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Abstract. This work focuses on the correction of both the coefficient and
the right hand side matrices of the inconsistent matrix equations AX = B
and XC = D with orthogonal constraint. By optimal correction ap-
proach, a general representation of the orthogonal solution is obtained.
This method is tested on two examples to show that the optimal correction
is effective and highly accurate.
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1 Introduction

Solving the matrix equations

AX = B, XC = D, (1)

where A ∈ Rm×n, B ∈ Rm×p, C ∈ Rp×l, D ∈ Rn×l, is one of the
important study field in linear algebra. The matrix equations (1) arise in
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engineering and in some special matrix inverse problems [4, 6]. Many au-
thors have worked on this problem, and a series of useful results have been
obtained. For example, Yun [7] has presented an explicit representation of
least squares solutions by the matrix differentiation and the singular value
decompositions (SVD). In [3] Qiu considered the least squares solutions
to the matrix equations (1) with some constraints such as orthogonality,
symmetric orthogonality and symmetric. Chu [1] and Mitra [2] considered
the necessary and sufficient conditions for the solvability and general solu-
tion by using SVD and generalized inverse of a matrix, respectively. The
main purpose of this article is the optimal correction of inconsistent ma-
trix equations with changes in the coefficients matrices and right-hand side
matrices.

In this paper, we shall adopt the following notation. Rm×n denotes the
set of all m × n real matrices, ORn×n denotes the set of all orthogonal
matrices in Rn×n. AT , tr(A) and ‖A‖ stand for the transpose, the trace
and the Frobenius norm of a real matrix A, respectively. For A,B ∈ Rm×n,
we define the inner product in Rm×n : 〈A,B〉 = tr(BTA). It is known that
the matrix norm ‖.‖ induced by this inner product is the Frobenius norm.

The rest of the paper is organized as follows. Theoretical considerations
are discussed in Sections 3. Section 4 is devoted to numerical experiments.
The paper is ended by some concluding remarks in Section 5.

2 Changes in the coefficients matrices of the ma-
trix equations (1) with orthogonality constraints

We consider the matrix equations (1) with orthogonal constraint and apply
the changes in the coefficient matrices. The simplest kind of changes occurs
when the coefficient matrices are give with some errors. The goal of this
section is to find the matrices E∗

1 and E∗
2 with minimum norm that matrix

equations (A+E1)X = B and X(C +E2) = D with orthogonal constraint
are consistent. In other words, we are faced with the following constraint
optimization problem

min
X,E1,E2

‖E1‖2 + ‖E2‖2 (2)

(A+ E1)X = B,

X(C + E2) = D,

XTX = XXT = I.

The optimization problem (2) is equivalent to
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min
X

min
E1,E2

‖E1‖2 + ‖E2‖2 (3)

(A+ E1)X = B,

X(C + E2) = D,

XTX = XXT = I.

So with the help of generalized Lagrange function, we gain the optimal
solution of the internal and external problems. Therefore, we introduce the
following Lemmas.

Lemma 1. ([5]) Let A, W and U be three real-valued matrices and Ã be
an unknown variable matrix, then

1. ∂tr(WTATUTUÃW )

∂Ã
= UTUAWW T .

2. ∂tr(WT ÃTUTUAW )

∂Ã
= UTUAWW T .

3. ∂tr(WT ÃTUTUÃW )

∂Ã
= 2UTUÃWW T .

Lemma 2. ([3]) Let W = ATB +DCT and the singular value decomposi-
tion of W be W = Udiag(Σr, On−r)V

T , where

Σr = diag(δ1, . . . , δr), 0 < δr < · · · < δ1,

r = rank(W ), U, V ∈ ORn×n.

Then, the orthogonal solution for the problem min
X
‖AX −B‖2 + ‖XC −D‖2

can be expressed as

X = U

[
Ir 0
0 G

]
V T ,

where the matrix G ∈ ORn−r is arbitrary.

Theorem 1. Consider the following constrained optimization problem

min
E1,E2

‖E1‖2 + ‖E2‖2 (4)

(A+ E1)X = B,

X(C + E2) = D,

XTX = XXT = I.

Then, the optimal solutions of (4) can be expressed as

E∗
1 = BXT −A, E∗

2 = XTD − C.
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Proof. Clearly, the problem (4) is convex. Now, with the help of the Kuhn-
Tucker conditions we obtain the optimal solution of (4) and the generalized
Lagrange function will be as the following relation:

L(E1, E2, λ1, λ2) = ‖E1‖2 + ‖E2‖2+ < λT1 , (A+ E1)X −B >

+ < λT2 , X(C + E2)−D >,

where λ1 ∈ Rp×m and λ2 ∈ Rl×n. According to the definition of the inner
product and Lemma 1, the Kuhn-Tucker conditions are as follows:

∇E1L(E∗
1 , E

∗
2 , λ

∗
1, λ

∗
2) = 2E∗

1 + (Xλ∗1)
T = 0, (5)

∇E2L(E∗
1 , E

∗
2 , λ

∗
1, λ

∗
2) = 2E∗

2 + (λ∗2X)T = 0, (6)

∇λ1L(E∗
1 , E

∗
2 , λ

∗
1, λ

∗
2) = ((A+ E∗

1)X −B)T = 0, (7)

∇λ2L(E∗
1 , E

∗
2 , λ

∗
1, λ

∗
2) = (X(C + E∗

2)−D)T = 0. (8)

Substituting (5) and XTX = XXT = I in (7) yields the following results:

(A− 1

2
λ∗

T

1 XT )X = B ⇒ λ∗
T

1 = 2(AX −B), E∗
1 = BXT −A.

From (6) and (8), we have

X(C − 1

2
XTλ∗

T

2 ) = D ⇒ λ∗
T

2 = 2(XC −D), E∗
2 = XTD − C.

Therefore, the proof is completed.

The optimization problem (3) can be written as

min
X
‖BXT −A‖2 + ‖XTD − C‖2 (9)

XTX = XXT = I.

Now, we can find the least squares orthogonal solution of (9) by applying
Lemma 2.

Theorem 2. Let the matrix equations (1) with orthogonal constraint are
not consistent then the orthogonal solution of matrix equations

(A+ E∗
1)X = B and X(C + E∗

2) = D,

where
E∗

1 = BXT −A and E∗
2 = XTD − C,

can be expressed as

X = V

[
Ir 0
0 GT

]
UT ,

where the matrix G ∈ ORn−r is arbitrary.
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Proof. Usnig the Lemma 2.2 and theorem 2.3, the above theorem can be
easily proved.

3 Change in the coefficient and right hand side
matrices of the matrix equations (1)

Assume that the matrix equations (1) are not consistent, then we can si-
multaneously apply the suitable changes in the entries of the coefficient
and the right hand side matrices. The main goal of this section is to find
the matrices E∗

1 , E∗
2 , R∗

1 and R∗
2 with minimum norm such that matrix

equations (A + E1)X = B + R1 and X(C + E2) = D + R2 be consistent.
In other words, we will consider the following optimization problem,

min
X,E1,E2,R1,R2

‖E1‖2 + ‖E2‖2 + ‖R1‖2 + ‖R2‖2 (10)

(A+ E1)X = B +R1,

X(C + E2) = D +R2.

The optimization problem (10) is equivalent to

min
X

min
E1,E2,R1,R2

‖E1‖2 + ‖E2‖2 + ‖R1‖2 + ‖R2‖2 (11)

(A+ E1)X = B +R1,

X(C + E2) = D +R2.

By the Kuhn-Tucker conditions, we obtain the optimal solution of the in-
ternal problem. Then we solve the external problem.

Theorem 3. Consider the following constrained optimization problem

min
E1,E2,R1,R2

‖E1‖2 + ‖E2‖2 + ‖R1‖2 + ‖R2‖2 (12)

(A+ E1)X = B +R1,

X(C + E2) = D +R2.

The optimal solution of (12) can be expressed as

E∗
1 = −(AX −B)(XTX + I)−1XT ,

E∗
2 = −XT (XXT + I)−1(XC −D),

R∗
1 = (AX −B)(XTX + I)−1,

R∗
2 = (XXT + I)−1(XC −D).



On the optimal correction of inconsistent matrix equations 137

Proof. Clearly, the objective function and the constraints are differentiable
and convex. Now, we apply the Kuhn-Tucker conditions to obtain the
optimal solution of (12). The generalized Lagrange function is as follows:

L(E1, E2, R1, R2, λ1, λ2) = ‖E1‖2 + ‖E2‖2 + ‖R1‖2 + ‖R2‖2

+ < λT1 , (A+ E1)X − (B +R1) > + < λT2 , X(C + E2)− (D +R2) >,

where λ1 ∈ Rn×m and λ2 ∈ Rl×n. According to the definition of the inner
product and Lemma 1, the Kuhn-Tucker conditions are as follows:

∇E1
L(E∗

1 , E
∗
2 , R

∗
1, R

∗
2, λ

∗
1, λ

∗
2) = 2E∗

1 + (Xλ∗1)T = 0⇒ E∗
1 = −1

2
λ∗

T

1 XT , (13)

∇E2L(E∗
1 , E

∗
2 , R

∗
1, R

∗
2, λ

∗
1, λ

∗
2) = 2E∗

2 + (λ∗2X)T = 0⇒ E∗
2 = −1

2
XTλ∗

T

2 , (14)

∇R1L(E∗
1 , E

∗
2 , R

∗
1, R

∗
2, λ

∗
1, λ

∗
2) = 2R∗

1 − λ∗
T

1 = 0⇒ R∗
1 =

1

2
λ∗

T

1 , (15)

∇R2
L(E∗

1 , E
∗
2 , R

∗
1, R

∗
2, λ

∗
1, λ

∗
2) = 2R∗

2 − λ∗
T

2 = 0⇒ R∗
2 =

1

2
λ∗

T

2 , (16)

∇λ1
L(E∗

1 , E
∗
2 , R

∗
1, R

∗
2, λ

∗
1, λ

∗
2) = ((A+ E∗

1 )X − (B +R∗
1))T = 0, (17)

and
∇λ2

L(E∗
1 , E

∗
2 , R

∗
1, R

∗
2, λ

∗
1, λ

∗
2) = (X(C + E∗

2 )− (D +R∗
2))T = 0. (18)

Substituting (13) and (15) into (17), the following results yield

λ∗1 = 2(AX −B)(XTX + I)−1,

E∗
1 = −(AX −B)(XTX + I)−1XT ,

R∗
1 = (AX −B)(XTX + I)−1.

From (14), (16) and (18) , we have

λ∗2 = 2(XXT + I)−1(XC −D),

E∗
2 = −XT (XXT + I)−1(XC −D),

R∗
2 = (XXT + I)−1(XC −D),

which completes the proof.

Suppose that

E∗
1 = −(AX −B)(XTX + I)−1XT ,

R∗
1 = (AX −B)(XTX + I)−1,

E∗
2 = −XT (XXT + I)−1(XC −D),

R∗
2 = (XXT + I)−1(XC −D),
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then the optimization problem of (11) is equivalent to

min
X
‖(AX −B)(XTX + I)−1XT ‖2 + ‖XT (XXT + I)−1(XC −D)‖2+ (19)

‖(AX −B)(XTX + I)−1‖2 + ‖(XXT + I)−1(XC −D)‖2.

Theorem 4. Let the matrix equations (1) with orthogonal constraint are
not consistent. Then the orthogonal solution of matrix equations (A +
E∗

1)X = B +R∗
1 and X(C + E∗

2) = D +R∗
2 where,

E∗
1 =

BXT −A
2

, E∗
2 =

XTD − C
2

, R∗
1 =

AX −B
2

and R∗
2 =

XC −D
2

.

can be expressed as

X = U

[
Ir 0
0 G

]
V T ,

where the matrix G ∈ ORn−r is arbitrary.

Proof. Since the solution of the matrix equations (1) with orthogonal con-
straint are not consistent, thus the purpose is to find the matrices E∗

1 , E
∗
2 , R

∗
1

and R∗
2 with minimum norm such that matrix equations (A + E1)X =

B+R1 and X(C+E2) = D+R2 with orthogonal constraint be consistent.
In other words, we will consider the following optimization problem

min
X

min
E1,E2,R1,R2

‖E1‖2 + ‖E2‖2 + ‖R1‖2 + ‖R2‖2 (20)

(A+ E1)X = B +R1,

X(C + E2) = D +R2,

XTX = XXT = I.

From theorem 4 and XTX = XXT = I , we easily obtain

E∗
1 =

BXT −A
2

, E∗
2 =

XTC −D
2

, R∗
1 =

AX −B
2

and R∗
2 =

XC −D
2

.

Thus the optimization problem of (20) is equivalent to

min
X

‖BXT −A‖2 + ‖XTD − C‖2 + ‖AX −B‖2 + ‖XC −D‖2

4
(21)

XTX = XXT = I,

since
f(X) = ‖A1X −B1‖2 + ‖XC1 −D1‖2,
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where

A1 =

[
A
DT

]
, B1 =

[
B
CT

]
, C1 =

[
BT C

]
and D1 =

[
AT D

]
.

Then we can find the orthogonal solution to (21) only by applying Lemma
2. Let the singular value decomposition of the matrix W = AT1B1 +D1C

T
1

be W = Udiag(Σr, On−r)V
T , where

Σ = diag(δ1, . . . , δr), 0 < δr < · · · < δ1,

r = rank(W ), U, V ∈ ORn×n.

Then the orthogonal solution for problem (21) can be expressed as

X = U

[
Ir 0
0 G

]
V T ,

where the matrix G ∈ ORn−r is arbitrary.

4 Numerical Examples

In order to show the effectiveness of the theory which discussed in Sections
1 and 2, we present some numerical examples. We use MATLAB 7.9.0 on
a Core 3 Duo 2.40 GHz with main memory 4 GB.

Example 1. Let m = 4, n = 3, l = 3. The matrices A, B, C and D are
given by

A =


2.1835 − 0.3814 2.1835
2.9956 − 1.3592 2.9956
−2.3806 0.6847 − 2.3806

2.1835 − 0.3814 2.1835

 ,

B =


2.9702 4.2476 2.9702
−5.5247 5.2106 − 5.5247

0.6930 − 0.6821 0.6930
2.9702 4.2476 2.9702

 ,

C =

 4.2335 − 0.4580 4.2335
1.7921 2.5081 1.7921
4.2335 − 0.4580 4.2335

 ,
The Matlab code of this paper is available from the authors upon request.
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and

D =

 0.9274 − 0.6481 0.9274
−4.0500 1.6681 − 4.0500

0.9274 − 0.6481 0.9274

 .
According to Theorem 4, we obtain the minimum-norm least squares solu-
tion of Example 1 as follows

E∗
1 =


0.3065 − 4.4442 0.3065
1.5249 8.2387 1.5249
1.6680 − 1.5143 1.6680
0.3065 − 4.4442 0.3065

 ,

E∗
2 =

 −1.5799 0.6980 − 1.5799
0.1501 − 3.6795 0.1501
−1.5799 0.6980 0.4201

 ,
and

X =

 −0.5799 0.6980 0.4201
−0.6980 − 0.1599 − 0.6980

0.4201 0.6980 − 0.5799

 .
Therefore, we have

f = ‖(A+ E∗
1)X −B‖2 + ‖X(C + E∗

2)−D‖2 = 8.9970× 10−30,

‖XXT − I‖ = 2.8201× 10−16.

Example 2. Let m = 4, n = 3, l = 3. The matrices A, B, C and D are
given by

A =


0.6141 0.5228 0.6141
0.2703 − 1.8830 0.2703
1.0305 − 0.3247 1.0305
0.6141 0.5228 0.6141

 ,

B =


4.5902 4.8104 4.5902
−0.7471 3.7040 − 0.7471
−3.1926 − 0.6889 − 3.1926

4.5902 4.8104 4.5902

 ,

C =

 −3.0123 − 0.3119 − 3.0123
−0.8893 0.5521 − 0.8893
−3.0123 − 0.3119 − 3.0123

 ,
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and

D =

 −0.7835 1.1757 − 0.7835
1.3303 − 3.7520 1.3303
−0.7835 1.1757 − 0.7835

 .
According to Theorem 2, we obtain the minimum-norm least squares solu-
tion of Example 2 as follows

E∗
1 =


2.5425 − 0.5436 2.5425
0.2542 − 0.9040 0.2542
−1.9921 − 0.7614 − 1.9921

2.5425 − 0.5436 2.5425

 ,

R∗
1 =


−1.9368 − 2.3920 − 1.9368

0.1295 − 0.9555 0.1295
1.9690 0.8732 1.9690
−1.9368 − 2.3920 − 1.9368

 ,

E∗
2 =

 1.4288 − 0.0619 1.4288
−0.4141 1.7526 − 0.4141

1.4288 − 0.0619 1.4288

 ,
R∗

2 =

 −1.0471 − 0.6143 − 1.0471
−1.4358 1.5247 − 1.4358
−1.0471 − 0.6143 − 1.0471

 ,
and

X =

 −0.0785 0.3803 0.9215
0.3803 − 0.8431 0.3803
0.9215 0.3803 − 0.0785

 .
Therefore, we have

f = ‖(A+E∗
1)X−(B+R∗

1)‖2+‖X(C+E∗
2)−(D+R∗

2)‖2 = 9.8219×10−30.

‖XXT − I‖ = 6.0531× 10−16.

5 Conclusion

In this work, we considered an optimal correction of inconsistent matrix
equations with changes in the coefficients matrices and right-hand side ma-
trices. We have discussed the methodology for the construction of these
schemes and studied their performance on two test problems. We showed
that the present approach is efficient and highly accurate.
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