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Abstract. The probable lack of some arcs and nodes in the stochastic
networks is considered in this paper, and its effect is shown as the arrival
probability from a given source node to a given sink node. A discrete time
Markov chain with an absorbing state is established in a directed acyclic
network. Then, the probability of transition from the initial state to the
absorbing state is computed. It is assumed to have some wait states, if
there is a physical connection but not any immediate communication be-
tween two nodes. The Numerical results show, the critical nodes and arcs
are detected by the proposed method and it can be used to anticipate prob-
able congestion in communication and transportation networks.

Keywords: Stochastic networks, unstable networks, stochastic shortest path, dis-
crete time Markov chain.
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1 Introduction

The shortest path problem is one of the fundamental network optimiza-
tion problems. The deterministic shortest path problem has been studied
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extensively and applied in many fields of optimization. There are poly-
nomial time algorithms to solve the deterministic shortest path problem
[5, 3, 11]. However, the stochasticity nature of real world problems espe-
cially telecommunication networks and transportation networks caused the
new stochastic version of problem appears [4]. The stochastic shortest path
problem (SSP) is defined in various aspects of finding the best path with
stochastic optimality conditions. However, most of researchers considered
stochastic changes of the arc lengths in a network or the cost variables was
stochastic variables. In their works, it was supposed continuous or discrete
probability distribution functions for the arc lengths and costs, then tried
to find the shortest path with the most probability to arrive from a given
source node to a given sink node. In this paper, the arrival probability is
computed in a network with discrete distribution probability of the arcs
existence.

Wu et al. [14] considered a public transportation network that arcs
can only be traversed at certain points in time and weights of these arcs
change in a day. They modeled such a public transportation network as a
stochastic and time-dependent network. To find optimal routs through a
network with probability distributed arc weights, they applied k-shortest
path algorithms. Fan et al. [6] proposed a procedure for identifying dy-
namic routing policies in stochastic transportation networks. The goal was
to identify the next node to visit such that the probability of arriving at
the destination is maximized which is called arriving on time problem. The
Bellman principle of optimality was applied to formulate the mathematical
model of this problem.

Numerous researchers attempted to model and solve SSP using Markov
decision process. Kulkarni [10] developed an exact method to compute
the distribution function of the length of the shortest path from a given
source node to a given sink node in a directed network with exponentially
distributed arc lengths. A Continuous Time Markov Chain (CTMC) is
constructed and the time until absorption into the absorbing state starting
from the initial state is equal to the length of the shortest path in the
network. There are some basic assumptions in the Kulkarni’s paper; the
network is modeled as a communication network which is an acyclic directed
network. In each transition possibly there are some useless nodes and arcs
those are unable to transmit message; so in such a transition from one state
to another more than one node or one arc can be added to the new state.
Our assumptions are similar to Kulkarni’s work, but it is a Discrete Time
Markov Chain (DTMC) and in any state transition only one node can be
added to the new state because there some wait states are assumed. Also,
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in the proposed model of this paper there is not useless nodes and a unit
flow is sent from the source node to the sink node.

Azaron and Modarres [2] introduced a method to solve a queuing net-
work problem by solving equivalent stochastic shortest path problem. They
developed Kulkarni’s method to queuing networks. The service time in each
station is either exponentially distributed or belongs to a special class of
Coxian distribution. The transport times between every pair of service sta-
tions are independent random variables with exponential distributions. In
their proposed method the network of queues is transformed into an equiv-
alent stochastic network and then the distribution function of the shortest
path of this stochastic network is determined. The wait states are extended
in our work; it is possible to wait in the nodes like queueing networks and
further there are some wait states that by traversing some arcs, it is not
created a new state.

Thomas and White [13] discussed the congestion control in communi-
cation networks. By using a Markov decision process, they modeled and
analyzed the problem of constructing a minimum expected total cost route
from an origin to a destination. They considered the congestion dissipates
over time according to some known probability distribution. The costs
of arcs are stochastic but there is an option to wait with constant cost.
The problem objective is to determine a policy for selecting a path that
minimizes the expected total cost of the trip. Fan et al. [7] considered
a congestible network with correlated link costs and wanted to minimize
the expected travel time. Each link is assumed to be in one of two possi-
ble conditions congested or uncongested. Conditional probability density
functions for link travel times are assumed known for each condition. We
assume the lack of arcs and nodes to transmit messages because of conges-
tion or other accidents. Also, there are the physical state to make decision
according to current state.

The computation of minimal length path in incomplete stochastic net-
works, when travel times between nodes are allowed to be exponentially
distributed random variables, was formulated as a linear programming
problem by Peer and Sharma [12]. There are two sets of nodes in their
assumption, with possible failure and without failure or always working.
They use random number generation to read the message travel times and
to obtain the objective function in order to solve it by simplex method. For
the different set of random numbers generated, the various streams of travel
times are obtained and applied in the objective function in order to obtain
the set of expected shortest paths in determining distribution. Ji in [9] pro-
posed the concepts of expected shortest path, α-shortest path and the most
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shortest path, and presented three related new types of models, expected
value model, chance-constrained programming and dependent-chance pro-
gramming. In order to solve these models, a hybrid intelligent algorithm
integrating stochastic simulation and genetic algorithm is developed.

In this paper, the routing problem is considered under uncertainty con-
ditions related to the physical topology of a network. There are two options
at any node toward the destination node, departing from the current state
to a new state, when a larger labeled node is visited or wait in the cur-
rent state expecting better conditions. A DTMC with an absorbing state
is established and the objective is to find the probability of arrival from a
given source node to a given sink node. The uncertainty of the topology
causes several unstable connections between nodes, however the original
topology of the network determine likely and unlikely connections between
pairs of nodes. The conditional probability of departure from one node to
other node is known. The transition matrix of DTMC is obtained and the
probability of arrival to the sink node from the source node is computed.

This paper is organized as follow. In Section 2 some definitions and
assumptions of networks with unstable topology is introduced. Section 3
reviews the concept of the stochastic process DTMC. In Section 4 the estab-
lished DTMC in the network is described. Section 5 contains some numer-
ical results of accomplishment of the proposed method on some networks
with various topologies. Finally Section 6 is conclusion and the direction
of future works is proposed.

2 Unstable network modeling

In this section we introduce some definitions and assumptions of networks
with unstable topology. Consider network G = (N,A) with node set N
and arc set A. There exists a stable physical topology that shows the
connection of any pair nodes i,j ∈N if (i, j)∈A. So, the communication is
possible between those nodes that an arc connects them. G is a directed
network and does not have any directed cycle. Then we can label nodes in
topological order such that for any (i, j)∈A, i < j (see [1]).

To model an unstable topology for network G think about the communi-
cation networks, where there are some physical connections between nodes
but we can not traverse any more toward destination node because of unan-
ticipated congestion. There are two options; first, wait at particular node
expecting presence of some facilities to release from the current state. To
model such states we consider some artificial loops (shown with dash arcs
in Figure 1) at any nodes except the sink node. Second, although it dose
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Figure 1: Example network with 5 nodes and 7 arcs

not create a new state, try to use some arcs. We define these two options
as wait states because they do not create a new state. In our assumptions
a new state is created whenever we can traverse to a new node with larger
label. Figure 1 shows example network with its topological ordered nodes;
this initial topology of network is stable topology. Node 1 is the source
node and node 5 is the sink node. It is impossible to traverse arc (1, 4) be-
cause it does not exist in the stable topology of example network. However,
existence of arc (3, 4) in the stable topology does not mean it is possible
to communicate between node 3 and node 4 all the time. So, the existence
probability is defined for all the arcs, those can be probably existed in the
current unstable topology. In this paper, network G(t) = (N(t), A(t)) de-
scribes the network state in topology time t. We consider stable topology
of network for t = 0 and unstable topologies for other times created from
initial stable topology. So, the current topology of time t is an unstable
topology if and only if there is an arc (i, j) ∈ A \ A(t). Notice, time t is
a nonnegative integer variable. The numbers on arcs in Figure 1 show the
initial wait and leaving probabilities for any node.

The decision variable of arc (i, j) according to the topology of time t
is shown by xij(t). The probability of existence of arc (i, j) at current
topology of time t is defined as follow

qij(t) = P [xij(t) = 1], (i, j) ∈ A(t) .

The existence of artificial arc (i, i) means we have decided to wait at
node i either there are any departure arc from node i or not. The existence
probability of arc (i, i) is

qii(t) = P [xii(t) = 1] = 1−
∑

{j:(i,j)∈A(t)} qij(t).

So, the wait probability in node i depends on leaving arcs of node i in
time t. We compute the wait probability of node i for unstable topologies
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in two ways. In first method, if arc (i, j) ∈ A \ A(t) then all leaving
probabilities and the wait probability of node i are changed by reproducing
random numbers. It is assumed in the first method some facilities can
be provided instead of disabled arcs thus both the leaving and the wait
probabilities are changed in this method. In the second method, if arc
(i, j) ∈ A \A(t) then qii(t) = qii(0) + qij(0).

3 Discrete time Markov chain (DTMC)

A stochastic process is called Markov chain if it satisfies the Markov prop-
erty; the conditional probability of the next state is only depends on the
current state and independent of the previous states

P [Sr+1 = k |Sr = l, Sr−1 = n, . . . , S1 = m] = P [Sr+1 = k |Sr = l].

Then the discrete time process S = {Sr, r = 1, 2, 3, . . . } is a discrete
time Markov chain. Although it is not mentioned, the process is the ho-
mogenous Markov chain (see [8]). The transition probability pkl satisfies
the following conditions
I. 0 ≤ pkl ≤ 1
II.

∑
l pkl = 1, for k = 1, 2, . . . , |S| .

The state transition probabilities as the entries of an |S|×|S| matrix P ,
where pkl is the kth row and the lth column, is called the state transition
probability matrix

P = [pkl]|S|×|S|.

The transition probability matrix P is a stochastic matrix because for
any row k,

∑|S|
l=1 pkl = 1. The probability that the process is in state

k before P [S1 = k] makes the first transition, then the set {P [S1 = k]}
defines the initial conditions for the process and

∑
k P [S1 = k] = 1. In this

paper, the initial state of DTMC contains the single source node S1 = {1}
and the probability of the transition to the next states is equal to the
probability of the existence of the departure arcs plus the the probability
of existence the artificial wait arc.

Let P [X(n) = l] denotes the probability that the process is in state l
at the end of the first n transition, then for a finite process the probability
of arrival to the sink node by n transition is

∑
n P [X(n) = S|S|]. Then, the

arrival probability from the source node to the sink node by finite transi-
tions in the network with established DTMC is defined as the summation
probability of all paths from the initial state S1 to the absorbing state S|S|.
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Table 1: The state space of the example network
State space Current nodes

S1 {1}
S2 {1, 2}
S3 {1, 3}
S4 {1, 2, 3}
S5 {1, 2, 4}
S6 {1, 3, 4}
S7 {1, 2, 3, 4}
S8 {1, 2, 3, 4, 5}

The state space S of the example network is shown in Table 1. State
S4 contains nodes {1, 2, 3} and all connected components of network G
constructed by nodes 1, 2 and 3. Figure 2 shows constructed connected
components of state S3 of DTMC for the example network.

Figure 2: Constructed connected components of state S4

4 DTMC for unstable topology

The states of DTMC contains those nodes are unable to receive message
at the current topology of time t. In the final state the given sink node
is reached and the process does not progress any more. So, the absorbing
state contains all nodes of the network. It is not allowed to return from
a reached node but could be waited. Following assumptions describes the
creation of the state space of stochastic process DTMC

i. By arriving the sink node the process can traverse neither any node
nor any arc (the absorbing state)

ii. According to the current state, it is allowed to traverse just one arc
(not necessarily the departure arc of the current node with maximum
labeled number amongst the current state nodes)
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iii. The next state is created if a new node is added to the set of previous
nodes.

If in a directed acyclic network that out − degree of any node is at
least one except the given sink node, then for any node i in the network
there is a path from the given source node to the given sink node which
traverses the node i [1]. Therefore, any node could be in a path from the
source node to the sink node. We suppose a message has been sent from
the source node in all directions and want to determine when the sink node
will be reached under the topology uncertainty conditions of the network.
The wait probabilities which are the diagonal arrays of transition matrix
P are obtained by Lemma 1. We fix time t and for convenience variable t
is omitted in the following lemmas, however they are accurate for all the
times and do not depend on variable t. The determined factors are qij and
qii probabilities whether they are varying according to topology of time t.

Lemma 1. Suppose Pkk is the (k,k) array of the matrix P (the transition
probability matrix of DTMC for network G with unstable topology) and
Sk = {v0 = 1, . . . , vm} is the current state then the wait probability of state
Sk is

Pkk =

{
1−

∑|S|
j=k+1 Pkj , if k < |S|

1, if k = |S|.

During transition from the current state to the new state it is necessary
to reach a node other than the current state nodes. The other arrays of
transition matrix P are obtained by Lemma 2. To clarify the formula of
transition probabilities Pkl, we define events Evivj for traversing arc (vi, vj)
during transition from state Sk to state Sl such that |Sl − Sk| = 1. The
formula of Pkl contains two elements and should be computed. There are
two options in node vm of the current state Sk. To wait at vm by traversing
artificial arc (vm, vm) and to depart from vm toward node vj ∈ Sl − Sk.
Notice it is impossible to wait at nodes vi ∈ Sk − {vm} because it should
be departed to reach the current state nodes however it is not necessary for
node vm with largest label.

If vj ∈ Sl − Sk then one or all of events Evivj can be happen for vi ∈
Sk − {vm} and (vi, vj) ∈ A(t). The arrival probability of node vj from the
current state Sl is equal to P [

⋃
{vi∈Sk−{vm},(vi,vj)∈A(t)} Evivj ]. It should be

prevented the current state nodes to reach other nodes than vj ∈ Sl − Sk

and it is equal to
∏

vi∈Sk−{vm}(1−
∑

{vr 6=vj ,vr /∈Sk,(vi,vr)∈A(t)} qvivr).

Lemma 2. The transition probability Pkl is the (k, l) array of the matrix
P , and it shows the transition from state Sk to state Sl such that Sk =
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{v0 = 1, . . . , vm}, |Sl − Sk| = 1 and vj ∈ Sl − Sk, k 6= l, l < |S|. If l < k
then Pkl = 0, and if l > k we have

Pkl =
P [

⋃{
vi∈Sk−{vm}
(vi,vj)∈A(t)

} Evivj ]×(
∏

vi∈Sk−{vm}(1−
∑{

vr 6=vj ,vr /∈Sk

(vi,vr)∈A(t)

} qvivr))×qvmvm+

qvmvj .

To compute the transition probabilities Pk|S| for k = 1, 2, . . . , |S| − 1 it
should be noticed the final state is the absorbing state containing all nodes
and the stochastic process does not progress any more. So, it is sufficient
to consider leaving arcs toward the sink node from the current state nodes
which is stated as Lemma 3.

Lemma 3. To compute the transition probability from state Sk = {v0 =
1, . . . , vm} to the absorbing state S|S| suppose vn ∈ S|S| is the given sink
node of network G, then (k, |S|) array of matrix P , k = 1, 2, . . . , |S| − 1 is

Pk|S| = P [
⋃{

vi∈Sk,
(vi,vn)∈A(t)

} Evivn ].

Figure 3: The state space diagram of the established DTMC

The state space diagram of the established DTMC for the example
network when t = 0 is created as Figure 3; the values on arcs show waiting
and transition for any state of the initial topology of the example network.
We want to obtain the probability of arrival to node 5 from node 1 which is
defined as the summation probability of all paths from the initial state S1 to
the absorbing state S8. For the example network three unstable topologies
are considered. The disabled arcs in various topologies and the effects on
the wait probabilities are shown in Table 2.
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Table 2: The disabled arcs during topology of time t
Time t Disabled Arcs Changed Wait Probabilities

Method 1 Method 2
1 (2, 3) q22 = 0.4129 q22 = 0.7747
2 (1, 3), (3, 5) q11 = 0.2692, q33 = 0.4981 q11 = 0.6730, q33 = 0.5433
3 (2, 3), (2, 4), (3, 5) q22 = 1, q33 = 0.0391 q22 = 1, q33 = 0.5433

Transition probability P47 computed from constructed states as shown
in Figure 4 and it is equal to q33q24 + q34. It is possible to wait at node 3
but not other nodes of state S4.

Figure 4: The constructed states during transition from S4 to S7

We apply two different methods to recompute the wait and leaving
probabilities of any node when one of its leaving arcs is disabled during
unstable topologies. In first method, we reproduce random numbers for
current existent arcs which the arrival probability and its changes by this
method is shown as solid line in Figure 5. In second method, we just add
the leaving probability of omitted arc on the wait probability of the head
node which the arrival probability and its changes by this method is shown
as dashed line in Figure 5. It is seen, when arcs (1, 3) and (3, 5) are disabled,
the arrival probability is reduced rapidly; however the omission of arc (2, 3)
dose not affect the arrival probability.
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Figure 5: Arrival probabilities of the example network
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Table 3: The disabled arcs of networks 1, 2 and 3
Disabled Arcs

Time t 1 2 3 4

Network 1 (2, 3) (1, 3) (1, 2) (6, 10)
(3, 10) (1, 6) (1, 6)
(5, 8) (4, 8) (2, 6)
(7, 8) (5, 8) (2, 8)

(10, 11) (7, 8) (6, 7)
(10, 11)

Network 2 (11, 15) (2, 7) (5, 9) (1, 2)
(5, 6) (6, 7) (1, 6)

(10, 14) (10, 13) (2, 3)
(11, 16) (10, 14) (2, 5)

(2, 7)
(11, 14)

Network 3 (4, 6) (2, 5) (3, 4) (5, 10)
(5, 9) (4, 5) (8, 9)
(2, 11) (4, 10) (8, 10)
(6, 7) (8, 11)
(6, 11) (9, 10)
(8, 10)

5 Numerical examples

In this section some executions of the proposed method on various net-
works are presented. All topologies (stable and unstable) for all networks
are created randomly. The leaving and waiting probabilities of nodes are
stochastic numbers produced by uniform distribution function. Three net-
works with different topologies are considered. For all networks 4 unstable
topologies are assumed. The disabled arcs during four unstable topologies
is determined in Table 3.

The first network is created randomly with 11 nodes and 28 arcs shown
in Figure 6. We use two propositions 1 and 2 inductively to be sure there
will be a path from the source node to the sink node in its beginning
topology and the created network is a cycle-free network (see [1]).

Proposition 1. If node k is the first node with larger index than source
node 1 and in-degree(k) = 0; let 1 ≤ l < k is an arbitrary node then adding
arc (l, k) there exists a path from source node 1 to node k.

Proposition 2. If node k is the first node with smaller index than sink
node n and out-degree(k) = 0; let k < l ≤ n is an arbitrary node then
adding arc (k, l) there exists a path from node k to sink node n.
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Figure 6: Network 1 with 11 nodes and 28 arcs

The probabilities of arrival to the sink node in all topologies of network
1 are shown in Figure 7.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Time

A
ri

va
l p

ro
ba

bi
lit

y

Figure 7: Arrival probabilities of network 1
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The second network is created with 16 nodes and 42 arcs shown in
Figure 8 and it is a gridded network.
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Figure 8: Network 2 with 16 nodes and 42 arcs

The probabilities of arrival to the sink node in all topologies of network
2 are shown in Figure 9.
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Figure 9: Arrival probabilities of the example network 2



Arrival probability in the stochastic networks 87

The third network is created with 11 nodes and 55 arcs and it is a
complete network. The traverse probabilities of edges for complete network
3 is given as follows

0.0031 0.0128 0.0089 0.6263 0.0132 0.0485 0.0741 0.0051 0.0338 0.0943 0.0799
0 0.0402 0.0131 0.0407 0.0817 0.0761 0.0822 0.0832 0.0365 0.4500 0.0963
0 0 0.0374 0.0802 0.0108 0.0690 0.6994 0.0190 0.0257 0.0460 0.0126
0 0 0 0.0210 0.0579 0.0758 0.0160 0.0993 0.1378 0.5505 0.0417
0 0 0 0 0.0632 0.1556 0.0444 0.1092 0.4803 0.0660 0.0813
0 0 0 0 0 0.0273 0.1347 0.1545 0.0903 0.0119 0.5813
0 0 0 0 0 0 0.0871 0.0325 0.0020 0.1639 0.7146
0 0 0 0 0 0 0 0.1205 0.8011 0.0363 0.0422
0 0 0 0 0 0 0 0 0.0336 0.0710 0.8954
0 0 0 0 0 0 0 0 0 0.0841 0.9159
0 0 0 0 0 0 0 0 0 0 1.0000


The probabilities of arrival to the sink node in all topologies are shown

in Figure 10.
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Figure 10: Arrival probabilities of the example network 3

6 Conclusion

We modeled the unstable topology of networks as discrete time Markov
chain (DTMC) stochastic process. The arrival probability from a given
source node to a given sink node is computed in various networks. Some
arcs are disabled during the considered unstable topologies and the effects
on the arrival probability were illustrated. Accomplishment of proposed
method on various networks shows the omission of some arcs can hit the
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arrival probability and some other arcs if are omitted their effects are not
considerable. Although there is not any restriction, arcs selection to be
disabled and their number are randomly done in this paper. Extension of
described model to the continuous time varying networks and using the
meta-heuristic methods to apply the proposed method on the larger scale
networks can be considered as feature works guidelines.
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