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Abstract. In this paper, the multistage variational iteration method is
implemented to solve a general form of the system of first-order differential
equations. The convergence of the proposed method is given. To illustrate
the proposed method, it is applied to a model for HIV infection of CD4+

T cells and the numerical results are compared with those of a recently
proposed method.
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1 Introduction

In this paper, we consider the general system of ordinary differential equa-
tions of first order

dxi(t)
dt

= αi +
m∑

j=1

βijxj(t) +
m∑

j=1

m∑
k=1

γijkxj(t)xk(t),

xi(t0) = ci,

i = 1, . . . ,m,

(1)
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where αi’s, βij ’s, γijk’s, ci’s ∈ R. Many problems in engineering and science
can be modelled by (1). For example, the mathematical model for HIV
infection [5, 6, 18, 30, 38], the mathematical model for enzymatic reaction
[34, 35], the Chen dynamical system [27], the Lotka-Volterra problem [3]
and the epidemic model [2, 19].

The various kinds of equation (1) are approximately solved by numer-
ical and analytical methods such as finite difference method [23], differ-
ential transform method [29], Adomian decomposition method [17], and
homotopy-analysis method [24, 25]. As we know, the He’s variational it-
eration method (VIM) [9, 10, 11, 12, 13, 14, 15] is a powerful device for
solving various kind of problems. It has been successfully applied for solv-
ing various PDEs and ODEs [1, 4, 7, 26, 31]. Convergence of the VIM has
been investigated under some conditions in [8, 28, 32, 33, 37].

In [8], Goh et al. have investigated the convergence of the VIM method
for a system of ordinary differential equations which is an special case of (1).
In this paper, we first investigate the convergence of the VIM to solve (1)
and then apply the multistage version of the VIM (known as the MVIM) to
a mathematical model for HIV infection. In fact we improve the application
of the MVIM to model.

This paper is organized as follows. In section 2, we give a brief descrip-
tion of the VIM and the MVIM. Section 3, is devoted to application of the
MVIM for solving system (1) and verifying its convergence. In Section 4,
the application of the proposed method for solving a model for HIV infec-
tion of CD4+ T cells is investigated. Some numerical results are given in
Section 5. Concluding remarks are also given in section 5.

2 A brief description of the VIM and the multi-
stage VIM

The VIM transforms the differential equation to a recurrence sequence of
functions and the limit of the sequence, if exists, is considered as the solu-
tion of the differential equation. Consider the following differential equation

Lu(t) +Nu(t) = g(t),

where L is a linear operator, N is a nonlinear operator and g(t) is an
inhomogeneous term. Given an initial guess u0(t), a correctional functional
as

un+1(t) = un(t) +
∫ t

t0

λ(Lun(s) +N ũn(s)− g(s))ds,
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is made, where λ is a general Lagrangian multiplier [12] which can be iden-
tified optimally via the variational theory and the function ũn is a restricted
variation which means δũn = 0. Obviously the successive approximations
uj , j = 0, 1, . . ., can be computed by determining λ. To find the optimal
value of λ, we make correction functional stationary in the following form

δun+1(t) = δun(t) + δ

∫ t

t0

λ(Lun(s) +N ũn(s)− g(s))ds = 0,

which results the stationary conditions and consequently the optimal value
of λ is obtained [37]. In fact the solution of the differential equation is
considered as the fixed point of the following functional under the suitable
choice of the initial term u0(t)

un+1(t) = un(t) + δ

∫ t

t0

λ(Lun(s) +Nun(s)− g(s))ds, n = 0, 1, 2, . . . .

In the MVIM, to solve the differential equation in the interval [t0, T ], the
interval is first partitioned into m subintervals [t0, t1], [t1, t2], . . . , [tm−1, tm]
where tm = T . In the ith stage, by using the computed solution in the
previous stage, the approximate solution at ti−1 is computed. Then the
approximate solution in the interval [ti−1, ti] is computed via the iteration
formula

un+1(t) = un(t) +
∫ t

ti−1

λ(Lun(s) +Nun(s)− g(s))ds, n = 0, 1, 2, . . . ,

where t ∈ [ti−1, ti].
Numerical results presented for several problems show that the MVIM

is usually more reliable than the VIM, especially for ordinary differential
equations (for example see [8]). However, this method is affected by some
problems. Since we are concerned with symbolic computations, if λ has
a complicated form, then after a few iterations the computation of ui,n+1

(the value of un+1 in the interval [ti−1, ti], i = 1, . . . , n) would be very
difficult or even impossible. Therefore, to overcome on this problem, we
should perform only a very few iterations (e.g., one or two) of the method
in each subinterval and use a large number of subintervals. Another way
to improve the MVIM is to choose the linear and nonlinear terms carefully.
More precisely, to obtain a tractable Lagrangian multiplier we may consider
a linear term as a nonlinear one (as we will do in this paper).
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3 Application of the VIM to system (1)

For the sake of the simplicity, let

Fi(x1(t), . . . , xm(t)) = αi +
m∑

j=1

βijxj(t) +
m∑

j=1

m∑
k=1

γijkxj(t)xk(t).

Then, the ODEs in (1) take the following form

dxi(t)
dt

= Fi(x1(t), . . . , xm(t)), i = 1, . . . ,m.

According to the VIM we write down the corresponding correction func-
tional as

x
(n+1)
i (t) = x

(n)
i (t)

+
∫ t

t0

λi(s)

[
dx

(n)
i (s)
ds

− Fi(x̃
(n)
1 (s), . . . , x̃(n)

m (s))

]
ds, i = 1, . . . ,m,

where x
(0)
i (t), i = 1, . . . ,m are the initial approximations. Taking variation

with respect to the x
(n)
i (t) and noticing that δx

(n)
i (t0) = 0, for i = 1, . . . ,m,

we have

δx
(n+1)
i (t) = δx

(n)
i (t) + δ

∫ t

t0

λi(s)

[
dx

(n)
i (s)
ds

− Fi(x̃
(n)
1 (s), . . . , x̃(n)

m (s))

]
ds

= δx
(n)
i (t) + λi(s)δx

(n)
i (s)|s=t +

∫ t

t0

λ′i(s)δx
(n)
i (s)ds.

Therefore, the following stationary conditions{
λ′i(s)|s=t = 0,
1 + λi(s)|s=t = 0,

i = 1, . . . ,m.

Hence, the Lagrange multiplier can be readily identified by λi = −1, for
i = 1, . . . ,m. This gives the following iteration formula

x
(n+1)
i (t) = x

(n)
i (t)

−
∫ t

t0

[
dx

(n)
i (s)
ds

− Fi(x
(n)
1 (s), . . . , x(n)

m (s))

]
ds, i = 1, . . . ,m,

which is equivalent to

x
(n+1)
i (t) = x

(n)
i (t0) +

∫ t

t0

Fi(x̃
(n)
1 (s), . . . , x̃(n)

m (s))ds, i = 1, . . . ,m,
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or

x
(n+1)
i (t) = x

(n)
i (t0)

+
∫ t

t0

αi +
m∑

j=1

βijx
(n)
j (s) +

m∑
j=1

m∑
k=1

γijkx
(n)
j (s)x(n)

k (s)

 ds, (2)

for i = 1, . . . ,m.

We now state and prove the next theorem concerning the convergence
of the iteration formula (2).

Theorem 1. Let Ω = [t0, t1] and xi ∈ C(Ω), for i = 1, . . . ,m. Assume
that the initial guess is chosen to be the initial condition. If x

(n)
i ∈ C(Ω)

for each i and n ≥ 0, and {x(n)
i }∞n=0, is uniformly bounded sequence on Ω

for each i, then x
(n)
i defined by (2) converges to xi, for i = 1, . . . ,m.

Proof. Obviously from equation (2), we have x
(n+1)
i (t0) = x

(n)
i (t0), i =

1 . . . , m. Therefore, x
(n)
i (t0) = xi(t0) for n ≥ 1 and i = 1, . . . ,m. On the

other hand, Eq. (1) may be written as

xi(s) = xi(t0) +
∫ t

t0

αi +
m∑

j=1

βijxj(s) +
m∑

j=1

m∑
k=1

γijkxj(s)xk(s)

 ds,

for i = 1, . . . ,m. Now, from Eqs. (2) and (3), we get

E
(n+1)
i (t) =

∫ t

t0

(
m∑

j=1

βijE
(n)
j (s)

+
m∑

j=1

m∑
k=1

γijk

(
x

(n)
j (s)x(n)

k (s)− xj(s)xk(s)
))

ds

=
∫ t

t0

(
m∑

j=1

βijE
(n)
j (s)

+
m∑

j=1

m∑
k=1

γijk

(
x

(n)
j (s)E(n)

k (s) + E
(n)
j (s)x(n)

k (s)
))

ds,

where E
(n+1)
i = E

(n)
i (t) = x

(n)
i (t) − xi(t), for n = 0, 1, . . ., and i =

1, . . . ,m. Now, from the uniform boundedness of the sequences {x(n)
i }∞n=0,
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i = 1, . . . ,m, there exist constants Mi such that |x(n)
i (t)| ≤ Mi on Ω, for

each i. On the other hand, since xi, i = 1 . . . , m are continuous on Ω, there
exist constants Ni such that |xi(t)| ≤ Ni, i = 1, . . . ,m on Ω. Therefore, we
have∣∣∣E(n+1)

i (t)
∣∣∣ ≤ ∫ t

t0

(
m∑

j=1

|βij | |E(n)
j (s)|+

m∑
k=1

( ∣∣∣E(n)
k (s)

∣∣∣ m∑
j=1

|γijk|
∣∣∣x(n)

j (s)
∣∣∣ )

+
m∑

j=1

( ∣∣∣E(n)
j (s)

∣∣∣ m∑
k=1

|γijk|
∣∣∣x(n)

k (s)
∣∣∣ ))ds.

On the other hand, we have
m∑

j=1

|γijk|
∣∣∣x(n)

j (t)
∣∣∣ ≤ m∑

j=1

|γijk|Mj =: cik,

m∑
k=1

|γijk|
∣∣∣x(n)

k (t)
∣∣∣ ≤ m∑

k=1

|γijk|Mk =: c′ij .

Therefore,∣∣∣E(n+1)
i (t)

∣∣∣ ≤ ∫ t

t0

 m∑
j=1

|βij | |E(n)
j (s)|+

m∑
k=1

(cik + c′ik)
∣∣∣E(n)

k (s)
∣∣∣
 ds

≤
∫ t

t0

 m∑
j=1

(
|βij |+ cij + c′ij

)
|E(n)

j (s)|

 ds

≤
∫ t

t0

 m∑
j=1

c̄ij |E(n)
j (s)|

 ds

where c̄ij = |βij |+ cij + c′ij . Now, by using the Cauchy-Schwartz inequality,
we get ∣∣∣E(n+1)

i (t)
∣∣∣ ≤ ∫ t

t0

 m∑
j=1

c̄ij |E(n)
j (s)|

 ds

≤
∫ t

t0

 m∑
j=1

c̄2
ij

 1
2
 m∑

j=1

|E(n)
j (s)|2

 1
2

ds.

Let

Sn(t) =

 m∑
j=1

|E(n)
j (t)|2

 1
2

and c̃i =

 m∑
j=1

c̄2
ij

 1
2

.
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Therefore, for i = 1, . . . ,m, we have∣∣∣E(n+1)
i (t)

∣∣∣ ≤ c̃i

∫ t

t0

Sn(s)ds.

It is straightforward to verify that

Sn+1(t) ≤ c

∫ t

t0

Sn(s)ds,

where

c =

 m∑
j=1

c̃2
ij

 1
2

.

Now, letting M = max
t∈Ω

S0(t), we proceed as follows

S1(t) ≤ c

∫ t

t0

S0(s)ds ≤ M

∫ t

t0

ds = cM(t− t0),

S2(t) ≤ c

∫ t

t0

S1(s)ds ≤ c

∫ t

t0

cM(s− t0)ds = c2M
(t− t0)2

2
,

S3(t) ≤ c

∫ t

t0

S2(s)ds ≤ c

∫ t

t0

c2M
(s− t0)2

2
ds = c3M

(t− t0)3

3!
,

...

Sn(t) ≤ c

∫ t

t0

Sn−1(s)ds ≤ c

∫ t

t0

cn−1M
(s− t0)n−1

(n− 1)!
ds = cnM

(t− t0)n

n!
.

Therefore
Sn(t) ≤ M

(c(t− t0))n

n!
≤ M

(ct1)n

n!
→ 0,

as n tends to infinity and this completes the proof.

4 Application of the method to a model for HIV
infection of CD4+ T cells

The Human Immunodeficiency Virus (HIV) is a retrovirus that targets the
CD4+ T lymphocytes, which are the most abundant white blood cells of
the immune system. Although HIV infects other cells also, it wreaks the
most havoc on the CD4+ T cells by causing their decline and destruction,
thus decreasing the resistance of the immune system [36].
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Mathematical models have become important tools in analyzing the
dynamics of HIV infection [16, 20, 21, 22, 36, 39]. The model which we
investigate in this paper is given by the following system of ordinary differ-
ential equations [5, 6, 18, 38, 30]:

dT

dt
= p− αT + rT (1− T + I

Tmax
)− kV T,

dI

dt
= kV T − βI,

dV

dt
= NβI − γV,

(4)

with the initial conditions:

T (0) = r1,0, I(0) = r2,0, V (0) = r3,0,

where T (t) and I(t) represent, respectively, the concentration of healthy
CD4+ T cells and infected CD4+ T cells at time t and V (t) represents the
concentration of free HIV at time t. As we see system (4) is a special of
Eq. (1).

The parameters p, α, r, k, β, N , γ and Tmax are assuming only positive
values. These parameters are defined as follows: p is the source of CD4+ T
cells precursors, α is the natural turn-over rate of CD4+ T cells, r is their
growth rate, and Tmax is their carrying capacity, k is the infection rate, β is
a blanket death term for infected cells, γ is the lytic death rate for infected
cells and N viral particles are released by each lysing cell.

Recently, Ongun in [30] proposed the Laplace Adomian decomposition
method (LADM) and the LADM-Padé for solving system (4). To investi-
gate this model, we apply the MVIM for computing an approximate solu-
tion to (4).

According the results presented in Section 3, the VIM for solving (4)
can be written as

Tn+1(t) = Tn(t0)−
∫ t

t0

[
− p + αTn(s)

−rTn(s)
(

1− Tn(s) + In(s)
Tmax

)
+ kVn(s)Tn(s)

]
ds,

In+1(t) = In(t0)−
∫ t

t0

[−kVn(s)Tn(s) + βIn(s)] ds,

Vn+1(t) = Vn(t0)−
∫ t

t0

[−βNIn(s) + γVn(s)] ds.

(5)
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Remark 1. Although, the terms −αT , −βI and −γV in (4) are linear, we
identify the multipliers approximately considering them as restricted vari-
ations. If we consider them as linear terms, then the Lagrange multipliers
would be λ1(s) = −eα(s−t), λ2(s) = −eβ(s−t) and λ3(s) = −eγ(s−t). In this
case, the expressions for Tn, In and Vn for n ≥ 2 become very complicated
and computing a highly accurate solution would be difficult.

5 Numerical examples

All the computations presented in this section have been obtained by the
Maple software. We consider the following two sets of data

(i) p = 0.1, α = 0.02, β = 0.3, r = 3,
γ = 2.4, k = 0.0027, Tmax = 1500, N = 10,

(ii) p = 2.2, α = 0.2, β = 0.5, r = 0.02,
γ = 2.8, k = 0.027, Tmax = 1300, N = 20,

for Eq. (4). For both set of data, let Ω = [0, 1] and the initial conditions
be

T (0) = 0.1, I(0) = 0, V (0) = 0.1.

The first set of data has been investigated by Ongun in [30]. We use the
MVIM to solve Eq. (4). To do this, we partition the interval [0, 1] into
ten subintervals and apply six iterations of the VIM in each subinterval.
Numerical results of the first set of data are given in Tables 1-3 and
for the second set of data in Tables 4-6. To show the efficiency of the
proposed method we also give the approximate solution computed by the
fourth order Runge-Kutta (RK4) method with stepsize 0.01 and the Laplace
Adomian decomposition method (LADM). As we observe, the numerical
results presented in these tables show the proposed method provides a
highly accurate solution to Eq. (4) and are better than those of the LADM
method.

For more investigation, since the exact solution of the model is not in
hand, we assume that the solution computed by the RK4 method is enough
accurate and consider it as the exact solution. Then the plot of log10 of
the errors for the computed solutions by MVIM and LADM are displayed
in Figure 1 and Figure 2. These figures indicate that the new method is
better than the LADM.
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Table 1: Numerical comparison of T (t) for the first set of data.

t LADM RK4 MVIM
0.0 0.1 0.1 0.1
0.2 0.2088073298 0.2088080833 0.2088080687
0.4 0.4061358315 0.4062405393 0.4062404869
0.6 0.7624762220 0.7644238890 0.7644237458
0.8 1.398082863 1.414046831 1.4140464860
1.0 2.507874151 2.591594802 2.5915940280

Table 2: Numerical comparison of I(t) for the first set of data.

t LADM RK4 MVIM
0.0 0.0 0.0 0.0
0.2 0.6032706956e− 5 0.6032702150e− 5 0.6032701792e− 5
0.4 0.1315891002e− 4 0.1315834073e− 4 0.1315833962e− 4
0.6 0.2123298178e− 4 0.2122378506e− 4 0.2122378281e− 4
0.8 0.3024270157e− 4 0.3017741955e− 4 0.3017741544e− 4
1.0 0.4033321858e− 4 0.4003781468e− 4 0.4003781139e− 4

Table 3: Numerical comparison of V (t) for the first set of data.

t LADM RK4 MVIM
0.0 0.1 0.1 0.1
0.2 0.06187995305 0.06187984331 0.06187984461
0.4 0.03830818047 0.03829488788 0.03829488952
0.6 0.02391981608 0.02370455014 0.02370455148
0.8 0.01621234343 0.01468036377 0.01468036471
1.0 0.01605502238 0.00910084504 0.00910084552
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Figure 1: log10 of errors for the MVIM and LADM methods for the first
set of data : top for T (t); middle for V (t) and down for I(t).
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Table 4: Numerical comparison of T (t) for the second set of data.

t LADM RK4 MVIM
0.0 0.1 0.1 0.1
0.2 0.5285174083 0.5285174234 0.5285174236
0.4 0.9418326327 0.9418344479 0.9418344479
0.6 1.3405204714 1.3405495034 1.3405495030
0.8 1.7249888432 1.7251930023 1.7251930000
1.0 2.0953428921 2.0962593326 2.0962593280

Table 5: Numerical comparison of I(t) for the second set of data.

t LADM RK4 MVIM
0.0 0.0 0.0 0.0
0.2 1.172523849e− 4 1.1723542076e− 4 1.172354059e− 4
0.4 2.701675420e− 4 2.6814398247e− 4 2.681439603e− 4
0.6 4.222316707e− 4 3.8989790302e− 4 3.898978830e− 4
0.8 6.981793786e− 4 4.7092758249e− 4 4.709275709e− 4
1.0 1.537127434e− 3 5.1749118375e− 4 5.174911792e− 4

Table 6: Numerical comparison of V (t) for the second set of data.

t LADM RK4 MVIM
0.0 0.1 0.1 0.1
0.2 0.0572073701 0.0572071940 0.0572071976
0.4 0.0330062295 0.0329846473 0.0329846514
0.6 0.0197116921 0.0193587664 0.0193587698
0.8 0.0142603131 0.0117277521 0.0117277547
1.0 0.0190408847 0.0074628631 0.0074628647
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Figure 2: log10 of errors for the MVIM and LADM methods for the second
set of data: top for T (t); middle for V (t) and down for I(t).
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6 Conclusion

We have applied the multistage variational iteration method (MVIM)
for solving a general form of the system of first-order differential equations.
A theorem for the convergence of the method has been presented. Then,
the method has been applied to solve a model for HIV infection of CD4+

T cells. Numerical results show that the MVIM is very effective and is
superior to the LADM method.
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