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Abstract. In this paper, we present a numerical algorithm for solving
matrix equations (A ® B)X = F by extending the well-known Gaussian
elimination for Az = b. The proposed algorithm has a high computational
efficiency. Two numerical examples are provided to show the effectiveness
of the proposed algorithm.
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1 Introduction

Numerical solutions or iterative algorithms for different matrix equations
have received much attention [34, 22, 23, 11]. For example, Charnsethikul
presented a numerical algorithm for solving n x n linear equations AX = b
with parameters covariances [2]. The iterative algorithms can solve linear
matrix equations [10, 9, 25, 29, 17] but the Gaussian elimination method is
direct and important for solving linear equations [20, 15]. In order to avoid
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the error accumulations and to improve the numerical stability, several piv-
oting strategies have been adopted [15, 1], e.g., the partial pivoting strat-
egy, the complete pivoting strategy and the rook pivoting strategy. Studies
on Gaussian elimination include the pivoting strategies [25], stabilities [27]
and coefficient matrices [15].

The matrix equations play an important role in system theory [32, 12,
, O], control theory [26, 31, 30, 18], stability analysis [21, 24, 13, 4]. A
conventional method for solving equations AX B = F' is to use the Kro-
necker product [15]. However, high dimensions of the associated matrices
result in heavy computational burden [15]. There exist many methods
which transform the matrix into forms for which solutions may be readily
computed, such as the Jordan canonical form [19], the companion form
[1] and the Hessenberg-Schur form [16]. However, these methods require
computing additional matrix transformations or decompositions. Besides
these methods, the iterative algorithms [32, 33] and the hierarchical identi-
fication principle [6, 7, 8] have also been used to solve the linear equations.
Recently, the solution of matrix equation AX B = F has been discussed
under different conditions [(]. In this paper, we consider the matrix equa-
tion (A ® B)X = F and present a new and efficient algorithm based on
the Gaussian elimination.

This paper is organized as follows. Section 2 introduces the Gaussian
elimination for equations AX = F. Section 3 discusses numerical algo-
rithms for matrix equations (A® B)X = F. Section 4 gives two numerical
examples to illustrate the effectiveness of the proposed algorithm. Finally,
we provide some concluding remarks in Section 5.

2 Gaussian elimination for A X=F

Consider the following matrix equation
AX =F, (1)

where A = [a;;] € R™"™ and F € R"™ are given constant matrices,
X € R™™ is the unknown matrix to be solved. Let

J1
'f2 nxm Ixm .
F = . eR , . eR ,i1=1,2,...,n.

i
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Assume that A is invertible and let [A|F](1) := [A|F] be the augmented
matrix of system (1), and denoted as

1 1 1 1
b |
[A|F]D = Agy gy o0 g, | f
Al |
where
afj) = aij, i,j:1,2,...,n,

= feR™ =12 n.

With these symbols, we give the Gaussian elimination for solving matrix
equations AX = F.

Algorithm 1.

1. Fori=1, let
1 1 1 1
Y] = max{|a{}], a3, ... lal? 1},

interchange the 1st row and jth row. If A is invertible, then agll) #0

can be used to eliminate aéll),ag(;ll), e ,affl)- Let myy = al(sll)/ agll)’
k=2,3,...,n, we have

1 1 1 1

afy a% ag féi
[A|F](2) _ 0 CLQ'Q . Gg.n f2 ’

0 ag a1(1272 fg)

where
al(ci) = a](g:;) _mkla%)7 k=23,....,n, j=2,3,...,n,
1(62) = -fl(el) _mk’lfgl)v k=23,...,n
2. For i = 2, let
)| = mas{jaf3 | 1o ... of31}.
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interchange the 2nd row and jth row. If A is invertible, then agzz) #0

can be used to eliminate a§22), ag), e a7(122) . Set
(2
mgo := %, k:3,4,...,n,
)

and subtract myy times the second row of [A|F] from the kth row
gives

r 1 1 1 1 1) 1
g o
A O
[A‘F](g) = 0 0 agy -+ az; | f3 5
Lo 0 & o &Y

where

a](;.) = a,(é) — mkgag?, k=3,4,...

FY =12 —mafd, k=34, n.

. For i = 3,4,...,n, continuing in this way, let

0] = max{la?] Jal, I, a2,

interchange the ith row and jth row. If A is invertible then ag) #*
0, i=3,4,...,n. Set

(@)
A

Mg = N
NG

1

i=3,4,...n, k=i+1,i+2,....n

and subtract my,; times the ith row of [A|F]® from the kth row.
After n — 3 steps we end up with

o) o) o) ]
o) |l
[A’F](n) — 0 0 (3) (3) (3) ) (2)

Qgzg - Agy 3

0 - 0 0 af)|f
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Here a,(j;rl) and f,(jﬂ) satisfy
a,&?l) = aS} — mkiaz(;-), 1 =3,4,...,n,

k=i+1,i42--,n j=itlit2,. .. n,
FU = 9 r D =34, n, k=i 1,i+2,... 0.

700
4. Referring to (2), we can get the linear system,

1 (1 ) (1)

A IO T S I A
0 a e a X2
=l
0 - 0 o |LXn (n)
where
X
X )
X = . eR™™ X, e RY™™, i=1,2,...,n.
X,

From (3), we have

FER
(n)

Ann

X, = = P,. (4)

The current augmented matrix corresponding to (3) is denoted as

r 1 1 1 1 1 -

o} o oalh s, el al) | Y

0 - . : :

AR = | 0 2, WD ) | pe)
0o - 0 oD gD | e(ne)

L0 - 0 0 1| P,

5. According to (3) and (4), we get

Xn—l = # f(n_l) - CL(n_l) Xn:| = Pn—l- (5)

(n—1) n—1 n—1,n
n—1,n—1
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The current augmented matrix corresponding to (3) is denoted as

RO (1) (1) (1) f(l) i

agy a1 n—2 a1 n—1 A1 1

n) : : : : :
AFlg = o a2, a0 a | Y
o --- 0 1 0 P, 1

o - 0 0 1 P,

6. According to (3), (4) and (5), we have

Ll N 0y | e
Xi_a(?) £ - Zainj =P;, i=n—2n-3,...,1. (6)

i j=i+1

It follows from (4), (5) and (6) that

1 0 0 X4 P,
0 1 0 X5 Py
0 0 1 X5 P,

and its augmented matrix is denoted as

1 0 - 0| Py

" o 0| Py
A|F]() = s

0 0 1| P,

From the above discussion, we get a solution to the equation AX = F
by Algorithm 1. In the following section we will tackle matrix equation
(A® B)X = F by using the result in Section 2.

3 The matrix equation (A ®B)X =F
Consider the matrix equation
(A B)X = F, (7)

where A = [a;;] € R™", B € R™*™ and F € R"*! are given constant
matrices, X € R"*L i the unknown matrix to be solved.
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Let I, denote an n x n identity matrix. For an m x [ matrix

Y = [ylayQa" . 7yl] € Rle7 Y; € Rmv

Let col[Y] represent an mi-dimensional vector formed by the columns of
Y. ie,

Y1
Yy
col[Y] := .2 e R™,
Y
Using the relationship A® B = (A®I,,)(I,,® B) in [35] and from Eq. (7),
we have

It follows that

andy apdy, -0 apdy, B 0

0 X Fq
a21Im CLQQIm agnIm 0 B 0 X2 FQ
amid;m anoly -0 apndm 0O 0 --- B X, F,

(8)
where

X, Iy

X9 F

X = F .=

Eq. (8) can be written as

anl, aiody, - ady BX, F,
a1l axl, -+ agdy, BX, B Fy
anlIm anQIm T annIm BXn Fn

or in a compact form

aip a2 A1n {CO][(BXl)T]}T {COI[F?]}T
as1 a9 - Gon {col[(BX2)"]}* {col[F3]}"

i any o am | | {coll(BX,)T) (ol F]}
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Let
{col[F1]}7

{col[F3 ]}

G = e R (mb) (10)

{col F]}

and [A|G] be the augmented matrix of Eq. (9). According to Algorithm
1, simplifying [A|G] gives

1 0 0| P
e =17 ok (1)
(n)
: ... 0] 0
o -+ 0 1]|P,
Thus, we obtain an important intermediate result
{col[BX))"}* = P; e R =12 ... n.
Let
P, = [Pa,Pp,....Pp), P eR> i=1.2...n, j=12,...,m,
P
P .
H;, = ) e R™* i=1,2,...,n.
Pim
(12)

According to the definition of col[X ], we have BX; = H;, i =1,2,... n.
This means that

B[X,Xs,...,X,|=[H1,Ho,...,H,|. (13)

Then the solution of Eq. (7) can be obtained by Algorithm 1. The above
procedures can be summarized as Algorithm 2.

Algorithm 2.
1. Form G by (10).

2. According to Algorithm 1, simplify the augmented matrix [A|G]| by
(11).
3. Form H; by (12).

4. Obtain the solution of Eq. (7) by solving (13).
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4 Numerical examples

Example 1. Suppose that (A ® B)X = F, where

7 15
R [ 11 (R ] | 137
R I R PR O DAY B
7 2

According Algorithm 2, we construct matrix G. Letting [A|G]() := [A|G]
gives

[A|G](1):[1 1|7 15 13 7}

2 -1|{5 6 -7 2

Consider the entries of the first column, due to 2 > 1, interchange these
two rows, we have

2 -1|5 6 =7 2
1 1|7 15 13 7 |°

Adding —1/2 times the first row to the second row gives

@_[2 -1] 5 6 -7 2
AIG] [o 15(45 12 165 6 |

Dividing the second row of [A|G]? by a%) = 1.5 gives

2 —-1|5 6 -7 2
G - | |

0 1|3 8 11 4
Adding the second row to the first row of the matrix [A\G]g;, we have

{2 08 14 4 6]

0 1/3 8 11 4
Dividing the first row by agll) = 2 gives
2 |1 014 7 23
el -y VL]

Then we have

p_| P _|Pu P |_ |47 23
| Py | | Py Py | |3 8 11 4|

o Py i 4 7 . Py B 3 8
m=|py]=[o 5] m=lE] -] 3]
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1 1(4 7 3 8
[B‘Hl’HQ]_[—l 112 3 11 4]
According to Algorithm 1, we have
@ [10[1 2 -4 2
[B|H1’H2](2)—[0 1135 76/

Finally, we obtain the solution for the equation (A ® B)X = F with

|
W
DN Ot

Example 2. Consider matrix equation (A ® B)X = F, where

3 2 1
A:[_f :g} B=| 4 0o 2],
1 -3 4
60 77 ]
58 —84
(R | 31w
F_[F2]_ 19 28
6 42
12 13

According to Algorithm 2, G can be obtained by

_ [{colFT]}*] [ =60 —77 —58 —84 31 44
T {col[FI}T| T | 19 —28 —6 —42 —12 13 |’

and the augmented matrix [A|G] can be written as

[A]G}(l)—[ 2 -3|-60 —-77 —58 —84 31 44]

-1 -2|-19 -28 -6 —42 -12 13

Simplifying the augmented matrix [A|G](1) gives

@ [10]/-9 -10 14 —6 14 7
[A|G](2)—[o 1014 19 10 24 -1 —10 |’

p_[Pu P2 Py _[-9 -10 -4 6 14 7
T | Py Py Py | | 14 19 10 24 -1 -10 |
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Constructing the matrix

Py Py -9 —-10 14 19
[Hi,Hs]=| Pig Py |=| -14 -6 10 24 |,
Py3 Py 14 7 -1 —10

we write the augmented [B|H 1, H],

3 =2 1| -9 —10 14 19
[BIH,H))=| 4 0 2|-14 -6 10 24 |,
~1 -3 —4| 14 7 -1 —10

which can be transformed into

100[-2 1 1 5
[BIHy, Hol()) =0 1 0] 0 4 —4 -1
001|-3 -5 3 2

Finally, we obtain the solution for equation (A ® B)X = F,

-2 1
0 4
-3 =5
X = 1 5
—4 -1
| 3 2]

5 Conclusions

A new and efficient algorithm for solving linear matrix equation (A ®
B)X = F has been presented by using the Gaussian elimination. Two
examples have illustrated the effectiveness of the proposed algorithm.
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