
A numerical algorithm for solving a class

of matrix equations

Huamin Zhang†§, Hongcai Yin‡ and Rui Ding†∗

†Key Laboratory of Advanced Process Control for Light Industry (Ministry
of Education), Jiangnan University, Wuxi 214122, P.R. China

Emails: zhangeasymail@126.com, rding12@126.com
‡School of Management Science and Engineering, Anhui University of

Finance & Economics, Bengbu 233000, P.R. China
Email: hongcaiyin@sina.com

§Department of Mathematics & Physics, Bengbu College, Bengbu 233030,
P.R. China

Journal of Mathematical Modeling
Vol. 2, No. 1, 2014, pp. 41-54 JMM

�
�

�
�

�
�

�
�

Abstract. In this paper, we present a numerical algorithm for solving
matrix equations (A ⊗ B)X = F by extending the well-known Gaussian
elimination for Ax = b. The proposed algorithm has a high computational
efficiency. Two numerical examples are provided to show the effectiveness
of the proposed algorithm.
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1 Introduction

Numerical solutions or iterative algorithms for different matrix equations
have received much attention [34, 22, 23, 11]. For example, Charnsethikul
presented a numerical algorithm for solving n×n linear equations AX = b
with parameters covariances [2]. The iterative algorithms can solve linear
matrix equations [10, 9, 25, 29, 17] but the Gaussian elimination method is
direct and important for solving linear equations [20, 15]. In order to avoid
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the error accumulations and to improve the numerical stability, several piv-
oting strategies have been adopted [15, 14], e.g., the partial pivoting strat-
egy, the complete pivoting strategy and the rook pivoting strategy. Studies
on Gaussian elimination include the pivoting strategies [28], stabilities [27]
and coefficient matrices [15].

The matrix equations play an important role in system theory [32, 12,
3, 5], control theory [26, 31, 30, 18], stability analysis [21, 24, 13, 4]. A
conventional method for solving equations AXB = F is to use the Kro-
necker product [15]. However, high dimensions of the associated matrices
result in heavy computational burden [15]. There exist many methods
which transform the matrix into forms for which solutions may be readily
computed, such as the Jordan canonical form [19], the companion form
[1] and the Hessenberg-Schur form [16]. However, these methods require
computing additional matrix transformations or decompositions. Besides
these methods, the iterative algorithms [32, 33] and the hierarchical identi-
fication principle [6, 7, 8] have also been used to solve the linear equations.
Recently, the solution of matrix equation AXB = F has been discussed
under different conditions [6]. In this paper, we consider the matrix equa-
tion (A ⊗ B)X = F and present a new and efficient algorithm based on
the Gaussian elimination.

This paper is organized as follows. Section 2 introduces the Gaussian
elimination for equations AX = F . Section 3 discusses numerical algo-
rithms for matrix equations (A⊗B)X = F . Section 4 gives two numerical
examples to illustrate the effectiveness of the proposed algorithm. Finally,
we provide some concluding remarks in Section 5.

2 Gaussian elimination for AX=F

Consider the following matrix equation

AX = F , (1)

where A = [aij ] ∈ Rn×n and F ∈ Rn×m are given constant matrices,
X ∈ Rn×m is the unknown matrix to be solved. Let

F =


f1

f2
...

fn

 ∈ Rn×m, f i ∈ R1×m, i = 1, 2, . . . , n.



Numerical algorithm for solving a class of matrix equations 43

Assume that A is invertible and let [A|F ](1) := [A|F ] be the augmented
matrix of system (1), and denoted as

[A|F ](1) =


a

(1)
11 a

(1)
12 · · · a

(1)
1n f

(1)
1

a
(1)
21 a

(1)
22 · · · a

(1)
2n f

(1)
2

...
...

. . .
...

...
a

(1)
n1 a

(1)
n2 · · · a

(1)
nn f

(1)
n

 ,

where

a
(1)
ij = aij , i, j = 1, 2, . . . , n,

f
(1)
i = f i ∈ R1×m, i = 1, 2, . . . , n.

With these symbols, we give the Gaussian elimination for solving matrix
equations AX = F .

Algorithm 1.

1. For i = 1, let

|a(1)
j1 | := max{|a(1)

11 |, |a
(1)
21 |, . . . , |a

(1)
n1 |},

interchange the 1st row and jth row. If A is invertible, then a
(1)
11 6= 0

can be used to eliminate a
(1)
21 , a

(1)
31 , . . . , a

(1)
n1 . Let mk1 := a

(1)
k1 /a

(1)
11 ,

k = 2, 3, . . . , n, we have

[A|F ](2) :=


a

(1)
11 a

(1)
12 · · · a

(1)
1n f

(1)
1

0 a
(2)
22 · · · a

(2)
2n f

(2)
2

...
...

. . .
...

...
0 a

(2)
n2 · · · a

(2)
nn f

(2)
n

 ,

where

a
(2)
kj = a

(1)
kj −mk1a

(1)
1j , k = 2, 3, . . . , n, j = 2, 3, . . . , n,

f
(2)
k = f

(1)
k −mk1f

(1)
1 , k = 2, 3, . . . , n.

2. For i = 2, let

|a(2)
j2 | := max{|a(2)

22 |, |a
(2)
32 |, . . . , |a

(2)
n2 |},
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interchange the 2nd row and jth row. If A is invertible, then a
(2)
22 6= 0

can be used to eliminate a
(2)
32 , a

(2)
42 , . . . , a

(2)
n2 . Set

mk2 :=
a

(2)
k2

a
(2)
22

, k = 3, 4, . . . , n,

and subtract mk2 times the second row of [A|F ](2) from the kth row
gives

[A|F ](3) :=


a

(1)
11 a

(1)
12 a

(1)
13 · · · a

(1)
1n f

(1)
1

0 a
(2)
22 a

(2)
23 · · · a

(2)
2n f

(2)
2

0 0 a
(3)
33 · · · a

(3)
3n f

(3)
3

...
...

...
. . .

...
...

0 0 a
(3)
n3 · · · a

(3)
nn f

(3)
n

 ,

where

a
(3)
kj = a

(2)
kj −mk2a

(2)
2j , k = 3, 4, . . . , n, j = 3, 4, . . . , n,

f
(3)
k = f

(2)
k −mk2f

(2)
2 , k = 3, 4, . . . , n.

3. For i = 3, 4, . . . , n, continuing in this way, let

|a(i)
ji | = max{|a(i)

ii |, |a
(i)
i+1,i|, . . . , |a

(i)
ni |},

interchange the ith row and jth row. If A is invertible then a
(i)
ii 6=

0, i = 3, 4, . . . , n. Set

mki :=
a

(i)
ki

a
(i)
ii

, i = 3, 4, . . . , n, k = i + 1, i + 2, . . . , n

and subtract mki times the ith row of [A|F ](i) from the kth row.
After n− 3 steps we end up with

[A|F ](n) :=


a

(1)
11 a

(1)
12 a

(1)
13 · · · a

(1)
1n f

(1)
1

0 a
(2)
22 a

(2)
23 · · · a

(2)
2n f

(2)
2

0 0 a
(3)
33 · · · a

(3)
3n f

(3)
3

...
. . . . . . . . .

...
...

0 · · · 0 0 a
(n)
nn f

(n)
n

 . (2)
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Here a
(i+1)
kj and f

(i+1)
k satisfy

a
(i+1)
kj = a

(i)
kj −mkia

(i)
ij , i = 3, 4, . . . , n,

k = i + 1, i + 2, · · · , n, j = i + 1, i + 2, . . . , n,

f
(i+1)
k = f

(i)
k −mkif

(i)
i , i = 3, 4, . . . , n, k = i + 1, i + 2, . . . , n.

4. Referring to (2), we can get the linear system,
a

(1)
11 a

(1)
12 · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2n

...
. . . . . .

...
0 · · · 0 a

(n)
nn




X1

X2
...

Xn

 =


f

(1)
1

f
(2)
2
...

f
(n)
n

 , (3)

where

X :=


X1

X2
...

Xn

 ∈ Rn×m, Xi ∈ R1×m, i = 1, 2, . . . , n.

From (3), we have

Xn =
f

(n)
n

a
(n)
nn

:= P n. (4)

The current augmented matrix corresponding to (3) is denoted as

[A|F ](n)
(1) =



a
(1)
11 · · · a

(1)
1,n−2 a

(1)
1,n−1 a

(1)
1n f

(1)
1

0
. . . . . . . . .

...
...

...
. . . a

(n−2)
n−2,n−2 a

(n−2)
n−2,n−1 a

(n−2)
n−2,n f

(n−2)
n−2

0
. . . 0 a

(n−1)
n−1,n−1 a

(n−1)
n−1,n f

(n−1)
n−1

0 · · · 0 0 1 P n


.

5. According to (3) and (4), we get

Xn−1 =
1

a
(n−1)
n−1,n−1

[
f

(n−1)
n−1 − a

(n−1)
n−1,nXn

]
:= P n−1. (5)
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The current augmented matrix corresponding to (3) is denoted as

[A|F ](n)
(2) =


a

(1)
11 · · · a

(1)
1,n−2 a

(1)
1,n−1 a

(1)
1n f

(1)
1

...
. . .

...
...

...
...

0 · · · a
(n−2)
n−2,n−2 a

(n−2)
n−2,n−1 a

(n−2)
n−2,n f

(n−2)
n−2

0 · · · 0 1 0 P n−1

0 · · · 0 0 1 P n

 .

6. According to (3), (4) and (5), we have

Xi =
1

a
(i)
ii

f
(i)
i −

n∑
j=i+1

a
(i)
ij Xj

 := P i, i = n− 2, n− 3, . . . , 1. (6)

It follows from (4), (5) and (6) that
1 0 · · · 0
0 1 · · · 0
...

. . . . . .
...

0 0 · · · 1




X1

X2
...

Xn

 =


P 1

P 2
...

P n

 ,

and its augmented matrix is denoted as

[A|F ](n)
(n) =


1 0 · · · 0 P 1

0 1 · · · 0 P 2
...

. . . . . .
...

...
0 0 · · · 1 P n

 .

From the above discussion, we get a solution to the equation AX = F
by Algorithm 1. In the following section we will tackle matrix equation
(A⊗B)X = F by using the result in Section 2.

3 The matrix equation (A⊗B)X = F

Consider the matrix equation

(A⊗B)X = F , (7)

where A = [aij ] ∈ Rn×n, B ∈ Rm×m and F ∈ R(nm)×l are given constant
matrices, X ∈ R(nm)×l is the unknown matrix to be solved.
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Let In denote an n× n identity matrix. For an m× l matrix

Y = [y1,y2, . . . ,yl] ∈ Rm×l, yi ∈ Rm,

Let col[Y ] represent an ml-dimensional vector formed by the columns of
Y , i.e.,

col[Y ] :=


y1

y2
...
yl

 ∈ Rml.

Using the relationship A⊗B = (A⊗Im)(In⊗B) in [35] and from Eq. (7),
we have

(A⊗ Im)(In ⊗B)X = F .

It follows that
a11Im a12Im · · · a1nIm

a21Im a22Im · · · a2nIm
...

...
. . .

...
an1Im an2Im · · · annIm




B 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · B




X1

X2
...

Xn

 =


F 1

F 2
...

F n

 ,

(8)
where

X :=


X1

X2
...

Xn

 , F :=


F 1

F 2
...

F n

 , Xi ∈ Rm×l, F i ∈ Rm×l.

Eq. (8) can be written as
a11Im a12Im · · · a1nIm

a21Im a22Im · · · a2nIm
...

...
. . .

...
an1Im an2Im · · · annIm




BX1

BX2
...

BXn

 =


F 1

F 2
...

F n

 ,

or in a compact form
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




{col[(BX1)T]}T

{col[(BX2)T]}T

...
{col[(BXn)T]}T

 =


{col[F T

1 ]}T

{col[F T
2 ]}T

...
{col[F T

n]}T

 . (9)
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Let

G :=


{col[F T

1 ]}T

{col[F T
2 ]}T

...
{col[F T

n]}T

 ∈ Rn×(ml), (10)

and [A|G] be the augmented matrix of Eq. (9). According to Algorithm
1, simplifying [A|G] gives

[A|G](n)
(n) =


1 0 · · · 0 P 1

0 1
. . .

... P 2
...

. . . . . . 0 0
0 · · · 0 1 P n

 . (11)

Thus, we obtain an important intermediate result

{col[(BXi)T]}T = P i ∈ R1×(ml), i = 1, 2, . . . , n.

Let

P i = [P i1,P i2, . . . ,P im], P ij ∈ R1×l, i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

H i =


P i1

P i2
...

P im

 ∈ Rm×l, i = 1, 2, . . . , n.

(12)
According to the definition of col[X], we have BXi = H i, i = 1, 2, . . . , n.
This means that

B[X1,X2, . . . ,Xn] = [H1,H2, . . . ,Hn]. (13)

Then the solution of Eq. (7) can be obtained by Algorithm 1. The above
procedures can be summarized as Algorithm 2.

Algorithm 2.

1. Form G by (10).

2. According to Algorithm 1, simplify the augmented matrix [A|G] by
(11).

3. Form H i by (12).

4. Obtain the solution of Eq. (7) by solving (13).
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4 Numerical examples

Example 1. Suppose that (A⊗B)X = F , where

A =
[

1 1
2 −1

]
, B =

[
1 1

−1 1

]
, F =

[
F 1

F 2

]
=


7 15

13 7
5 6

−7 2

 .

According Algorithm 2, we construct matrix G. Letting [A|G](1) := [A|G]
gives

[A|G](1) =
[

1 1 7 15 13 7
2 −1 5 6 −7 2

]
.

Consider the entries of the first column, due to 2 > 1, interchange these
two rows, we have [

2 −1 5 6 −7 2
1 1 7 15 13 7

]
.

Adding −1/2 times the first row to the second row gives

[A|G](2) =
[

2 −1 5 6 −7 2
0 1.5 4.5 12 16.5 6

]
.

Dividing the second row of [A|G](2) by a
(2)
22 = 1.5 gives

[A|G](2)
(1) =

[
2 −1 5 6 −7 2
0 1 3 8 11 4

]
.

Adding the second row to the first row of the matrix [A|G](2)(1), we have[
2 0 8 14 4 6
0 1 3 8 11 4

]
.

Dividing the first row by a
(1)
11 = 2 gives

[A|G](2)
(2) =

[
1 0 4 7 2 3
0 1 3 8 11 4

]
.

Then we have

P =
[

P 1

P 2

]
=

[
P 11 P 12

P 21 P 22

]
=

[
4 7 2 3
3 8 11 4

]
,

H1 =
[

P 11

P 12

]
=

[
4 7
2 3

]
, H2 =

[
P 21

P 22

]
=

[
3 8

11 4

]
,
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[B|H1,H2] =
[

1 1 4 7 3 8
−1 1 2 3 11 4

]
.

According to Algorithm 1, we have

[B|H1,H2]
(2)
(2) =

[
1 0 1 2 −4 2
0 1 3 5 7 6

]
.

Finally, we obtain the solution for the equation (A⊗B)X = F with

X =


1 2
3 5

−4 2
7 6

 .

Example 2. Consider matrix equation (A⊗B)X = F , where

A =
[

2 −3
−1 −2

]
, B =

 3 −2 1
4 0 2

−1 −3 −4

 ,

F =
[
F 1

F 2

]
=



−60 −77
−58 −84

31 44
−19 −28
−6 −42
−12 13

 .

According to Algorithm 2, G can be obtained by

G =
[
{col[F T

1 ]}T

{col[F T
2 ]}T

]
=

[
−60 −77 −58 −84 31 44
−19 −28 −6 −42 −12 13

]
,

and the augmented matrix [A|G] can be written as

[A|G](1) =
[

2 −3 −60 −77 −58 −84 31 44
−1 −2 −19 −28 −6 −42 −12 13

]
.

Simplifying the augmented matrix [A|G](1) gives

[A|G](2)
(2) =

[
1 0 −9 −10 −14 −6 14 7
0 1 14 19 10 24 −1 −10

]
,

P =
[

P 11 P 12 P 13

P 21 P 22 P 23

]
=

[
−9 −10 −14 −6 14 7
14 19 10 24 −1 −10

]
.
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Constructing the matrix

[H1,H2] =

 P 11 P 21

P 12 P 22

P 13 P 23

 =

 −9 −10 14 19
−14 −6 10 24

14 7 −1 −10

 ,

we write the augmented [B|H1,H2],

[B|H1,H2] =

 3 −2 1 −9 −10 14 19
4 0 2 −14 −6 10 24

−1 −3 −4 14 7 −1 −10

 ,

which can be transformed into

[B|H1,H2]
(3)
(3) =

 1 0 0 −2 1 1 5
0 1 0 0 4 −4 −1
0 0 1 −3 −5 3 2

 .

Finally, we obtain the solution for equation (A⊗B)X = F ,

X =



−2 1
0 4

−3 −5
1 5

−4 −1
3 2

 .

5 Conclusions

A new and efficient algorithm for solving linear matrix equation (A ⊗
B)X = F has been presented by using the Gaussian elimination. Two
examples have illustrated the effectiveness of the proposed algorithm.
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