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Abstract.This paper introduced a novel approach for resolving fractional partial differential equations.
The time fractional nonlinear Burgers equation of order κ was solved to illustrate the efficacy of the
technique, where κ ∈ (0,1]. The quintic B-spline method facilitated spatial partitioning, while the finite
difference method addressed the fractional Caputo derivative, which simulates anomalous diffusion pro-
cesses influenced by memory effects. The proposed methods stability is demonstrated utilizing the von
Neumann technique; it has been shown to be unconditionally stable. Additionally, a convergence study is
shown, demonstrating that the approach exhibits uniform convergence of (γh4 +σ(∆η2)). We validated
the methods correctness through numerical tests by comparing it with the exact solution and alternative
numerical methods. Based on L2 and L∞ error norms, the quintic B-spline approach exhibits improved
convergence rates and reduced computing costs.

Keywords: Quintic B-spline method, finite difference techniques, Caputo time-fractional derivative, Burgers equa-
tion.
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1 Introduction

Due to the fact that fractional differential operators have non-local properties while classical differential
operators have local properties, the fractional calculus has grown significantly in recent years and is
better able to describe real-life phenomena [31]. The significance of differential equations of fractional
order has been demonstrated in recent years by researchers modeling scientific and engineering problems
in a variety of demanding phenomena, such as the predator-prey food chain system [2], the unsteady fluid
flow in a rotating annulus region, the non-linear oscillation of an earthquake, the unsteady rotational flow
of a second-grade fluid, neutral differential systems with state-dependent delay [30], seepage flow in
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porous media [11], fluid dynamic traffic models [10], the spatial diffusion of biological populations [32],
dynamical models of happiness [34], the magnetohydrodynamic flow and heat transfer model [5]. Recent
years have seen a greater interest in fractional differential equations due to its use in many scientific and
engineering fields [21, 22, 25, 38, 39]. In actuality, we may more precisely and accurately simulate a
wide range of phenomena, such as fluid mechanics, viscoelasticity, chemistry, physics, economics, and
other sciences, applying a range of methods from fractional calculus, which is the study of fractional
order integrals and derivatives [7]. One of the main advantages of fractional derivatives is their ability
to encapsulate the genetic properties of a phenomenon or memory, and to replicate a not small set of
physical and geometric phenomena, which means that they enjoy a higher degree of freedom compared
to classical derivatives [14, 18, 19, 23]. Many scholars are interested in creating or putting into practice
a rigorous strategy for the analytical and numerical analysis of the behavior of fractional order models,
given the increasing attention being paid to problems based on these models that arise in science and
engineering. Numerous analytical and numerical methods including the new integral transform approach
for homotopy perturbation are available in the literature to solve the fractional order model [29]. In fluid
dynamics for diffusive waves, Burgers equation is a nonlinear equation. There are many issues that
can be addressed by the burgers equation such as, in a material with limited electrical conductivity,
magnetohydrodynamic waves, shock waves in a viscous medium, one-dimensional sound waves in a
viscous medium, turbulence, etc [6, 8]. We examine the time fractional nonlinear Burgers equation
(TFNBE) in this study [22] as follows:

∂ κz(ζ ,η)

∂ηκ
+ z(ζ ,η)

∂ z(ζ ,η)

∂ζ
− v

∂ 2z(ζ ,η)

∂ζ 2 = g(ζ ,η), (ζ ,η) ∈ [c,d]× (0,T ],

z(ζ ,0) = ξ (ζ ), ζ ∈ [c,d]

z(c,η) = γ1(η) and z(d,η) = γ2(η),

(1)

where v is a viscosity parameter, ζ ∈ [c,d], η ∈ [0,T ], g(ζ ,η) : [c,d]× [0,T ]−→R, and ξ : [c,d]−→R.
We need to define the fractional derivative [15]

∂ κz(ζ ,η)

∂ηκ
=

1
Γ(n−κ)

∫
η

c

∂ nz(ζ ,s)
∂ sn (η − s)n−κ−1ds, (2)

where the Gamma function [26] is

Γ(n−κ) =
∫

∞

0
ζ

n−κ−1e−ζ dζ , (R(κ)> 0). (3)

One of the key equations in physics and engineering is the Burgers equation. Due to its superior ability to
describe many phenomena within a frame of reference such as, turbulence problems, nonlinear acoustic
waves, plane waves, shock waves, lattice gas issues, and traffic flow [3, 30, 36]. This equation plays an
effective role in the field of oceanography, which falls under fluid mechanics [24]. Therefore, Burgers
equation has been of interest to many researchers. Numerous analytical and numerical techniques have
been proposed to solve Burgers equation [22,30]. The TFNBE is produced by substituting a real number
κ , where κ ∈ (0,1], for the exponent of the one derivative of time in the one-order partial differential
equation [37]. To solve fractional time differential equations, some researchers use the B-spline method
[23]. Its high flexibility, enables us to identify the solution at each node. Thus, we obtain a system written
in the form of matrices, which makes it easier for us to find the solution using the computer. Using finite
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differences the fractional derivative of time is approximated which is defined using Caputo definition
and the aim is to solve TFNBE and approximate the solution and its derivatives with respect to ζ by
the quintic B-spline (QNBS) method. In Section 2 an outline of how the solution for ζ is approximated
using numerical method is given. The suggested methodology’s numerical implementation is explained
in Section 3. Section 4 deals with the stability analysis. In Section 5, convergence is studied, while
Section 6 analyzes numerical data using context-giving examples. Finally in Section 7, we conclude
with our findings and future directions.

2 An formulation of the QNBS method

To determine a solution of TFNBE, we apply a QNBS method where, we impose the partition ∆ : c =
ζ0 < ζ1 < ζ2 < ... < ζn−1 < ζn = d on endowed interval [c,d] such that h = d−c

n and ζi = c+ ih, n is the
mesh size of ∆ and i = 0,1,2, ...,n. We now define QNBS in the following format [1]

Bi(ζ ) =
1
h5



(ζ −ζi−3)
5, if ζi−3 ≤ ζ ≤ ζi−2,

h5 +5h4(ζ −ζi−2)+10h3(ζ −ζi−2)
2 +10h2(ζ −ζi−2)

3

+5h(ζ −ζi−2)
4 −5(ζ −ζi−2)

5, if ζi−2 ≤ ζ ≤ ζi−1,

26h5 +50h4(ζ −ζi−1)+20h3(ζ −ζi−1)
2 −20h2(ζ −ζi−1)

3

−20h(ζ −ζi−1)
4 +10(ζ −ζi−1)

5, if ζi−1 ≤ ζ ≤ ζi,

26h5 +50h4(ζi+1 −ζ )+20h3(ζi+1 −ζ )2 −20h2(ζi+1 −ζ )3

−20h(ζi+1 −ζ )4 +10(ζi+1 −ζ )5, if ζi ≤ ζ ≤ ζi+1,

h5 +5h4(ζi+2 −ζ )+10h3(ζi+2 −ζ )2 +10h2(ζi+2 −ζ )3

+5h(ζi+2 −ζ )4 −5(ζi+2 −ζ )5, if ζi+1 ≤ ζ ≤ ζi+2,

(ζi+3 −ζ )5, if ζi+2 ≤ ζ ≤ ζi+3,

0, otherwise.

(4)

We first begin by writing the approximate solution as follows [1]:

ẑ(ζ ,η) =
n+2

∑
i=−2

ci(η)Bi(ζ ), (5)

where Bi(ζ ) is a QNBS functions, ẑ j
i = ẑ(ζi,η j) is approximate solution, j = 0,1, ...,m. So ẑ j

i ,(ẑζ )
j
i ,(ẑζ ζ )

j
i

and (ẑζ ζ ζ )
j
i represented by the following formulas:

ẑ j
i = c j

i−2 +26c j
i−1 +66c j

i +26c j
i+1 + c j

i+2,

(ẑζ )
j
i =−5 c j

i−2
h −50 c j

i−1
h +50 c j

i+1
h +5 c j

i+2
h ,

(ẑζ ζ )
j
i = 20 c j

i−2
h2 +40 c j

i−1
h2 −120 c j

i
h2 +40 c j

i+1
h2 +20 c j

i+2
h2 .

(6)

Table 1 shows the solution values and their derivatives at the nodes using the QNBS method. These
values will be used to solve TFNBE.
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Table 1: The values of Bi(ζ ) and their derivative

ζi−2 ζi−1 ζi ζi+1 ζi+2 ζi+3

Bi 1 26 66 26 1 0

B′
i

−5
h

−50
h 0 50

h
5
h 0

B′′
i

20
h2

40
h2 −120

h2
40
h2

20
h2 0

3 Time discretization formulation

In this section, we will approximate the fractional derivative using the Caputo’s definition, and using
forward differences to approximate the first derivative of η [33]. Accordingly, the term ∂ κ z(ζ ,η)

∂ηκ will be
approximated as follows:

∂ κ ẑ(ζ ,η j+1)

∂ηκ
=

1
Γ(2−κ)

j

∑
ν=0

bν [
ẑ(ζ ,η j+1−ν)− ẑ(ζ ,η j−ν))

∆ηκ
]+ e j+1

∆η
. (7)

In (7) e j+1
∆η

is the truncation error, so

e j+1
∆η

≤ σ(∆η
2), (8)

where, ∆η = η

m ,η j = j∆η , j = 0(1)m and bν = (ν +1)2−κ −ν2−κ , such that
b0 = 1 and bν > 0 , ν = 0,1,2, ...., j,
b0 ≩ b1 ≩ ......≩ bν , bν → 0 as ν → ∞,

∑
j
ν=0(bν −bν+1)+b j+1 = (1−b1)+∑

j−1
ν=1(bν −bν+1)+b j = 1.

(9)

Now, substituting (7) in (1) we obtain

1
Γ(2−κ)

j

∑
ν=0

bν [
ẑ(ζ ,η j+1−ν)− ẑ(ζ ,η j−ν))

∆ηκ
]+ z(ζ ,η j+1)

∂ ẑ(ζ ,η j+1)

∂ζ
− v

∂ 2ẑ(ζ ,η j+1)

∂ζ 2 = g(ζ ,η j+1). (10)

Suppose that ẑ j+1 = ẑ(ζ ,η j+1), β = 1
Γ(2−κ)∆ηκ and g j+1 = g(ζ ,η j+1). The equation (10) can be ex-

pressed in this way:

β ẑ j+1 −β ẑ j + ẑ j+1 ∂ ẑ j+1

∂ζ
− v

∂ 2ẑ j+1

∂ζ 2 =−β

j

∑
ν=0

bν [ẑ j+1−ν − ẑ j−ν ]+g j+1. (11)

Since

ẑ j+1 ∂ ẑ j+1

∂ζ
= ẑ j ∂ ẑ j+1

∂ζ
+ ẑ j+1 ∂ ẑ j

∂ζ
− ẑ j ∂ ẑ j

∂ζ
, (12)
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(11) can be written as follows:

β ẑ j+1 −β ẑ j + ẑ j ∂ ẑ j+1

∂ζ
+ ẑ j+1 ∂ ẑ j

∂ζ
− v

∂ 2ẑ j+1

∂ζ 2 = ẑ j ∂ ẑ j

∂ζ
−β

j

∑
ν=0

bν [ẑ j+1−ν − ẑ j−ν ]+g j+1, (13)

where, j = 0(1)m. By substituting (6) into (13), the following system is obtained:

[β − 5l1
h

+ l2 − v
20
h2 ]c

j+1
i−2 +[26β − 50l1

h
+26l2 − v

40
h2 ]c

j+1
i−1 +[66β +66l2 + v

120
h2 ]c j+1

i

+[26β +
50l1

h
+26l2 − v

40
h2 ]c

j+1
i+1 +[β +

5l1
h

+ l2 − v
20
h2 ]c

j+1
i+2

=β l1 + l1l2 −β

j

∑
ν=1

bν(l3 − l4)+g j+1,

(14)

where

l1 = c j
i−2 +26c j

i−1 +66c j
i +26c j

i+1 + c j
i+2,

l2 =−5
c j

i−2

h
−50

c j
i−1

h
+50

c j
i+1

h
+5

c j
i+2

h
,

l3 = c j−ν+1
i−2 +26c j−ν+1

i−1 +66c j−ν+1
i +26c j−ν+1

i+1 + c j−ν+1
i+2 ,

l4 = c j−ν

i−2 +26c j−ν

i−1 +66c j−ν

i +26c j−ν

i+1 + c j−ν

i+2 .

There are (n+1) equations and (n+5) unknowns in the above system above. Therefore, we need to add
two equations using the boundary conditions (1) as follows:

{
c j
−2 +26c j

−1 +66c j
0 +26c j

1 + c j
2 = 0

c j
n−2 +26c j

n−1 +66c j
n +26c j

n+1 + c j
n+2 = 0.

(15)

The Pseudoinverse approach [9] will be used to solve the problem in this instance since there will be one
more unknown than equations. We must determine the values of c j

i when j = 0 before we can solve (14),
and we do this by applying the initial condition (1)as follows:


(ẑ j

0)ζ = d
dζ

ξ (ζi), i = 0,

ẑ0
i = u(ζi,0) = ξ (ζi), i = 0,1,2, ....n
(ẑ0

i )ζ = d
dζ

ξ (ζi), i = n.

(16)

The final result is a system that can be written as follows:

HC0 = δ , (17)

where H, C0, and δ are follows:
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H=



−5
h

−50
h 0 50

h
5
h . . . 0 0 0 0

1 26 66 26 1 . . . 0 0 0 0

0 1 26 66 26 1 . . . 0 0 0

...
...

...
...

...
...

...
...

...

0 . . . . . . 0 0 1 26 66 26 1

0 . . . . . . 0 0 −5
h

50
h 0 50

h
5
h



,

δ
T =

[
d

dζ
ξ (ζ0) ξ (ζ0) ξ (ζ1) . . . ξ (ζn)

d
dζ

ξ (ζn)
]T

,

(C0)T =
[
c0
−2 c0

−1 c0
0 . . . c0

n c0
n+1 c0

n+2

]T
,

system (17) has (n+5) of unknowns and (n+3) equations.

4 Stability

The stability of suggested technique is carried out using Von Neumann stability analysis [33, 35]. First
linearize the non-linear term in equation (11) by supposing

ẑ j+1 ∂ ẑ j+1

∂ζ
= a

∂ ẑ j+1

∂ζ
,

we obtain

β ẑ j+1 −β ẑ j +a
∂ ẑ j+1

∂ζ
− v

∂ 2ẑ j+1

∂ζ 2 =−β

j

∑
ν=0

bν [ẑ j+1−ν − ẑ j−ν ]+g j+1. (18)

It calls for imposing the error in the following way:

λ
j

k = ε
j

k − ε̃
j

k , k = 0,1,2......n, j = 0,1,2.....,m, (19)

where ε
j

k is the Fourier mode’s growth factor and its approximation is ε̃
j

k . When the error disappear as
the computation progresses, the numerical scheme is stable. Let g(ζ ,η) = 0, and hence from (18) and
(19), we derive the roundoff error equation:

β (λ j+1
i−2 +26λ

j+1
i−1 +66λ

j+1
i +26λ

j+1
i+1 +λ

j+1
i+2 )+a(−5

λ
j+1

i−2

h
−50

λ
j+1

i−1

h
+50

λ
j+1

i+1

h
+5

λ
j+1

i+2

h
)

− v(20
λ

j
i−2

h2 +40
λ

j
i−1

h2 −120
λ

j
i

h2 +40
λ

j
i+1

h2 +20
λ

j
i+2

h2 )

=β (λ j
i−2 +26λ

j
i−1 +66λ

j
i +26λ

j
i+1 +λ

j
i+2)−β

j

∑
ν=0

bν [(λ
j−ν+1

i−2 +26λ
j−ν+1

i−1 +66λ
j−ν+1

i

+26λ
j−ν+1

i+1 +λ
j−ν+1

i+2 )− (λ j−ν

i−2 +26λ
j−ν

i−1 +66λ
j−ν

i +26λ
j−ν

i+1 +λ
j−ν

i+2 )].

(20)
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The boundary conditions of the equation (20) are

λ
j

0 = h1(η), λ
j

n = h2(η), j = 0,1,2, ...,m, (21)

and the initial conditions are
λ

0
k = α(ζk), k = 0,1,2, ...,n. (22)

Define the grid function

λ
j(ζ ) =

{
λ

j
k , ζk − h

2 < ζ ≤ ζk +
h
2 , k = 0(1)n,

0, c < ζ < h
2 or d − h

2 < ζ < d.
(23)

The Fourier series of λ j(ζ ) is

λ
j(ζ ) =

∞

∑
µ=−∞

ζ
j(µ)e

i2πµζ

(d−c) , j = 0(1)m, (24)

where

ζ
j(µ) =

1
(d − c)

∫ d

c
λ

j(ζ )e
−i2πµζ

(d−c) dζ . (25)

Let λ j = [λ j
1 ,λ

j
2 , .......,λ

j
n−1]

T , and introduce the norm [13]

∥λ
j∥2 = (

m−1

∑
j=1

h|λ j
k |

2)
1
2 = [

∫ d

c
|λ j

k |
2dζ ]

1
2 . (26)

By using Parseval’s equality [4], it is clear that
∫ d

c |λ j
k |2dζ = ∑

∞
µ=−∞ |ζ j(µ)|2.

Consequently, the following relationship is obtained:

∥λ
j∥2

2 =
∞

∑
µ=−∞

|ζ j(µ)|2. (27)

Now,we assume that λ
j

k = τ jeipkh is the solution of equations (19)-(22),where i ∈ C and p ∈ R.
Thus, we can write equation (20) as follows:

βτ
j+1[eip(k−2)h +26eip(k−1)h +66eipkh +26eip(k+1)h + eip(k+2)h]

+
a
h

τ
j+1[−5eip(k−2)h −50eip(k−1)h +50eip(k+1)h +5eip(k+2)h]

− v
h2 τ

j+1[20eip(k−2)h +40eip(k−1)h −120eipkh +40eip(k+1)h +20eip(k+2)h]
=βτ

j[eip(k−2)h +26eip(k−1)h +66eipkh +26eip(k+1)h + eip(k+2)h]
−βb1τ

j[eip(k−2)h +26eip(k−1)h +66eipkh +26eip(k+1)h + eip(k+2)h]
−β

j−1

∑
ν=0

(−bν +bν+1)τ
j−ν

[
eip(k−2)h +26eip(k−1)h +66eipkh +26eip(k+1)h + eip(k+2)h].

(28)
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We divide system (28) on eipkh, so we obtain

τ
j+1 =

(1−b1)p1

p1 + p2 − p3
τ

j +
p1

p1 + p2 − p3

j−1

∑
ν=1

(bν −bν+1)τ
j−ν . (29)

where
p1 = e−2iph +26e−iph +66+26eiph + e2iph,

p2 =−−5a
h

e−2iph − 50a
h

e−iph +
50a

h
eiph +

5a
h

e2iph,

p3 =
20
h2 e−2iph +

40
h2 e−iph − 120

h2 +
40
h2 eiph +

20
h2 e2iph.

Lemma 1. If τ j is a solution of (29), then |τ j| ≤ |τ0|, j = 0(1)m.

Proof. We prove the result by induction, for j = 0, equation (29) implies

|τ1|= (1−b1)p1

p1 + p2 − p3
|τ0|.

Since p2 = −−5a
h e−2iph − 50a

h e−iph + 50a
h eiph + 5a

h e2iph and by the appropriate choice of the value of a,
where a is arbitrary constant we have

p1

p1 + p2 − p3
≤ 1. (30)

From (9) we obtain
(1−b1)< 1. (31)

Hence from (30) and (31) one get
|τ1| ≤ |τ0|.

Now, suppose |τ j| ≤ |τ0|, j = 0(1)m−1. Using equation (29) one has

|τ j+1|= (1−b1)p1

p1 + p2 − p3
|τ j|+ p1

p1 + p2 − p3

j−1

∑
ν=1

(bν −bν+1)|τ j−ν |.

This implies

|τ j+1| ≤ (1−b1)|τ j|+
j−1

∑
ν=1

(bν −bν+1)|τ j−ν |.

From (9) we get
|τ j+1| ≤ |τ0|.

Theorem 1. A system (14) is unconditionally stable .

Proof. Lemma 1 and (27) allow us to proceed to ∥λ j∥2 ≤ ∥λ 0∥2, j = 0,1...,m. This suggests uncondi-
tionally stability of system (14).
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5 Convergence of the QNBS method

The convergence of the QNBS schemes is explained in this section. We start by outlining some of the
key conditions for the proof.

Theorem 2 ([12, 27]). Let z(ζ ,η) ∈ C6([c,d]), g(ζ ,η) ∈ C2([c,d]), and ∆ : c = ζ0 < ζ1 < ζ2 < · · · <
ζn−1 < ζn = d be the uniform division of [c,d]. If S(ζ ,η), the Quintic spline function, is used to in-
terpolate the function’s values of z(ζ ,η) at the knots ζ0 < ζ1 < ζ2 < · · · < ζn−1 < ζn ∈ ∆, then ∃ Rs

independent of the step size h, so we have for each t > 0 and ζ ∈ [c,d]

∥Ds(z(ζ ,η)−S(ζ ,η)∥∞ ≤ Rsh6−s,s = 0,1,2,3,4.

Lemma 2 ([17,20]). The Quintic B-spline {B−2,B−1,B0,B1, ...,Bn,Bn+1,Bn+2} defined in equation (4)
satisfy the following inequality

n+2

∑
i=−2

|Bi(ζ )| ≤ 186, c ≤ ζ ≤ d.

Theorem 3. If g(ζ ,η) ∈ C2([c,d]), ẑ(ζ ,η) and z(ζ ,η) are approximate and exact solutions of (1),
respectively, then for all η > 0 we have

∥z(ζ ,η)− ẑ(ζ ,η)∥∞ ≤ γh4 +σ(∆η
2),

where γ is independent of the step size h, and h is sufficiently small.

Proof. Let

S(ζ ,η) =
n+2

∑
i=−2

ui(η)Bi(ζ ),

be the spline that is computed for both ẑ(ζ ,η) and z(ζ ,η). When triangular inequality is used, one has

∥z(ζ ,η)− ẑ(ζ ,η)∥∞ ≤ ∥z(ζ ,η)−S(ζ ,η)∥∞ −∥S(ζ ,η)− ẑ(ζ ,η)∥∞.

From Theorem 2 one gets

∥z(ζ ,η)− ẑ(ζ ,η)∥∞ ≤ R0h6 −∥S(ζ ,η)− ẑ(ζ ,η)∥∞. (32)

Linearizing the nonlinear term ẑ j+1 ∂ ẑ j+1

∂ζ
in (11) by taking ẑ j+1 as a constant a , we obtain

β ẑ j+1 −β ẑ j +a
∂ ẑ j+1

∂ζ
− v

∂ 2ẑ j+1

∂ζ 2 =−β

j

∑
ν=0

bν [ẑ j+1−ν − ẑ j−ν ]+g j+1. (33)

Theorize collocation requirement as:

L(z(ζi,η)) = L(ẑ(ζi,η))

= g(ζi,η), i = 0,1, ....,n.

Assume that
L(S(ζi,η)) = ĝ(ζi,η), i = 0,1, ....,n.
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The TFNBE (1), conserving (2) and (3) in the form of L(S(ζ ,η)− ẑ(ζ ,η)), can therefore be stated as
follows at time level:

[β − 5
h
− v

20
h2 ] f

j+1
i−2 +[26β − 50

h
− v

40
h2 ] f

j+1
i−1

+[66β + v
120
h2 ] f j+1

i +[26β +
50
h
− v

40
h2 ] f

j+1
i+1 +[β +

5
h
− v

20
h2 ] f

j+1
i+2

=β ( f j
i−2 +26 f j

i−1 +66 f j
i +26 f j

i+1 + f j
i+2)−β

j

∑
ν=1

bν( f j−ν+1
i−2 +26 f j−ν+1

i−1 +66 f j−ν+1
i

+26 f j−ν+1
i+1 + f j−ν+1

i+2 )− ( f j−ν

i−2 +26 f j−ν

i−1 +66 f j−ν

i +26 f j−ν

i+1 + f j−ν

i+2 )+
1
h2 t j+1

i , ∀ j.

(34)

The formation is in fact occupied by the boundary conditions:

f j
i−2 +26 f j

i−1 +66 f j
i +26 f j

i+1 + f j
i+2 = 0, i = 0,1, ....,n,

where
f j
i = c j

i −u j
i , i = 0,1, ....,n,

t j
i = h2(g j

i − ĝ j
i ), i = 0,1, ....,n.

From Theorem 2 we obtain
|t j

i |= h2|g j
i − ĝ j

i | ≤ R0h6,

consequently, we define 
|t j|= max{|t j

i |,0 ≤ i ≤ n},
|λ j

i |= | f j
i |

|λ j|= max{|λ j
i |,0 ≤ i ≤ n}.

For j = 0 in (34), one gets

[β − 5
h
− v

20
h2 ] f

1
i−2 +[26β − 50

h
− v

40
h2 ] f

1
i−1 +[66β + v

120
h2 ] f 1

i

+[26β +
50
h
− v

40
h2 ] f

1
i+1 +[β +

5
h
− v

20
h2 ] f

1
i+2

=β ( f 0
i−2 +26 f 0

i−1 +66 f 0
i +26 f 0

i+1 + f 0
i+2)+

1
h2 t1

i ,

(35)

The initial conditions will yield the following outcome λ 0 = 0:

[β − 5
h
− v

20
h2 ] f

1
i−2 +[26β − 50

h
− v

40
h2 ] f

1
i−1 +[66β + v

120
h2 ] f 1

i

+[26β +
50
h
− v

40
h2 ] f

1
i+1 +[β +

5
h
− v

20
h2 ] f

1
i+2

=
1
h2 t1

i .

(36)

With a small enough h, and taking the absolute values of f 1
i and t1

i , we obtain

λ
1 ≤ R0h4

120β
≤ n1h4, (37)
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where n1 is unaffected by h. Assuming λ x ≤ nxh4 is true for x = 1,2, ...., j, process and apply the
induction approach. After setting n = maxnx,0 ≤ x ≤ j, (34) turns into

[β − 5
h
− v

20
h2 ] f

j+1
i−2 +[26β − 50

h
− v

40
h2 ] f

j+1
i−1 +[66β + v

120
h2 ] f j+1

i

+[26β +
50
h
− v

40
h2 ] f

j+1
i+1 +[β +

5
h
− v

20
h2 ] f

j+1
i+2

=(β −βb1)( f j
i−2 +26 f j

i−1 +66 f j
i +26 f j

i+1 + f j
i+2)−β

j−1

∑
ν=0

(−bν +bν+1)

× ( f j−ν

i−2 +26 f j−ν

i−1 +66 f j−ν

i +26 f j−ν

i+1 + f j−ν

i+2 )+
1
h2 t j+1

i .

(38)

Henceforth,

120βλ
j+1 ≤ 120β (1−b1)λ

j −120β

j−1

∑
ν=0

(−bν +bν+1)λ
j−ν . (39)

From (9) we conclude
λ

j+1 ≤ nh4. (40)

It is now possible to create that

S(ζ ,η)− ẑ(ζ ,η) =
n+2

∑
i=−2

(ci(η)−ui(η))B(ζ ). (41)

Using Lemma 2, we obtain
∥S(ζ ,η)− ẑ(ζ ,η)∥∞ ≤ 186nh4. (42)

From (8) , (32) and (42) we prove

∥z(ζ ,η)− ẑ(ζ ,η)∥∞ ≤ γh4 +σ(∆η
2),

where γ = R0 +186n.

6 Numerical application

To ensure that the required process is performed as effectively as possible, two instances are conducted
in this section. All computations are carried out using Maple 17 to demonstrate the precision and efficacy
of this technique. The error norms L2, and L∞ are used to test the accuracy of the method that is being
described which are computed in [28] as follows:

L2 = ∥z− ẑn∥2 ≃
√

h
n

∑
j=0

|z j − (ẑn) j|2

and
L∞ = ∥z− ẑn∥∞ ≃ max j|z j − (ẑn) j|,

where ẑ and z stand for the approximate and exact solutions at the ith knot, respectively.
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Figure 1: Comparison of the numerical and exact solutions at κ = 0.5

Table 2: The error norms L∞ comparison of our method with methods of [16, 22] for Example 1

∆η Proposed method Method of [22] Method of [16]
1
10 0.0009140 0.0020697 0.0052339
1
40 0.0000888 0.0001412 0.0013443
1

160 0.0000077 0.0000090 0.0003438

Example 1. We consider the following TFNBE [22]:

∂ κz(ζ ,η)

∂ηκ
+ z(ζ ,η)

∂ z(ζ ,η)

∂ζ
− ∂ 2z(ζ ,η)

∂ζ 2 = g(ζ ,η), (ζ ,η) ∈ [−1,1]× (0,T ],

z(ζ ,0) = 0, ζ ∈ [−1,1]

z(−1,η) = 0 and z(1,η) = 0.

(43)

The exact solution of (42) is
z(ζ ,η) = η

2sin(πζ )

and

g(ζ ,η) =
η2−κΓ(3)
Γ(3−κ)

sin(πζ )+πη
4sin(πζ )cos(πζ )+π

2
η

2sin(πζ ).

Figure 1’s precise and approximative solutions have a strong and verified agreement. While the Figures
2 and 3 show the error level for different values of v. After comparing the findings from the suggested
approach with those taken from the [16, 22] in Table 2 , it is found that the results are superior.
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Figure 2: Error comparison for various n values when κ = 0.25 and ∆η = 0.001

Figure 3: Error comparison for various n values when κ = 0.75 and ∆η = 0.001

Example 2. We consider the following TFNBE [8]:

∂ κz(ζ ,η)

∂ηκ
+ z(ζ ,η)

∂ z(ζ ,η)

∂ζ
− ∂ 2z(ζ ,η)

∂ζ 2 = g(ζ ,η), (ζ ,η) ∈ [0,1]× (0,T ],

z(ζ ,0) = 0, ζ ∈ [0,1]

z(0,η) = η
2 and z(1,η) = η

2e1.

(44)

The exact solution of problem (43) is z(ζ ,η) = η2eζ , and g(ζ ,η) = 2 η2−κ

Γ(3−κ)e
ζ +η4e2ζ −η2eζ .

The exact and approximate solutions in Figure 4 have a strong and verified agreement. The solutions for
various values of κ , are compared in Figure 5, and the solutions for various values of ∆η are compared
in Figure 6. Table 3 shows a comparison between L2 and L∞ for different values of n and Table 4 shows
a comparison between L2 and L∞ for different values of ∆η .
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Figure 4: The numerical and precise solutions are compared at κ = 0.5.

Figure 5: Comparison of solution for different values of κ when ∆η = 0.1 and n = 40

Table 3: The error norms L∞ and L2 of Example 2 for κ = 0.5 and ∆η = 0.1

n = 10 n = 20 n = 40 n = 80
L∞ 0.0017012 0.0016922 0.0016742 0.0016383
L2 0.0012250 0.0008628 0.0006007 0.0004125

Table 4: The error norms L∞ and L2 of Example 2 for κ = 0.5 and n = 40

∆η = 0.001 ∆η = 0.003 ∆η = 0.005
L∞ 5.269×10−7 4.100×10−6 1.037×10−5

L2 2.001×10−7 1.529×10−6 3.850×10−6
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Figure 6: Comparison of error for different values of ∆η when κ = 0.5 and n = 40

Table 5: Comparison of the proposed method with [30] for certain values of n

n = 10 n = 20 n = 40 n = 80
Proposed method L∞ 1.9313×10−8 1.1613×10−8 1.1598×10−8 1.1596×10−8

L2 8.4900×10−9 5.8999×10−9 4.1706×10−9 2.9487×10−9

[30] L∞ 1.9866×10−5 1.9805×10−5 1.9579×10−5 1.9531×10−5

L2 1.4626×10−5 1.3963×10−5 1.3799×10−5 1.3759×10−5

Example 3. We consider The following TFNBE [30]:

∂ κz(ζ ,η)

∂ηκ
+ z(ζ ,η)

∂ z(ζ ,η)

∂ζ
− ∂ 2z(ζ ,η)

∂ζ 2 = g(ζ ,η), (ζ ,η) ∈ [0,1]× (0,T ],

z(ζ ,0) = 0, ζ ∈ [0,1]

z(0,η) = η2 and z(1,η) =−η
2.

(45)

The exact solution of problem (44) is z(ζ ,η) = η2cos(πζ ), for

g(ζ ,η) =
2η2−κcos(πζ )

Γ(3−κ)
−πη

4sin(πζ )cos(πζ )+π
2
η

2cos(πζ ).

Table 5 compares L∞ and L2 errors for various n values and parametric values, including κ = 0.5 v = 1,
and ∆η = 0.00025. Table 6 compares error norms with values for κ = 0.5, n = 80, and v = 1.
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Table 6: Comparison of the proposed method with [30] for certain values of ∆η

∆η = 0.002 ∆η = 0.001 ∆η = 0.0005
Proposed method L∞ 4.5777×10−7 1.3800×10−7 4.0546×10−8

L2 1.1669×10−7 3.5120×10−8 1.0308×10−8

[30] L∞ 1.6442×10−4 8.7080×10−5 4.8293×10−5

L2 1.1600×10−4 6.1505×10−5 3.4177×10−5

Table 7: The error norms L∞ and L2 of Example 4

∆η = 0.1 ∆η = 0.3 ∆η = 0.5
L∞ 3.0601×10−14 1.0217×10−13 1.7987×10−13

L2 1.9446×10−14 6.7744×10−14 1.2286×10−13

Example 4. We consider the following TFNBE:

∂ κz(ζ ,η)

∂ηκ
+ z(ζ ,η)

∂ z(ζ ,η)

∂ζ
− v

∂ 2z(ζ ,η)

∂ζ 2 = g(ζ ,η), (ζ ,η) ∈ [0,10]× (0,T ],

z(ζ ,0) = 0, ζ ∈ [0,10]

z(0,η) = 0 and z(10,η) = 0,

(46)

where g(ζ ,η) = η1−κ sin(πζ )
Γ(2−κ) +πη2sin(πζ )cos(πζ )+ vπ2ηsin(πζ ). The exact solution for this problem

is z(ζ ,η) = ηsin(πζ ). We apply the transformation ζ = 5x+ 5 on the interval [0,10] to get [−1,1].
Thus, we have the equation:

∂ κz(x,η)

∂ηκ
+0.2z(x,η)

∂ z(x,η)

∂x
−0.04v

∂ 2z(x,η)

∂x2 = g(x,η), (x,η) ∈ [−1,1]× (0,T ],

with the initial condition
z(ζ ,0) = 0, ζ ∈ [−1,1],

and

g(ζ ,η) =
η1−κsin(π(5x+5))

Γ(2−κ)
+πη

2sin(π(5x+5))cos(π(5x+5))+ vπ
2
ηsin(π(5x+5)).

Table 7 shows a comparison between L2 and L∞ for different values of ∆η at κ = 0.5, v = 5 and
n = 10.
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7 Conclusions

The spline function is a recognized and effective instrument for approximating solutions of fractional
partial differential equations, due to its piecewise polynomial framework and inherent smoothness char-
acteristics. In this study, we have proposed an efficient numerical method, quintic B-splines (QNBS)
functions, for solving TFNBE. The Caputo time-fractional derivative has been approximated by means
of the usual finite difference scheme, and the quintic B-spline functions are used for spatial discretization.
Additionally, four numerical cases have been examined utilizing the QNBS approach; graphs and tables
show the accuracy and practicality of the approach. The theoretical findings are validated by the numer-
ical outcomes of the QNBS method. Comparing the scheme suggested in this work to others already
established in the literature, it offers sufficient precision, and it is innovative. The implementation of
the recommended approach demonstrates that it is more efficient, simple, and palatable than [16,22,30].
A significant theoretical outcome is the demonstration of unconditional stability within the proposed
QNBS Fourier framework. In contrast to numerous time-stepping methods that necessitate adherence to
the Courant-Friedrichs-Lewy condition, our algorithm maintains stability for any selection of time and
spatial discretization. This robustness is especially advantageous for addressing long-term integration
issues or when utilizing adaptive meshes to capture localized features. It is no secret that proving conver-
gence is of great importance in demonstrating the accuracy and validity of the method. In this work, the
convergence of the method has been proven, which means that the method is characterized by accuracy.
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