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Abstract. In this paper, the homotopy perturbation method (HPM) is
applied to obtain an approximate solution of the fractional Bratu-type
equations. The convergence of the method is also studied. The fractional
derivatives are described in the modified Riemann-Liouville sense. The re-
sults show that the proposed method is very efficient and convenient and
can readily be applied to a large class of fractional problems.
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1 Introduction

The Bratu-type equation was used to model a combustion problem in a
numerical slab [2]. The Bratu’s problem is also used in a large variety
of applications such as the fuel ignition model, the model of the thermal
reaction process, the Chandrasekhar model [4], and many other applications
(see [14] and references therein).

Recently, the study of fractional differential equations has been an im-
portant topic. Fractional models have been shown by many scientists to
adequately describe the operation of variety of physical and biological pro-
cesses and systems [13, 11, 12]. Consequently, considerable attention has
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been given to the solution of fractional ordinary differential equations, inte-
gral equations and fractional partial differential equations of physical inter-
est. Since most fractional differential equations do not have exact analytic
solutions, approximation and numerical techniques, therefore, are used ex-
tensively.

Adomian decomposition method (ADM) and modified variational itera-
tion method (MVIM) was used by authors for solving fractional Bratu-type
equations [6, 7]. The homotopy perturbation method (HPM) proposed by
He [8] is an approach which searches for an analytical approximate solution
of linear and nonlinear problems [1, 3, 5, 9]. In this paper, we use HPM
to construct an approximate solution to the fractional Bratu’s initial value
problems of the form{

D2α
x u+ λeu = 0, 0 < α ≤ 1, 0 < x < 1,

u(0) = u(α)(0) = 0, λ is a constant,
(1)

where D2α = DαDα and Dα
xu = dαu/dxα denotes Jumarie’s fractional

derivation. We also compare the computed solutions by the homotopy
perturbation method with those provided by the ADM [6] and MVIM [7].

This paper is organized as follows. In Section 2 we present the basic
concepts of fractional derivatives and HPM. Section 3 is devoted to the
analysis of HPM to the fractional Bratu-type equations. Three examples
are given in Section 4. Finally, the paper is ended with some concluding
remarks.

2 Basic definitions of the fractional calculus

In this section, we first give some basic definitions and properties of the
fractional calculus theory which are used further in this paper.

Definition 1. ([15]) Let f : R −→ R, x −→ f(x), denote a continuous
(but not necessarily differentiable) function, and let the partition h > 0 in
the interval [0, 1]. Through the fractional Riemann Liouville integral

0I
α
x f(x) =

1

Γ(α)

∫ x

0
(x− ξ)α−1f(ξ)dξ, α > 0, (2)

the modified Riemann-Liouville derivative is defined as

0D
α
xf(x) =

1

Γ(n− α)

dn

dxn

∫ x

0
(x− ξ)n−α(f(ξ)− f(0))dξ, (3)

where x ∈ [0, 1], n− 1 ≤ α < n and n ≥ 1.
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Jumarie’s derivative is defined through the fractional difference

∆αf(x) = (FW − 1)αf(x) =

∞∑
k=0

(−1)k
(
α

k

)
f [x+ (α− k)h], (4)

where FWf(x) = f(x+h). Then the fractional derivative is defined as the
following limit,

f (α)(x) = lim
h→0

∆αf(x)

hα
. (5)

The proposed modified Riemann-Liouville derivative as shown in Eq. (3)
is strictly equivalent to Eq. (5). For more information see [15] and [10].

3 Analysis of HPM to the fractional Bratu-type
equations

In this section, we fist present a brief review of HPM, investigate the unique-
ness of a solution to Eq. (1) and then present the application of HPM to
solve Eq. (1) and its convergence.

3.1 Homotopy perturbation method

Consider the nonlinear differential equations in this form

L(u) +N(u) = f(r), r ∈ Ω, (6)

with boundary conditions

B

(
u,
∂u

∂n

)
= 0, r ∈ Γ.

The He’s homotopy perturbation technique defines the homotopy H(v, p) :
Ω× [0, 1]→ R which satisfies

H(v, p) = (1− p) [L(v)− L(u0)] + p [L(v) +N(v)− f(r)] = 0, (7)

where r ∈ Ω and p ∈ [0, 1] is an embedding parameter, u0 is an initial
approximation which satisfies the boundary conditions. The approximate
solution of Eq. (6), therefore, can be readily obtained via

u = lim
p→1

(v0 + p v1 + p2v2 + · · · ) = v◦ + v1 + v2 + · · · , (8)

by considering its few first terms.
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3.2 Uniqueness and convergence

Theorem 1. (Uniqueness) If Eq. (1) has a solution, then it is unique
whenever 0 < a < 1, where

a =
L|λ|

Γ(1 + α)
xα,

and L is a Lipschitz constant.

Proof. Eq. (1) can be written in the form

u(x) =
−λ

Γ(1 + α)

∫ x

0
F (t, u(t))(dt)α,

where

F (x, u(x)) =
1

Γ(1 + α)

∫ x

0
eu(t)(dt)α,

such that the nonlinear term F (x, u(x)) is Lipschitz continuous with

‖F (x, u)− F (x, v)‖ ≤ L‖u− v‖.

The Lipschitz constant L can be computed as follows. Using the maximum
norm ‖F‖ = max

0≤x≤1
|F (x, u(x))|, we can write

|eu − ev| ≤
∞∑
k=0

|uk − vk|
k!

=
∞∑
k=1

1

k!
|u− v||uk−1 + uk−2v + · · ·+ uvk−2 + vk−1|,

since the series is convergent, |uk−1 +uk−2v+ · · ·+uvk−2 +vk−1| is bounded
for every k and we have

|uk−1 + uk−2v + · · ·+ uvk−2 + vk−1| ≤M, k = 1, 2, 3, . . . .

Therefore

|eu − ev| ≤ |u− v|M
∞∑
k=1

1

k!
= M(e− 1)|u− v|.

Hence we have

|F (x, u)− F (x, v)| ≤ 1

Γ(1 + α)

∫ x

0
|eu − ev|(dt)α

≤ M(e− 1)

Γ(1 + α)

∫ x

0
|u− v|(dt)α,
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So one obtains

‖F (x, u)− F (x, v)‖ ≤ M(e− 1)

Γ(1 + α)
‖u− v‖

∫ x

0
(dt)α =

M(e− 1)xα

Γ(1 + α)
‖u− v‖

≤ M(e− 1)

Γ(1 + α)
‖u− v‖.

Then, we can choose L = M(e−1)
Γ(1+α) .

Now, let u and u∗ be two different solutions for Eq. (1). Then,

‖u− u∗‖ =

∥∥∥∥ −λ
Γ(1 + α)

∫ x

0
F (t, u(t))(dt)α +

λ

Γ(1 + α)

∫ x

0
F (t, u∗(t))(dt)α

∥∥∥∥
≤ |λ|

Γ(1 + α)

∫ x

0
‖F (u)− F (u∗)‖(dt)α ≤ L|λ|

Γ(1 + α)
‖u− u∗‖xα.

This implies that

‖u− u∗‖(1− L|λ|
Γ(1 + α)

xα) ≤ 0,

i.e. ‖u− u∗‖(1− a) ≤ 0 where a = L|λ|
Γ(1+α)x

α. As 0 < a < 1, ‖u− u∗‖ = 0,

implies u = u∗.

Lemma 1. If f(u(x)) = eu(x), x0 = 0 and F (k) is coefficient of Maclaurin
series of order fractional of f(u(x)), then

F (k) =


eU(0), k = 0,

Γ(α(k − 1) + 1)

Γ(αk + 1)

k∑
i=1

Γ(αi+ 1)

Γ(α(i− 1) + 1)
U(i)F (k − i), k ≥ 1,

(9)

where

U(i) =
1

Γ(αi+ 1)
Dαi
x u(x)

∣∣
x=0

i = 1, 2, . . . , k.

Proof. For k = 0, we have F (0) = eu(0) = eU(0). Put

f(u(x)) = eu(x) =
∞∑
k=0

F (k)xkα, u(x) =
∞∑
k=0

U(k)xkα.

By differentiation of order α from f(u(x)) with respect to x, we get

Dα
xf(u(x)) = Dα

xu(x)f(u(x)), (10)
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where

Dα
xf(u(x)) = Dα

x

∞∑
k=0

F (k)xkα =
∞∑
k=0

Γ(α(k + 1) + 1)

Γ(αk + 1)
F (k + 1)xkα, (11)

and

Dα
xu(x) = Dα

x

∞∑
k=0

U(k)xkα =
∞∑
k=0

Γ(α(k + 1) + 1)

Γ(αk + 1)
U(k + 1)xkα. (12)

Substituting Eq. (11) and Eq. (12) in Eq. (10), we deduce

∞∑
k=0

Γ(α(k + 1) + 1)

Γ(αk + 1)
F (k + 1)xkα =

( ∞∑
k=0

Γ(α(k + 1) + 1)

Γ(αk + 1)
U(k + 1)xkα

)( ∞∑
k=0

F (k)xkα
)
.

(13)

Comparing the terms with the same power of xkα, we have

Γ(α(k + 1) + 1)

Γ(αk + 1)
F (k + 1) =

k∑
i=0

Γ(α(i+ 1) + 1)

Γ(αi+ 1)
U(i+ 1)F (k − i). (14)

From Eq. (14), we get

F (k + 1) =
Γ(αk + 1)

Γ(α(k + 1) + 1)

k∑
i=0

Γ(α(i+ 1) + 1)

Γ(αi+ 1)
U(i+ 1)F (k − i).

Replacing k + 1 by k and i+ 1 by i, it follows

F (k) =
Γ(α(k − 1) + 1)

Γ(αk + 1)

k∑
i=1

Γ(αi+ 1)

Γ(α(i− 1) + 1)
U(i)F (k − i), k ≥ 1,

which completes the proof.

We are now ready to present our method to solve Eq. (1). By using
HPM for Eq. (1), we obtain

(1− p)D2α
x u+ p(D2α

x u+ λeu) = 0,

or

D2α
x (u0 + pu1 + p2u2 + · · · ) + λp(1 + {u0 + pu1 + p2u2 + · · · }

+ {u0 + pu1 + p2u2 + · · · }2/2! + · · · ) = 0.
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Therefore, we find for Eq. (1)

u0(x) = 0, u1(x) =
(−λ)x2α

Γ(α+ 1)
, u2(x) =

(−λ)2x4α

Γ(4α+ 1)
, · · · (15)

u(x) = u0(x) + u1(x) + u2(x) + · · · =
∞∑
k=0

uk(x).

Theorem 2. (Convergence) If the series
∑∞

k=0 uk(x) is convergent to s(x),
then it must be the exact solution of Eq. (1).

Proof. By using Lemma 1 and Eq. (15), Eq. (1) can be written as

uk(x) =


0, k = 0

U(2k)x2kα, k ≥ 1,

where

U(2k) =


0, k = 0,

−λΓ(2α(k−1)+1)
Γ(2kα+1) F (2(k − 1)), k ≥ 1,

and from Eq. (9)

F (2(k − 1))

=


1, k = 1,

Γ(α(2k−3)+1)
Γ(2α(k−1)+1)

k−1∑
i=1

Γ(2αi+ 1)

Γ(α(2i− 1) + 1)
U(2i)F (2(k − i− 1)), k ≥ 2.

Therefore, for Eq. (1), we can write

s(x) =

∞∑
k=0

U(2k)x2kα,

and

es(x) =

∞∑
k=0

F (2k)x2kα.

Now to complete the proof, we show that s(x) satisfies Eq. (1). Putting
s(x) in Eq. (1), results in
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D2α
x s(x) + λes(x) = D2α

x

( ∞∑
k=0

U(2k)x2kα
)

+ λ
∞∑
k=0

F (2k)x2kα

=
∞∑
k=1

U(2k)
Γ(2kα+ 1)

Γ(2α(k − 1) + 1)
x2α(k−1) + λ

∞∑
k=0

F (2k)x2kα

= 0,

and this completes the proof.

4 Numerical examples

In this section we present some numerical results to show the effectiveness
of the method. In comparisons, three iterations of MVIM, and approximate
solution u(x) ≈ u0(x) + u1(x) + u2(x) of ADM and HPM are used.

Example 1. Consider the initial value problem{
D2α
x u− 2eu = 0, 0 < α ≤ 1, 0 < x < 1,

u(0) = u(α)(0) = 0.
(16)

Here λ = −2. The exact solution of Eq. (16) in α = 1 is u(x) =
−2 ln(cosx). From Eq. (15) the approximate solution of Eq. (16) is

u(x) = u0 + u1 + u2 + · · · = 2

Γ(2α+ 1)
x2α +

4

Γ(4α+ 1)
x4α + · · · .

The exact solution for α = 1 and the approximate solutions for α =
0.5, 0.6, . . . , 1 are shown in Fig. 1. The comparison of approximate so-
lutions provided by MVIM, ADM and HPM is shown in Fig. 2.

Example 2. Consider the initial value problem{
D2α
x u− π2eu = 0, 0 < α ≤ 1, 0 < x < 1,

u(0) = 0, u(α)(0) = π.
(17)

Here λ = −π2. The exact solution of Eq. (17) in α = 1 is u(x) =
− ln(1 − sinπx). We can take an initial approximation u0(x) = πxα

Γ(α+1) .

The approximate solution of Eq. (17) obtained by HPM is

u(x) = u0 + u1 + u2 + · · · = π

Γ(α+ 1)
xα +

π2

Γ(2α+ 1)
x2α + · · · , (18)

The exact solution for α = 1 and the approximate solutions for α =
0.5, 0.6, . . . , 1 are shown in Fig. 3. The comparison of approximate so-
lutions obtained by MVIM, ADM and HPM is shown in Fig. 4.
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Figure 1: The exact solution in α = 1 and the approximate solutions of HPM for
Example 1.
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Figure 2: Comparison of the approximate solutions provided by MVIM, ADM
and HPM in α = 0.9 for Example 1.
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Figure 3: The exact solution in α = 1 and approximate solutions of HPM for
Example 2.

Example 3. Consider the initial value problem{
D2α
x u+ π2e−u = 0, 0 < α ≤ 1, 0 < x < 1,

u(0) = 0, u(α)(0) = π.
(19)

Here λ = π2. The exact solution of Eq. (19) in α = 1 is

u(x) = ln(1 + sinπx).

We can take an initial approximation u0(x) = πxα

Γ(α+1) . The approximate

solution of Eq. (19) by HPM is

u(x) = u0 + u1 + u2 + · · · = π

Γ(α+ 1)
xα − π2

Γ(2α+ 1)
x2α + · · · (20)

The exact solution for α = 1 and approximate solutions for α = 0.5, 0.6, . . . , 1
are shown in Fig. 5. The comparison of the approximate solutions com-
puted by MVIM, ADM and HPM is shown in Fig. 6.

5 Conclusion

From the obtained results it is clear that the homotopy perturbation method
suggested in this article provide the solutions in terms of convergent series
with easily computable components, so it is an efficient and appropriate
method for solving fractional Bratu-type equations.



Homotopy perturbation method for fractional Bratu-type equation 153

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

u(
x)

MVIM for alpha=0.9
ADM for alpha=0.9
HPM for alpha=0.9

Figure 4: Comparison of approximate solutions MVIM, ADM and HPM in α =
0.9 for Example 2.
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Figure 5: The exact solution in α = 1 and approximate solutions of HPM for
Example 3.
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Figure 6: Comparison of approximate solutions obtained by MVIM, ADM and
HPM in α = 0.9 for Example 3.
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