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Abstract. In this work, we consider the nonlinear Kawahara equation with internal time-dependent delay
in a bounded domain. We prove that this equation has a unique solution. Moreover, we use a Lyapunov
functional approach to prove the exponential stability of the nonlinear system, under some assumptions
on the weights of the feedbacks and on the time-dependent delay. We present some numerical simulations
to illustrate the obtained results.
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1 Introduction

This article concerns the stabilization of the nonlinear Kawahara equation with a time-varying delay on
the internal feedback. This equation is given by

yt + yx + yxxx +ηyxxxxx + yyx = 0.

It is a fifth-order nonlinear one-dimensional equation that describes water waves with surface tension. It
is a model for small amplitude long waves, as plasma wave, water waves and other physical phenomena
arising in fluid dynamics. In control systems, sensors act with a certain delay, which motivates the
interest in studying the equations in the presence of a constant or time-dependent delay. Time delay
phenomena appear in many problems of engineering and biology. We know that even a small delay
can destabilize a system. In [4] the authors analyzed the stability for one-dimensional heat and wave
equations involving time varying delay and in [5] the authors addressed the same problem for wave
equations in domains in Rn. The stability of the Kawahara equation has been studied by many authors
without delay (see [9] and [1]) and with constant delay (see [2]). The problem of stabilization of the
Korteweg-de Vries equation has recently been studied in the case of time-dependent delay (see [6]) and
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we propose to extend these results for the Kawahara equation using the Lyapunov approach. In our best
knowledge, there is no work dealing with this problem for the Kawahara equation.

In this work, we consider the following system
yt(x, t)+ yx(x, t)+ yxxx(x, t)+ηyxxxxx(x, t)+ y(x, t)yx(x, t)

+a(x)y(x, t)+b(x)y(x, t−σ(t)) = 0, t > 0, x ∈ (0,L),
y(0, t) = y(L, t) = yx(0, t) = yx(L, t) = yxx(L, t) = 0, t > 0,
y(x,0) = y0(x), x ∈ (0,L),
y(x, t−σ(0)) = z0(x, t−σ(0)), 0 < t < σ(0), x ∈ (0,L),

(1)

where L > 0 is the length of the spatial domain, y(x, t) is the amplitude of the water wave at position x
at time t and η is a negative real number. The initial data y0 is supposed to belong to L2(0,L) and the
delayed data z0 belongs to L2(0,L)×L2(−σ(0),0). We assume that the delay σ is a function of time t,
which satisfies the following conditions

0 < σ0 ≤ σ(t)≤M, ∀t ≥ 0, (2)

σ̇(t)≤ δ < 1, ∀t ≥ 0, (3)

where M is a positive constant, 0≤ δ < 1, and

σ ∈W 2,∞([0,T ]), ∀T > 0. (4)

The functions a and b are nonnegative and belong to L∞(0,L). Let ω = supp b be an open nonempty
subset of (0,L) and assume that

b(x)≥ b0 > 0, in ω. (5)

We assume that a and b satisfy the following assumption

∃q > 0,
2−δ

2−2δ
b(x)+q 6 a(x), in ω. (6)

Then ω = supp b ⊂ supp a and a(x)≥ b0 +q > 0 in ω .

We recall the definitions of spaces used in this work for an open subset Ω ⊂ R, 1 ≤ p,m ≤ +∞ and
a constant c > 0 :

Lp(Ω) =

{
f : Ω−→ R, f measurable/

∫
Ω

| f (x)|pdx <+∞

}
,

L∞(Ω) = { f : Ω−→ R, f measurable/| f (x)| ≤ c} ,
W p,m(Ω) = { f ∈ Lm(Ω)/Dn f ∈ Lm(Ω), for all n ∈ N,n≤ p} .

For a Banach space X , we define the space Lp((0,T );X) as the usual Lebesgue space with X valued
functions defined on (0,T ) :

Lp((0,T );X) =

{
f : (0,T )−→ X f measurable/

∫ T

0
‖ f (t)‖p

X dt <+∞

}
.

The plan of this paper is as follows. In Section 2, we prove the well-posedness results for the linear
system using semigroups theory and then for the nonlinear system thanks to the fixed-point argument.
The exponential stability result is proven in Section 3 using a Lyapunov functional approach and an
estimation of the decay rate is given. The last section is devoted to some numerical simulations to
illustrate our results.
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2 Well-posedness results

The aim of this section is to prove that the system (1) has a unique solution. We start by proving that the
linear system has a unique solution using semigroups theory and finally, we prove the well-posedness of
the nonlinear system using the fixed-point argument.

2.1 Study of the linear system

We consider the following linearization around 0 of the system (1)
yt(x, t)+ yx(x, t)+ yxxx(x, t)+ηyxxxxx(x, t)

+a(x)y(x, t)+b(x)y(x, t−σ(t)) = 0, t > 0, x ∈ (0,L),
y(0, t) = y(L, t) = yx(0, t) = yx(L, t) = yxx(L, t) = 0, t > 0,
y(x,0) = y0(x), x ∈ (0,L),
y(x, t−σ(0)) = z0(x, t−σ(0)), 0 < t < σ(0), x ∈ (0,L).

(7)

Now, following [6], we introduce a new variable, z(x,ρ, t) = y|ω (x, t−σ(t)ρ) for any x ∈ ω , ρ ∈ (0,1)
and t > 0. We can see that z satisfies the following transport equation

σ(t)zt(x,ρ, t)+(1− σ̇(t)ρ)zρ(x,ρ, t) = 0, x ∈ ω, ρ ∈ (0,1), t > 0,
z(x,0, t) = y|ω (x, t), x ∈ ω, t > 0,
z(x,ρ,0) = z0(x,−σ(0)ρ), x ∈ ω,ρ ∈ (0,1).

(8)

We set ψ =

(
y
z

)
. Then we obtain

ψt =

(
yt

zt

)
=

−yx− yxxx−ηyxxxxx−ay−bz̃(.,1)
σ̇(t)ρ−1

σ(t)
zρ

 ,

where z̃(.,1) ∈ L2(0,L) is the extension of z(.,1) by zero outside ω . We can rewrite this problem as the
following first-order evolution equation{

ψt(t) = A (t)ψ(t), t > 0,
ψ(0) = ψ0 = (y0,z0(·,−σ(0)·))T ,

(9)

where the operator A (t) is defined by

A (t)
(

y
z

)
=

−yx− yxxx−ηyxxxxx−ay−bz̃(.,1)
σ̇(t)ρ−1

σ(t)
zρ

 ,

with domain

D(A (t)) =
{
(y,z) ∈ H5(0,L)×L2(ω,H1(0,1)), y(0) = y(L) = yx(0) = yx(L) = 0,

yxx(L) = 0, z(x,0) = y|ω (x)
}
.
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We note that D(A (t)) = D(A (0)), for all t > 0, that means that the domain of the operator A (t) is
independent of the time. The Hilbert space H = L2(0,L)×L2(ω × (0,1)), is equipped with the usual
inner product 〈(

y
z

)
,

(
ỹ
z̃

)〉
H
=
∫ L

0
yỹdx+

∫
ω

∫ 1

0
zz̃dρdx.

Now, due to (6), we can choose a positive function ξ in L∞(0,L) such that supp ξ = supp b = ω and

1
1−δ

b(x)+q 6 ξ (x)6 2a(x)−b(x)−q in ω. (10)

We introduce the following time-dependent inner product on H〈(
y
z

)
,

(
ỹ
z̃

)〉
t
=
∫ L

0
yỹdx+σ(t)

∫
ω

∫ 1

0
ξ (x)zz̃dρdx.

Obviously, the two norms ‖ · ‖t and ‖ · ‖H are equivalent on H. Indeed,

∀t ≥ 0, ∀(y,z) ∈ H, (1+σ0b0)‖(y,z)‖2
H ≤ ‖(y,z)‖2

t ≤ (1+2M‖a‖∞)‖(y,z)‖2
H , (11)

using (2), (5) and (10).
To prove the well-posedness of (9), we follow [4, 6]. We will use the following theorem which gives

the existence and uniqueness results of the solution. The reader can find the proof of this theorem in [3].

Theorem 1. Assume that

1. Y = D(A (0)) is a dense subset of H,

2. D(A (t)) = D(A (0)), for all t > 0,

3. for all t ∈ [0,T ], A (t) generates a strongly continuous semigroup on H and the family A =
{A (t) : t ∈ [0,T ]} is stable with stability constants C and m independent of t (i.e. the semigroup
(St(s))s≥0 generated by A (t) satisfies ‖St(s)ψ‖H ≤Cems‖ψ‖H , for all ψ ∈ H and s≥ 0),

4. ∂tA (t) belongs to L∞
∗ ([0,T ],B(Y ,H)), the space of equivalent classes of essentially bounded,

strongly measure functions from [0,T ] into the set B(Y ,H) of bounded operators from Y into H.

Then, problem (9) has a unique solution ψ ∈C([0,T ],Y )∩C1([0,T ],H) for any initial datum in Y .

Now we are able to prove the following result.

Theorem 2. Assume that the conditions (2)-(6) hold and that ψ0 ∈ H. Then there exists a unique mild
solution ψ ∈C([0,+∞),H) to (9). If ψ0 ∈ D(A (0)) then ψ ∈C([0,+∞),D(A (0)))∩C1([0,+∞),H).

Proof. We are going to prove the four assumptions of the Theorem 1.
1. Y = D(A (0)) is a dense subset of H.
2. We have D(A (t)) = D(A (0)), for all t > 0.
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3. The proof of the third point of Theorem 1: Let t ∈ [0,T ] be fixed. In order to prove that the operator
is dissipative, we compute 〈A (t)ψ,ψ〉t for ψ = (y,z) ∈ D(A (t)). Then we have

〈A (t)ψ,ψ〉t =−
∫ L

0
yxxxydx−

∫ L

0
yxydx−

∫ L

0
a(x)y2dx−

∫
ω

b(x)z(x,1)y(x)dx

−η

∫ L

0
yxxxxxydx+

∫
ω

∫ 1

0
ξ (x)(σ̇(t)ρ−1)zρzdρdx.

After some integration by parts in space and in ρ we get

〈A (t)ψ,ψ〉t =
∫ L

0
yxxyxdx− [yxxy]L0−

1
2
[y2]L0−

∫ L

0
a(x)y2dx−

∫
ω

b(x)z(x,1)y(x)dx

−η

∫ L

0
yxxyxxxdx+

1
2

∫
ω

ξ (x)[(σ̇(t)ρ−1)z2]10dx

− 1
2

σ̇(t)
∫

ω

∫ 1

0
ξ (x)z2(x,ρ)dρdx,

then

〈A (t)ψ,ψ〉t =−
∫ L

0
a(x)y2(x, t)dx−

∫
ω

b(x)z(x,1)y(x, t)dx− η

2
[y2

xx(x, t)]
L
0

+
1
2

∫
ω

ξ (x)(σ̇(t)−1)z2(x,1)dx+
1
2

∫
ω

ξ (x)z2(x,0)dx

− 1
2

σ̇(t)
∫

ω

∫ 1

0
ξ (x)z2(x,ρ)dρdx.

We have
−2z(x,1)y(x, t)6 z2(x,1)+ y2(x, t),

then

〈A (t)ψ,ψ〉t ≤
η

2
y2

xx(0, t)−
1
2

∫
ω

(2a(x)−b(x)−ξ (x))y2(x, t)dx

− 1
2

∫
ω

(ξ (x)(1−δ )−b(x))z2(x,1)dx− 1
2

σ̇(t)
∫

ω

∫ 1

0
ξ (x)z2(x,ρ)dρdx.

From (10) and (3), we have 2a(x)−ξ (x)−b(x)> 0 and ξ (x)(1−δ )−b(x)> 0. Therefore, we obtain

〈A (t)ψ,ψ〉t ≤−
1
2

σ̇(t)
∫

ω

∫ 1

0
ξ (x)z2(x,ρ)dρdx.

We set

ν(t) =
(σ̇(t)2 +1)1/2

2σ(t)
.

Hence

〈A (t)ψ,ψ〉t −ν(t)〈ψ,ψ〉t ≤−
1
2
((σ̇(t)2 +1)1/2 + σ̇(t))

∫
ω

∫ 1

0
ξ (x)z2(x,ρ)dρdx 6 0,

then the operator Ã (t) := A (t)−ν(t)I is dissipative.
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The adjoint A (t)∗ of A (t) is defined by

A (t)∗
(

y
z

)
=

yx + yxxx +ηyxxxxx−ay+ξ (x)z̃(.,0)
1− σ̇(t)ρ

σ(t)
zρ −

σ̇(t)
σ(t)

z

 ,

with domain

D(A (t)∗) = {(y,z) ∈ H5(0,L)×L2(ω,H1(0,1)), y(0) = y(L) = yx(0) = yx(L) = 0,

yxx(0) = 0, z(x,1) =
b(x)

ξ (x)(σ̇(t)−1)
y|ω (x)}.

Now, we will prove that the operator Ã (t)∗ = A (t)∗−ν(t)I is dissipative. Let ψ = (y,z) ∈ D(A (t)∗),
we have

〈A (t)∗ψ,ψ〉t =
∫ L

0
yxxxydx+η

∫ L

0
yxxxxxydx−

∫ L

0
a(x)y2dx+

∫
ω

ξ (x)z(x,0)y(x)dx

+
∫ L

0
yxydx+

∫
ω

∫ 1

0
ξ (x)(1− σ̇(t)ρ)zρzdρdx−

∫
ω

∫ 1

0
ξ (x)σ̇(t)z2dρdx.

Using integration by parts in space and in ρ , we obtain

〈A (t)∗ψ,ψ〉t =−
∫ L

0
a(x)y2(x, t)dx+

∫
ω

ξ (x)y(x)z(x,0)dx+
η

2
[y2

xx(x, t)]
L
0

+
1
2

∫
ω

∫ 1

0
ξ (x)σ̇(t)z2(x,ρ)dρdx+

1
2

∫
ω

ξ (x)[(1− σ̇(t)ρ)z2(x,ρ)]10dx

−
∫

ω

∫ 1

0
ξ (x)σ̇(t)z2(x,ρ)dρdx.

From the boundary conditions, we get

〈A (t)∗ψ,ψ〉t =−
∫ L

0
a(x)y2(x, t)dx+

∫
ω

ξ (x)y(x)z(x,0)dx+
η

2
y2

xx(L, t)

− σ̇(t)
2

∫
ω

∫ 1

0
ξ (x)z2(x,ρ)dρdx+

1
2

∫
ω

b2(x)
ξ (x)(1− σ̇(t))

y2(x)dx

− 1
2

∫
ω

ξ (x)z2(x,0)dx,

then

〈A (t)∗ψ,ψ〉t ≤
η

2
y2

xx(L, t)−
1
2

∫
ω

(
2a(x)−ξ (x)− b2(x)

ξ (x)(1− σ̇(t))

)
y2(x, t)dx

− σ̇(t)
2

∫
ω

∫ 1

0
ξ (x)z2(x,ρ)dρdx.

From (10) and (3), we have 2a(x)−ξ (x)− b2(x)
ξ (x)(1− σ̇(t))

≥ 0. Consequently

〈A (t)∗ψ,ψ〉t ≤−
σ̇(t)

2

∫
ω

∫ 1

0
ξ (x)z2(x,ρ)dρdx,
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hence

〈A (t)∗ψ,ψ〉t −ν(t)〈ψ,ψ〉t 6 0.

Therefore, the operator Ã (t)∗ = A (t)∗− ν(t)I is dissipative. Ã (t) is a densely defined closed linear
operator and in addition Ã (t) and Ã (t)∗ are dissipative, then Ã (t) is the infinitesimal generator of a C0
semigroup of contraction on H for any t ∈ [0,T ] (see [7]). We can easily prove that

‖ψ‖t

‖ψ‖s
≤ e

c
2σ0
|t−s|

, ∀t,s ∈ [0,T ], (12)

where ψ = (y,z) ∈ H and c is a positive constant (see [6]).

Then, Ã (t) generates a strongly continuous semigroup on H for all t ∈ [0,T ] and the family Ã =

{Ã (t) : t ∈ [0,T ]} is stable with stability constants C and m independent of t (see Proposition 3.4 of [3]).
4. From (4), we can prove that

d
dt

Ã (t) ∈ L∞
∗ ([0,T ],B(D(A (0)),H)),

since

ν̇(t) =
σ̈(t)σ̇(t)

2σ(t)(σ̇(t)2 +1)1/2 −
σ̇(t)(σ̇(t)2 +1)1/2

2σ(t)2 ,

is bounded on [0,T ] for all T > 0 and

d
dt

A (t)ψ =

 0
σ̈(t)σ(t)ρ− σ̇(t)(σ̇(t)ρ−1)

σ(t)2 zρ

 .

Finally, all assumptions of Theorem 1 are verified, then the problem{
ψ̃t(t) = ˜A (t)ψ̃,
ψ̃(0) = ψ0,

has a unique solution ψ̃ ∈C([0,+∞), D(A (0)))∩C1([0,+∞),H) for ψ0 ∈D(A (0)). We can check that
the solution of (9) is then given by ψ(t) = e

∫ t
0 ν(s)dsψ̃(t). Indeed,

A (t)ψ(t) =e

∫ t

0
ν(s)ds

A (t)ψ̃(t) = e

∫ t

0
ν(s)ds

(ν(t)ψ̃(t)+ ˜A (t)ψ̃(t))

=ν(t)e

∫ t

0
ν(s)ds

ψ̃(t)+ e

∫ t

0
ν(s)ds

ψ̃t(t) = ψt(t).
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2.2 Linear Kawahara equation with a source term

Now, to consider the nonlinear term of the equation, we study the well-posedness of the linear Kawahara
equation with a source term f , that is

yt(x, t)+ yx(x, t)+ yxxx(x, t)+ηyxxxxx(x, t)
+a(x)y(x, t)+b(x)y(x, t−σ(t)) = f (x, t), t > 0, x ∈ (0,L),

y(0, t) = y(L, t) = yx(0, t) = yx(L, t) = yxx(L, t) = 0, t > 0,
y(x,0) = y0(x), x ∈ (0,L),
y(x, t−σ(0)) = z0(x, t−σ(0)), 0 < t < σ(0), x ∈ (0,L).

(13)

Let T > 0 and introduce the space B =C([0,T ],L2(0,L))∩L2((0,T ),H2
0 (0,L)) endowed with the norm

‖y‖B = ‖y‖C([0,T ],L2(0,L))+‖y‖L2((0,T ),H2
0 (0,L))

.

Proposition 1. Assume that the conditions (2)-(6) are fulfilled. Then for f ∈ L1(0,T,H1
0 (0,L)) and

(y0,z0(.,−σ(0).)) ∈ H, there exists a unique mild solution (y,y(., t − σ(t).)) ∈ B×C([0,T ],L2(ω ×
(0,1))) to (13). Moreover, there exists C > 0 independent of T and CT > 0 such that

‖(y,z)‖C([0,T ],H) ≤C
(
‖(y0,z0(.,−σ(0).))‖H +‖ f‖L1(0,T,H1

0 (0,L))

)
, (14)

‖yxx‖L2(0,T ;L2(0,L))+‖yx‖L2(0,T ;L2(0,L)) ≤CT

(
‖(y0,z0(.,−σ(0).))‖H +‖ f‖L1(0,T,H1

0 (0,L))

)
. (15)

Proof. The proof is similar to the proof of [2, Proposition 2] (see also [8, 9]). We can write the system
(13) as

ψt = A (t)ψ +

(
f
0

)
.

2.3 Well-posedness result of the nonlinear system

To complete the study of the existence of the solution, we prove the well-posedness result of the nonlinear
system (1).

Theorem 3. Assume that the conditions (2)-(6) are satisfied and let L> 0. Then for any (y0,z0(.,−σ(0).))∈
H, there exists a unique solution y ∈C(0,∞;L2(0,L))∩L2

loc((0,∞),H2
0 (0,L)) of the system (1).

Proof. Following [8] (see also [2], we can prove the local (in time) existence and uniqueness of the
solution of the nonlinear system (1). Let ỹ ∈ B, we consider the map Φ : B −→ B defined by Φ(ỹ) = y,
where y is the solution of the following system

yt(x, t)+ yx(x, t)+ yxxx(x, t)+ηyxxxxx(x, t)
+a(x)y(x, t)+b(x)y(x, t−σ(t)) =−ỹ(x, t)ỹx(x, t), t > 0, x ∈ (0,L),

y(0, t) = y(L, t) = yx(0, t) = yx(L, t) = yxx(L, t) = 0, t > 0,
y(x,0) = y0(x), x ∈ (0,L),
y(x, t−σ(0)) = z0(x, t−σ(0)), 0 < t < σ(0), x ∈ (0,L).

(16)
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Let r > 0 and Br = {y ∈ B/‖y‖B ≤ r} a closed ball. Using Proposition 1, we can prove that Φ is a
contraction on Br for r small enough similarly to the proof of [8, Proposition 4] (see also [6, Theorem
2.6]). Finally, from the Banach fixed point theorem, the map Φ has a unique fixed point y ∈ B which is
the requested solution of the nonlinear Kawahara equation (1). Using the decay of the energy, we can
get the global existence of the solution.

3 Exponential stability result

In this section, we prove the exponential stability of the nonlinear Kawahara equation using a new Lya-
punov functional. We consider the following definition of the energy of the nonlinear system (1)

E(t) =
∫ L

0
y2(x, t)dx+σ(t)

∫
ω

∫ 1

0
ξ (x)y2(x, t−σ(t)ρ)dρdx, (17)

where ξ is defined by (10).

3.1 The decay of the energy

We start by proving the decay of the energy of the nonlinear system (1) in the following proposition.

Proposition 2. Assume that the conditions (2)-(6) hold. Then for any regular solution of (1), the energy
E defined by (17) is decreasing and satisfies

d
dt

E(t)≤ηy2
xx(0, t)+

∫
ω

(−2a(x)+b(x)+ξ (x))y2(x, t)dx

+
∫

ω

(ξ (x)(δ −1)+b(x))y2(x, t−σ(t))dx ≤ 0. (18)

Proof. We differentiate E:

d
dt

E(t) = 2
∫ L

0
yytdx+ σ̇(t)

∫
ω

∫ 1

0
ξ (x)y2(x, t−σ(t)ρ)dρdx+2σ(t)

∫
ω

∫ 1

0
ξ (x)zztdρdx,

then

d
dt

E(t) =2
∫ L

0
y(yx + yxxx +ηyxxxxx + yyx +a(x)y(x, t)+b(x)y(x, t−σ(t)))dx

+ σ̇(t)
∫

ω

∫ 1

0
ξ (x)y2(x, t−σ(t)ρ)dρdx+2

∫
ω

∫ 1

0
ξ (x)(σ̇(t)ρ−1)zzρdρdx. (19)

Integrating by parts and using boundary conditions, we obtain

d
dt

E(t)≤ηy2
xx(0, t)+

∫
ω

(−2a(x)+b(x)+ξ (x))y2(x, t)dx

+
∫

ω

(ξ (x)(δ −1)+b(x))y2(x, t−σ(t))dx ≤ 0.
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3.2 Exponential stability by Lyapunov functional

To prove the exponential stability, we consider the following Lyapunov functional

V (t) = E(t)+α1V1(t)+α2V2(t), (20)

where α1, α2 > 0 are fixed constants taken small enough to obtain the decrease of the energy E defined
by (17). The functions V1 and V2 are defined by

V1(t) =
∫ L

0
eλxy2(x, t)dx, (21)

V2(t) = σ(t)
∫

ω

∫ 1

0
(1−ρ)y2(x, t−σ(t)ρ)dρdx, (22)

where λ > 0 will be chosen small enough to obtain the decay of the energy. V1 is classical for the
Kawahara equation and V2 comes from the delay term depending on time. We can prove from the
definition of V (t) and E(t) that, for any t > 0,

E(t)≤V (t)≤
(

1+max{eλL
α1,

α2

b0
}
)

E(t). (23)

Indeed, from (5) and (10), we have

E(t)≤V (t) = E(t)+α1

∫ L

0
eλxy2(x, t)dx+α2σ(t)

∫
ω

∫ 1

0
(1−ρ)y2(x, t−σ(t)ρ)dρdx

≤ E(t)+α1eλL
∫ L

0
y2(x, t)dx+α2σ(t)

∫
ω

∫ 1

0

ξ (x)
b0

y2(x, t−σ(t)ρ)dρdx

≤
(

1+max{eλL
α1,

α2

b0
}
)

E(t).

The main result of this paper is given in the following theorem. We will prove that the energy of the
nonlinear system (1) decays exponentially.

Theorem 4. Assume that the conditions (2)-(6) are fulfilled. Then, there exists r > 0 small enough,
such that, for every (y0,z0) ∈ H satisfying ‖(y0,z0)‖0 ≤ r, the energy of the nonlinear system (1) decays
exponentially. More precisely, there exist two positive constants γ and K such that

E(t)≤ Ke−2γtE(0), ∀t > 0,

where, for α1, α2 > 0 and λ > 0 small enough,

γ ≤min
{
(−15ηλπ2−

√
2λL3eλLr)α1π2

6L4(1+α1eλL)
,

(1−δ )α2

2M(α2 +‖ξ‖L∞(0,L))

}
, (24)

K ≤ 1+max
{

eλL
α1,

α2

b0

}
.
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Proof. We start by proving that V decays exponentially, so we have to prove that

∀t > 0,
d
dt

V (t)+2γV (t)≤ 0.

Consider y as the solution of (1) with (y0,z0(.,−σ(0).)) ∈ D(A (0)) and satisfying the condition

‖(y0,z0(.,−σ(0).))‖H ≤ r.

Differentiating V1 and using integration by parts, we obtain

d
dt

V1(t) = 2
∫ L

0
eλxy(x, t)yt(x, t)dx

=−2
∫ L

0
eλxy(x, t)(yx(x, t)+ yxxx(x, t)+ηyxxxxx(x, t)+ y(x, t)yx(x, t))dx

−2
∫ L

0
eλxa(x)y2(x, t)dx−2

∫ L

0
eλxb(x)y(x, t)y(x, t−σ(t))dx

= (λ +λ
3 +ηλ

5)
∫ L

0
eλxy2(x, t)dx− (3λ +5ηλ

3)
∫ L

0
eλxy2

x(x, t)dx

+5ηλ

∫ L

0
eλxy2

xx(x, t)dx+
2
3

λ

∫ L

0
eλxy3(x, t)dx+ηy2

xx(0, t)

−2
∫ L

0
eλxa(x)y2(x, t)dx+

∫ L

0
eλxb(x)y2(x, t)dx+

∫ L

0
eλxb(x)y2(x, t−σ(t))dx.

In the same way, we differentiate V2. Using integration by parts and the relation

σ(t)∂ty(x, t−σ(t)ρ) = (σ̇(t)ρ−1)∂ρy(x, t−σ(t)ρ),

we get

d
dt

V2(t) =σ̇(t)
∫

ω

∫ 1

0
(1−ρ)y2(x, t−σ(t)ρ)dρdx

+2σ(t)
∫

ω

∫ 1

0
(1−ρ)y(x, t−σ(t)ρ)∂t(y(x, t−σ(t)ρ))dρdx

=σ̇(t)
∫

ω

∫ 1

0
(1−ρ)y2(x, t−σ(t)ρ)dρdx

+2
∫

ω

∫ 1

0
(σ̇(t)ρ−1)(1−ρ)y(x, t−σ(t)ρ)∂ρy(x, t−σ(t)ρ)dρdx

=σ̇(t)
∫

ω

∫ 1

0
(1−ρ)y2(x, t−σ(t)ρ)dρdx+

∫
ω

[(σ̇(t)ρ−1)(1−ρ)y2(x, t−σ(t)ρ)]10dx

−
∫

ω

∫ 1

0
(1+ σ̇(t)−2σ̇(t)ρ)y2(x, t−σ(t)ρ)dρdx

=
∫

ω

y2(x, t)dx−
∫

ω

∫ 1

0
(1− σ̇(t)ρ)y2(x, t−σ(t)ρ)dρdx.
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Now, we are ready to calculate
d
dt

V (t)+2γV (t). We obtain

d
dt

V (t)+2γV (t)≤
∫

ω

(−2a(x)+b(x)+ξ (x)+α1eλLb(x)+α2)y2(x, t)dx

+
∫

ω

(b(x)+(δ −1)ξ (x)+α1eλLb(x))y2(x, t−σ(t))dx

+5ηλα1

∫ L

0
eλxy2

xx(x, t)dx+2γ(1+α1eλL)
∫ L

0
y2(x, t)dx

+
2
3

α1λ

∫ L

0
eλxy3(x, t)dx+α1

∫ L

0
(λ +λ

3 +ηλ
5−2a(x))eλxy2(x, t)dx

−α1λ (3+5ηλ
2)
∫ L

0
eλxy2

x(x, t)dx+η(1+α1)y2
xx(0, t)

+
∫

ω

∫ 1

0
(2γξ (x)σ(t)+2γα2σ(t)−α2(1−δ ))y2(x, t−σ(t)ρ)dρdx.

Note that from Cauchy-Schwarz’s inequality, we get

∫ L

0
eλxy3dx≤ ‖y‖2

L∞(0,L)

∫ L

0
eλx|y|dx≤ ‖y‖2

L∞(0,L) ‖y‖L2(0,L)

√
e2λL

2λ
.

By the injection of H1
0 (0,L) into L∞(0,L), we have

‖y‖2
L∞(0,L) ≤ L‖yx‖2

L2(0,L),

and from Poincare’s inequality, we obtain∫ L

0
eλxy3dx≤ L3

π2 ‖yxx‖2
L2(0,L)

eλL
√

2λ
‖y‖L2(0,L).

Since we have q≤ a(x), we get

d
dt

V (t)+2γV (t)≤
∫

ω

(−2a(x)+b(x)+ξ (x)+α1eλLb(x)+α2)y2(x, t)dx

+
∫

ω

(b(x)+(δ −1)ξ (x)+α1eλLb(x))y2(x, t−σ(t))dx

+

(
2γ

L4

π4 (1+α1eλL)+5ηλα1 +
L3α1

√
2λeλLr

3π2

)∫ L

0
y2

xx(x, t)dx

+α1(λ +λ
3 +ηλ

5−2q)
∫ L

0
eλxy2(x, t)dx

−α1λ (3+5ηλ
2)
∫ L

0
eλxy2

x(x, t)dx+η(1+α1)y2
xx(0, t)

+
∫

ω

∫ 1

0
(2γξ (x)σ(t)+2γα2σ(t)−α2(1−δ ))y2(x, t−σ(t)ρ)dρdx.

To obtain
d
dt

V (t)+2γV (t)≤ 0, from (10), we can choose α1, α2, λ , γ and r such that



Stability of the Kawahara equation with time-varying delay 441

α1 ≤ inf
x∈ω

{
2a(x)−b(x)−ξ (x)

eλLb(x)
,
(1−δ )ξ (x)−b(x)

eλLb(x)

}
,

α2 ≤ inf
x∈ω
{2a(x)−b(x)−ξ (x)−α1eλLb(x)},

λ ≤min
{

λ0,

√
3
−5η

}
,

where λ0 can be chosen such that λ0 +λ 3
0 +ηλ 5

0 −2q≤ 0, and

γ ≤min
{
(−15ηλπ2−

√
2λL3eλLr)α1π2

6L4(1+α1eλL)
,

(1−δ )α2

2M(α2 +‖ξ‖L∞(0,L))

}
, (25)

where r fulfilles the inequality −15ηλπ2−
√

2λL3eλLr > 0 which implies that

0 < r <
−15η

√
λπ2

√
2L3eλL

.

By integrating
d
dt

V (t)+ 2γV (t) ≤ 0 over (0, t), we get for all t > 0, V (t) ≤ V (0)e−2γt . Since E and V
are equivalent from (23), we finally obtain

E(t)≤
(

1+max{eλL
α1,

α2

b0
}
)

E(0)e−2γt , ∀t > 0.

Lastly, we note that D(A (0)) is dense in H, then we can take (y0,z0(.,−σ(0).)) ∈ H.

We can notice that the decay rate γ decreases when the upper bound M of the time-delay function
increases. We have the same remark when δ tends to 1.

4 Numerical simulations and conclusion

This section is devoted to some numerical simulations that adapt the schemes used in [6,8]. We illustrate
the stability result obtained in this study. We set a final time T and consider a uniform spatial and
time discretization. Let Nx, Nρ and Nt be three positive integers. Let dx = L/Nx be the spatial step,
dt = L/Nt the time step and dρ = 1/Nρ be the delay step. We introduce the notation y(idx,ndt) = yn

i
and z(idx,kdρ,ndt) = zn

i,k for i = 0, . . . ,Nx, k = 0, . . . ,Nρ and n = 0, . . . ,Nt . For the first derivative with
respect to x, we will use the approximations

D+
x yi =

yi+1− yi

dx
, D−x yi =

yi− yi−1

dx
, Dxyi =

yi+1− yi−1

2dx
. (26)

The same definitions hold for the first derivative with respect to ρ . The third derivative will be given
as Dxxx = D+

x D+
x D−x and the fifth by Dxxxxx = D+

x D−x D+
x D+

x D−x . Let s = E(L/2dx), where E is the floor
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Figure 1: Representation of t 7→ ln(E(t)) for different values of δ .

function. The system is discretized as follows

yn
i − yn−1

i
dt

+(Dx +Dxxx−Dxxxxx)yn
i

=−yn−1
i D+

x yn−1
i −aiyn−1

i −bizn−1
i,Nρ

n = 1 . . . ,Nt , i = 2, . . . ,Nx−1,

yn
0 = yn

1 = yn
Nx−2 = yn

Nx−1 = yn
Nx = 0 n = 0, . . . ,Nt ,

y0
i = y0(idx), i = 0, . . . ,Nx,

zn
i,k− zn−1

i,k

dt
+

1
σn (1− σ̇nkdρ)D+

ρ zn
i,k = 0 n = 1, . . . ,Nt , i = 0, . . . ,s,

k = 1, . . . ,Nρ −1,

zn
i,Nρ

=
biyn

i
ξ (σ̇n−1)

n = 1, . . . ,Nt , i = 0, . . . ,s,

z0
i,k = z0(idx,kdρ) i = 0, . . . ,s, k = 1, . . . ,Nρ −1,

zn
i,0 = yn

i n = 0, . . . ,Nt , i = 0, . . . ,s,
zn

i,k = 0 n = 0, . . . ,Nt , i = s+1, . . . ,Nx, k = 0, . . . ,Nρ .

(27)

We take the following parameters L = 1, T = 20, η = −1 and the feedback terms are constant in their
support supp a = supp b = (0,L/2), a(x) = 2,2, b(x) = 1,5 and ξ (x) = 2.5. The initial conditions are
y0(x) = 1− cos(2πx), z0(x,ρ) = cos(2πρ)(1− cos(2πx)) and the delay is σ(t) = δ (1,1− sin(t)). We
solve the discretized system using the backward Euler method. We observe that the decay rate γ decreases
when δ tends to 1 as shown in the estimation (25). Figure 1 represents t 7→ ln(E(t)) for different values
of δ .
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In this work, we present an internal stability result for the nonlinear Kawahara equation with time-
varying delay. We prove the existence and the uniqueness of the solution of the system and we study
the exponential stability using an appropriate Lyapunov functional. Finally, we present some numerical
simulations to illustrate the theoretical result obtained.

An interesting question to investigate is to consider the study of the stability of the Kawahara equation
with a delay in the nonlinear term.
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