)ds+

∫ t

0

H32(t, s)y(s)ds+

∫ t

0

H33(t, s)z(s)ds, (5)

where

h̄2(t) = h̄′1 + K̄31f + K̄32g,

H31(t, s) = K̄31k11 + K̄32k21 +
∂K̄31

∂t
,

H32(t, s) = K̄31k12 + K̄32k22 +
∂K̄32

∂t
,

H33(t, s) = K̄31k13.

Assume that H33(t, t) 6= 0. Differentiating (5) and inserting x, y from the
first and second equations of (3), lead to the following second-kind integral
equation

z(t) = h̄3(t) +

∫ t

0

Ĥ31(t, s)x(s)ds+

∫ t

0

Ĥ32(t, s)y(s)ds+

∫ t

0

Ĥ33(t, s)z(s)ds, (6)

where h̄3(t), Ĥ31(t, s), Ĥ32(t, s) and Ĥ33(t, s) can be easily computed. Now,
(6) together with the first and second equations of (3) are as a regular
system of Volterra equations. We observe that the number of analytical
differentiations of (3) until it can be formulated as a regular system of
Volterra integral equations is three. Thus the differentiability index is 3.

Remark 1. It is obvious that the tractability index of the 1-smoothing
system (3) is 3 if and only if H33(t, t) is nonsingular. This implies that if
υ = 1 and µ = 3, the differentiability index equals the tractability index.
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Applying the conditions of existence and uniqueness of solutions related
to the IAEs of index-2 (Theorem 1 [10]), differentiability and tractability
indices, the following theorem gives the relevant conditions for the investi-
gation of the unique solution of IAEs (3):

Theorem 1. Let m ≥ 0 and assume that
1. k1l ∈ Cm(D) for l = 1, 2, 3,
2. k2l ∈ Cm+1(D) for l = 1, 2,
3. k32 ∈ Cm+2(D) and | det(k32(t, t)k21(t, t)k13(t, t))| ≥ k0 > 0,
4. f ∈ Cm(D), g ∈ Cm+1(D), h ∈ Cm+2(D) and h(0) = 0.
Then the integral-algebraic equations (3) possesses a unique solution x, y, z ∈
Cm(I).

Proof. Under appropriate regularity assumptions, we observe that the equa-
tion (4) together with the first and second equations of (3) are as the
integral-algebraic equations of index-2 which has been defined in [10]. Then
proof is completed by appealing [10, Theorem 1].

2.3 The numerical treatment

We consider the scaled Chebyshev polynomials as

T̂Ni = δiTi(x), i = 0, 1, . . . , N − 1,

where Ti is the Chebyshev polynomial of degree i and

δi =

{
1√
N
, i = 0,

√
2δ0, i = 1, . . . , N − 1.

For any u(x) ∈ C[−1, 1] , we can define the projection IN as the inter-
polating polynomial associated with the scaled Chebyshev polynomials

(INu)(x) =

N∑
k=1

bkT̂
N
k−1(x), (7)

where the coefficients bk are determined by the interpolating conditions:

u(τNi ) =

N∑
k=1

bkT̂
N
k−1(τ

N
i ), (8)

and
{
τNi = cos ( (2i−1)π2N )

}N
i=1

are the Chebyshev-Gauss quadrature points.

Assume that B = [b1, . . . , bN ]T , U = [u(τ1), . . . , u(τN )]T and
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C = [T̂Ni−1(τ
N
j )]Ni,j=1, then the relation (8) can be written in compact form

as U = CTB. Note that C is the cosine transform matrix, which is orthog-
onal [20], we have B = CU and the approximation of u(x) can be written
as

u(x) ≈ (INu)(x) =
N∑
k=1

[CU ]kT̂
N
k−1(x) = BT D̂(x) = UTCT D̂(x), (9)

where D̂(.) = (T̂N0 (.), · · · , T̂NN−1(.))T .
For the sake of applying the theory of orthogonal polynomials, we use

the change of variables

s =
T

2
(η + 1), t =

T

2
(τ + 1), −1 ≤ η ≤ τ ≤ 1,

to rewrite the system (3) as follows:

AX̂(τ) = Ĝ(τ) +

∫ τ

−1
K̂(τ, η)X̂(η)dη, τ ∈ [−1, 1] (10)

where X̂(τ) = (x̂, ŷ, ẑ)T , Ĝ(τ) = (f̂ , ĝ, ĥ)T , A = diag
(
Id1 , Id2 , Od3

)
∈

L(Rd) is a singular block matrix and K̂(τ, η) = {k̂ij(τ, η)}di,j=1. From (9)

(INK̂)(τm, η) =
{
ĤT
ij

}d
i,j=1

⊗
CT D̂(η) =

{
ĤT
ij

}d
i,j=1

⊗
(CTVW ), (11)

where Ĥij = [k̂ij(τm, τ1), · · · , k̂ij(τm, τN )]T , V is the coefficient matrix of
the scaled Chebyshev polynomials {T̂Nk }

N−1
k=0 and W = (1, η, · · · , ηN−1)T .

Using the discrete expansion of X̂(η), we can write

X̂N (η) =

{
N∑
k=1

(x̂i)kT̂
N
k−1(η)

}d
i=1

= {x̂i}di=1

⊗
(VW ), (12)

where x̂i = [(x̂i)1, · · · , (x̂i)N ] and
⊗

represents Kronecker product of ma-
trices. Inserting collocation Gauss points {τm}Nm=1 and the above approxi-
mations into (10), we obtain:

AX̂N (τm) = Ĝ(τm) +

∫ τm

−1
(INK̂(τm, η))X̂N (η)dη = Ĝ(τm)

+

∫ τm

−1

({
ĤT
ij

}d
i,j=1

⊗
(CTVW )

)(
{x̂i}di=1

⊗
(VW )

)
dη,

(13)
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Let M be a block sparse matrix of the form M =
(
M

(k)
N−1

)N−1
k=0

with

k︷ ︸︸ ︷ j−k︷ ︸︸ ︷
M

(k)
j =


0 . . . 0 1 0 . . . 0 0 . . . 0

0 . . . 0 0 1 . . .
... 0 . . . 0

... . . .
...

...
. . . 0

... . . .
...

0 . . . 0 0 . . . 0 1 0 . . . 0

 ,

︸ ︷︷ ︸
N

such thatM
(k)
j is a (N)×(N+j) sparse matrix. Applying the Lemma 1 from

[10] for the matrix vector multiplication representation of (INK̂)(τm, η)X̂N (η),
the relation (13) can be written as:

ÂX̂N (τm) = Ĝ(τm) +

 d∑
j=1

(ĤT
ijV
(

(x̂jV )
⊗

M
)
Qm

d

i=1

,

(m = 1, . . . , N)

(14)

where Qm =

∫ τm

−1
W ′dη and W ′ = (1, η, · · · , η2N−2)T . Finally, by substi-

tuting (12) into (14), we end up with a linear system of algebraic equations
for the unknown coefficients {x̂i}di=1.

3 Numerical examples

In this section, we consider two numerical examples in order to illustrate the
validity of the proposed technique. All the computations were performed
using Mathematicar software. For analyzing the behavior of the error
representations, we define the weighted L2

w-norm by

‖e‖L2
w(−1,1) =

(∫ 1

−1
|e|2w(x)dx

) 1
2
,

where w(x) = 1√
1−x2 .

Example 2. Consider the integral-algebraic equations of index-3 in the
form of (3) with d1 = d2 = d3 = 1:

AX(t) = F (t) +

∫ t

0
K(t, s)X(s)ds, t ∈ [0, 1], (15)
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Table 1: L2
w(−1, 1) errors for Example 2.

N ‖x̂− x̂N‖L2
w
‖ŷ − ŷN‖L2

w
‖ẑ − ẑN‖L2

w

3 8.12× 10−3 5.47× 10−3 1.98× 10−1

4 1.66× 10−3 3.59× 10−4 3.12× 10−2

5 8.68× 10−4 2.84× 10−5 1.88× 10−3

6 2.01× 10−4 3.64× 10−6 1.03× 10−3

7 1.68× 10−6 2.88× 10−8 8.89× 10−6

8 1.00× 10−7 9.54× 10−10 4.26× 10−7

9 3.45× 10−9 4.03× 10−11 2.93× 10−8

where

A =

 1 0 0
0 1 0
0 0 0

 ,

K(t, s) =

 t+ 2s+ 1 (s+ 2)2 s2 + t2 + 2
sin (t+ s+ 2) s2 + 1 0

0 cos (s+ 2) 0

 ,

X(t) =
(
x(t), y(t), z(t)

)T
, F (t) =

(
f(t), g(t), h(t)

)T
,

and f(t), g(t), h(t) such that the exact solution isX(t) =
(
et, sinh t, cosh t

)T
.

Let X̂N = (x̂N , ŷN , ẑN ) denote the approximation of the exact solution
X̂ = (x̂, ŷ, ẑ) which is given by (12). We apply the proposed collocation
scheme for the integral-algebraic equations (15) and report the weighted
L2
w−norm of errors for several values of N in Table 1.

Example 3. Consider the IAEs of index-3 in the form of (3) with d1 =
d2 = 2 and d3 = 1:

AX(t) = F (t) +

∫ t

0
K(t, s)X(s)ds, t ∈ [0, 1],

where

A =

(
I4×4 04×1
01×4 0

)
, K(t, s) =

 k11(t, s) k12(t, s) k13(t, s)
k21(t, s) k22(t, s) 02×1

01×2 k32(t, s) 0

 ,
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Table 2: L2
w(−1, 1) errors for Example 3.

N ‖x̂1 − x̂1N‖L2
w

‖x̂2 − x̂2N‖L2
w

‖ŷ1 − ŷ1N‖L2
w

‖ŷ2 − ŷ2N‖L2
w

‖ẑ − ẑN‖L2
w

3 2.98× 10−2 3.01× 10−2 4.85× 10−3 2.82× 10−3 6.86× 10−2

4 3.74× 10−3 5.08× 10−3 2.85× 10−3 1.48× 10−3 1.54× 10−2

5 2.44× 10−4 3.12× 10−4 5.73× 10−4 3.22× 10−4 1.10× 10−3

6 3.05× 10−5 3.13× 10−5 4.06× 10−5 2.09× 10−5 2.35× 10−4

7 2.59× 10−5 2.95× 10−5 3.14× 10−5 1.85× 10−5 1.56× 10−4

8 3.62× 10−6 3.79× 10−6 4.50× 10−6 2.71× 10−6 2.01× 10−5

9 2.61× 10−7 1.79× 10−7 4.32× 10−7 1.31× 10−7 5.11× 10−6

such that

k11(t, s) =

(
e2t−s t2 + s
et+s s2 + 3t

)
, k12(t, s) =

(
t2 + 4 sin(t+ s)

cos(t+ 1) s2 + t2 + 2

)
,

k13(t, s) =

(
t+ s2 + 4
t2 + 4

)
, k21(t, s) =

(
et

2+1 t4 + s2 + 1
(t+ 4)2 + 1 (s+ t+ 1)2

)
,

k22(t, s) =

(
t+ 1 s+ t4 + 2
et + 4 s2 + t+ 2

)
, k32(t, s) =

(
(t2 + 1)2 , s2 + t4 + 4

)
,

X(t) =
(
x1(t), x2(t), y1(t), y2(t), z(t)

)T
,

F (t) =
(
f1(t), f2(t), g1(t), g2(t), h(t)

)T
,

and F such that the exact solution is x1(t) = tet, x2(t) = t2 + 1, y1(t) =
t

t2+1
, y2(t) = 2t+ 1, z(t) = cos (2t). Let X̂N = (x̂1N , x̂2N , ŷ1N , ŷ2N , ẑN ) be

the collocation approximations of the solutions X̂ = (x̂1, x̂2, ŷ1, ŷ2, ẑ) that
is given by (12). The L2

w errors for different values of N are reported in
Table 2.

The proposed collocation scheme based on the Chebyshev polynomials
is a spectral method. However, we note that, spectral methods are global
methods such that the computation at any given point depends not only
on information at neighboring points, but also on information from the
entire domain. Due to the smoothness of the exact solutions for the two
previous examples, the spectral accuracy presented in Tables 1 and 2 have
been obtained.

4 Conclusion

This work has been concerned with the scaled Chebyshev collocation method
for the numerical solution of the special integral-algebraic equations of the
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semi-explicit form. We showed that tractability and differentiability index
of given IAEs system are identical. The existence and uniqueness theo-
rem related to the IAEs of index-3 was introduced. The extension of our
analysis for two-dimensional IAE systems is left as a future work.
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