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Abstract. In this study, an efficient smooth function is introduced to determine the solutions of Absolute
Value Equations (AVEs) using a two-step extension of Traub’s method. Additionally, a novel approach
is proposed for solving AVEs in a component-wise manner. Cubic convergence is achieved under mild
assumptions. The results demonstrate that the proposed method is highly effective, as validated by
numerical examples.
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1 Introduction

In this paper, we introduce an efficient high-order method for solving the Absolute Value Equation (AVE)
of the form

Ax−|x|= b, (1)

where A ∈ Rn×n and b ∈ Rn are given, and |x| denotes the component-wise absolute value of the vector
x ∈ Rn. The general form of the AVE, initially introduced by Rohn [21], is

Ax+B|x|= b, (2)

where B ∈ Rn×n. The problem of solving AVEs has garnered significant attention due to its complex
nature, particularly when associated with second-order cones. For instance, Hu et al. [11] demonstrated
global linear and local quadratic convergence for an extended Newton’s method applied to AVE (2).
Additionally, Mangasarian and Meyer [17] showed that AVE (1) can be transformed into an Ordinary
Linear Complementarity Problem (LCP) [19].
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Recently, numerous theoretical and numerical studies have focused on addressing the Non-determinis
-tic Polynomial-time (NP-hard) nature of AVEs [6, 22]. The increasing importance of approximating
numerical solutions for AVE (1) is underscored by the contributions of Zainali et al. [26], Lotfi [14],
Edalatpour et al. [3], and Farhadsefat [4]. Among these efforts, Feng and Liu [5] proposed an improved
generalized Newton’s method for AVE (1), while Zhang and Wei [27] investigated methods for solving
AVE (1) when the interval matrix [A− I,A+ I] is regular, with I as the identity matrix. Haghani [8]
further extended Traub’s two-step method for AVE (1), achieving linear convergence.

Notably, the function G(x) = Ax− |x| − b is nonlinear and not continuously differentiable [2]. To
address this, Qi and Sun [20] employed the Clarke generalized Jacobian [2], demonstrating the quadratic
convergence of Newton’s method. Mangasarian [16] showed that when the singular values of A exceed
1, the semi-smooth Newton’s method is well-defined and converges linearly. Tang and Zhou [22] utilized
the smooth function φp(ε,x) = p

√
ε p + xp, obtaining quadratic convergence for Newton’s method. Fur-

thermore, Yilmaz in [24] introduces additional smooth functions, while Hashemi and Ketabchi employ
four smooth functions for solving AVEs [9]. Yilmaz and Sahiner in [25] effectively address non-Lipschitz
AVEs using smooth functions.

These foundational works inspired us to leverage smooth functions to develop a new algorithm that
not only requires less precision but also exhibits greater stability for solving AVE (1) with a high or-
der of convergence. Specifically, we extend Traub’s method [18] by incorporating smooth functions,
achieving cubic convergence. The substantial advancements in iterative methods for matrix equations
and the optimization of smooth functions in recent years, particularly those that enhance convergence
and computational efficiencyhave significantly motivated our approach to solving absolute value equa-
tions [1, 13, 15, 28].

For clarity, we now recall our notation. Here, xty represents the inner product of x and y, where xt

is the transpose of x. We denote a column vector in Rn by (a j). The norm of a vector x is given by
||x|| =

√
xtx. An n× n matrix A is represented by (ai j), where ai j is the (i, j)-th component of A. The

matrix D(x) is a diagonal matrix with vector x on the diagonal, and ||A|| denotes the spectral norm of
matrix A.

The rest of the paper is organized as follows. Section 2 presents the AVEs, discusses smooth func-
tions, and introduces solvability conditions. In Section 3, we establish the local convergence of Traub’s
method with cubic convergence and compute a bound for the condition number of the proposed function.
Finally, numerical examples are provided to validate the theoretical results.

2 Defining the smooth function

If A = (ai j) ∈ Rn×n, b = (b j) ∈ Rn and x = (x j) ∈ Rn, we can define

G(x) = Ax−|x|−b, (3)

and
G1(x) = Ax− x−b, G2(x) = Ax+ x−b. (4)

Now, for given vector x, the smooth function F(x) is given by

F(x) = D(G1(x))D(G2(x))u, (5)
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where u = (u j) is a column vector with u j = 1 for all j. Note that

F(x) =
(
D(Ax−b)2−D(x)2)u. (6)

Then vectors G1(x) and G2(x) are shown by components-wise form as follows

G1(x) =

(
n

∑
j=1

ai jx j−bi− xi

)
∈ Rn, G2(x) =

(
n

∑
j=1

ai jx j−bi + xi

)
∈ Rn. (7)

Therefore,

F(x) =

(
(

n

∑
j=1

ai jx j−bi)
2− x2

i

)
∈ Rn. (8)

The Jacobian of F(x) at x is
∂F(x) = 2(D(Ax−b)A−D(x)). (9)

Lemma 1. If (3) is solvable, that is, there is x∗ such that G(x∗) = 0, then F(x) is solvable and F(x∗) = 0.

Proof. If G(x) is solvable and has a solution x∗, then Ax∗−|x∗|−b = 0, or Ax∗−b = |x∗|. It is deduced
that F(x∗) = 0.

Therefore, given the condition proposed by Mangasarian [17], we conclude that if the Lemma 2 is
satisfied, and G(x) is a solvable function, then F(x) is also solvable.

Lemma 2 ([17]). If the smallest singular value of A is greater than 1, then G(x) is solvable.

Lemma 3. Let the singular values of A be greater than 1, and the vector Ax− b be positive. If all
components of F(x) are greater than or equal to zero, then G(x) is solvable.

Proof. Suppose F(x)i is the i-th component of F(x). So,

F(x)i = (
n

∑
j=1

ai jx j−bi)
2− x2

i ≥ 0, for every i. (10)

Therefore,{
x = (xi);

n

∑
j=1

ai jx j−bi− xi ≥ 0 and
n

∑
j=1

ai jx j−bi + xi ≥ 0, for 1≤ i≤ n

}
6=∅. (11)

Hence, the bilinear program

0 = min
x∈Rn

{
n

∑
i=1

F(x)i;
n

∑
j=1

ai jx j−bi− xi ≥ 0 and
n

∑
j=1

ai jx j−bi + xi ≥ 0, for 1≤ i≤ n

}
(12)

is feasible, where
n

∑
i=1

F(x)i =

(
n

∑
j=1

ai jx j−bi− xi

)t( n

∑
j=1

ai jx j−bi + xi

)
.

So, F(x) has solution, thus, based on the [17, Proposition 3], the AVE G(x) is also solvable.
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3 Convergence analysis of the proposed method

It is known that the two-step Traub’s method is presented as follows

yk = xk− [∂F(xk)]−1F(xk),

xk+1 = yk− [∂F(xk)]−1F(yk),
(13)

for k = 0,1,2, . . . . In Section 2, ∂F(x) and F(x) are defined. In the following theorem, existence and
boundedness of the inverse Jacobian F(x) are proved.

Theorem 1. Let x∗ be a solution of F(x) = 0, which x∗ has no zero components. Suppose the singular
values of A exceed 1. Then there is an N(x∗) neighborhood from x∗ and a constant C, such that for each
x ∈ N(x∗), ∂F(x) is nonsingular and ∥∥∂F(x)−1∥∥≤C. (14)

Proof. By (9) and (3), the following relation is obtained

∂F(x∗) = 2(D(Ax∗−b)A−D(x∗)) = 2(D(|x∗|)A−D(x∗)) = 2D(|x∗|)(A− sign(x∗)), (15)

where sign(x∗) is the matrix sign function. If (A− sign(x∗))−1 does not exist, then for some x 6= 0, we
have that Ax = sign(x∗)x, which gives the contradiction

xtx < xtAtAx = xtsign(x∗)tAx = xtsign(x∗)tsign(x∗)x = xtx,

where the first inequality is a result of [17, Lemma 1] and the end equality as a consequence of [10,
Theorem 5.1]. As a results, ∂F(x∗) is nonsingular.

Now, suppose that for each N(x∗) neighborhood from x∗ there is y ∈ N(x∗), where ∂F(y) is sin-
gular or ‖∂F(y)−1‖ → ∞. So, there is a sequence {yk} such that yk → x∗, and ∂F(yk) is singular or
‖∂F(y)−1‖ → ∞. In addition, by defining the function F , F(x) and ∂F(x) are Lipschitz functions. By
passing the sequence, ∂F(x∗) must be singular, which is a contradiction.

Now, we can show that the proposed method (13) is convergent with cubic convergence.

Theorem 2. Suppose x∗ is a solution of F(x) = 0. Then, the iteration method (13) is well-defined and
converges to x∗ in a neighborhood of x∗ with cubic convergence.

Proof. Using Theorem 1, x∗ has a neighborhood N(x∗) in which for every x ∈ N(x∗), ∂F(x) is nonsin-
gular and bounded. So, the proposed method (13) is well-defined. We consider the convergence of the
proposed method (13) as component-wise. For the first part, we have

yk− x∗ = xk− x∗−∂F(xk)−1F(xk) = ∂F(xk)−1
[
∂F(xk)(xk− x∗)−F(xk)

]
= ∂F(xk)−1

[
2(D(Axk−b)A−D(xk))(xk− x∗)−D(Axk−b)D(Axk−b)u+D(xk)D(xk)u

]
.

For simplification, we put

A = 2(D(Axk−b)A−D(xk))(xk− x∗)−D(Axk−b)D(Axk−b)u+D(xk)D(xk)u. (16)
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Thus, we have

Ai = 2(
n

∑
j=1

ai jx j)
2−2(

n

∑
j=1

ai jxk
j)(

n

∑
j=1

ai jx∗j)−2xk
i xk

i +2xk
i x∗i − (

n

∑
j=1

ai jxk
j)

2

−2bi

n

∑
j=1

ai jxk
j +2bi

n

∑
j=1

ai jx∗j +2bi

n

∑
j=1

ai jxk
j−bibi + xk

i xk
i

= (
n

∑
j=1

ai jxk
j−

n

∑
j=1

ai jx∗j)
2− (xk

i − x∗i )
2− (

n

∑
j=1

ai jx∗j −bi)
2 + x∗2i .

Therefore, by taking the norm, it is obtained as follows

‖yk− x∗‖ ≤ c
(
‖A‖2‖xk− x∗‖2 +‖xk− x∗‖2

)
= c(‖A‖2 +1)‖xk− x∗‖2.

This means that, the quadratic convergence has been obtained for the first step, which can be considered
as the quadratic convergence for Newton’s Method.

Now, the second step of the proposed method (13) is considered. We have

xk+1− x∗ = yk− x∗−∂F(xk)−1F(yk) = ∂F(xk)−1
[
∂F(xk)(yk− x∗)−F(yk)

]
.

Again, for simplification, we put

β =2(D(Axk−b)A−D(xk))(yk− x∗)−D(Ayk−b)D(Ayk−b)u+D(yk)D(yk)u.

So, we can write down

βi = 2(
n

∑
j=1

ai jxk
j)(

n

∑
j=1

ai jyk
j)−2bi

n

∑
j=1

ai jyk
j−2xk

i yk
i −2

n

∑
j=1

ai jxk
j

n

∑
j=1

ai jx∗j

+2bi

n

∑
j=1

ai jx∗j +2xk
i x∗i − (

n

∑
j=1

ai jyk
j)

2 +2bi

n

∑
j=1

ai jyk
j−bibi + yk

i yk
i

= (yk
i − x∗i )(y

k
i + x∗i )−2xk

i (y
k
i − x∗i )− (

n

∑
j=1

ai jx∗j)
2 +2bi

n

∑
j=1

ai jx∗j

−bibi− x∗i x∗i +(
n

∑
j=1

ai jx∗j −
n

∑
j=1

ai jyk
j)(

n

∑
j=1

ai jx∗j +
n

∑
j=1

ai jyk
j)

+2
n

∑
j=1

ai jxk
j(

n

∑
j=1

ai jyk
j−

n

∑
j=1

ai jx∗j)

= (yk
i − x∗i )(y

k
i + x∗i −2xk

i )+
n

∑
j=1

ai j(yk
j− x∗j)(2

n

∑
j=1

ai jxk
j−

n

∑
j=1

ai jx∗j −
n

∑
j=1

ai jyk
j)

= (yk
i − x∗i )(y

k
i + x∗i + x∗i − x∗i − xk

i − xk
i )

+
n

∑
j=1

ai j(yk
j− x∗j)

(
n

∑
j=1

ai j((xk
j− x∗j)+(x∗j − yk

j)+(xk
j− x∗j))

)
.
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So, by taking the norm, it is obtained as follows:

‖xk+1− x∗‖ ≤ c‖yk− x∗‖
(
‖yk− x∗‖+2‖xk− x∗‖

)
+‖A‖‖yk− x∗‖

(
‖A‖(2‖xk− x∗‖+‖x∗− yk‖)

)
≤ c(1+‖A‖2)(2+‖xk− x∗‖)‖xk− x∗‖3.

The proof is complete now.

3.1 Conditioning

Zainali and Lotfi [26] computed the condition number of G(x). In this paper, the condition number of
F(x) is calculated similar to the study by Wozniakowski [23]. The matrix A is considered as input data d
for the F(x) = F(X ;d) = 0. So, the condition number of F(x;d) is computed by the following formula

cond(F ;d) = ||F ′x(x∗;d)−1F ′d(x
∗;d)|| ||d||

||x∗||
, (17)

where, F ′x and F ′d stand for the derivatives of F with respect to x and d. x∗ is also a solution of F(x) = 0.
Then the matrix form of F(x) is F(x;A) = D(Ax−b)D(Ax−b)−D(x)D(x), and

F ′x(x
∗;A) = ∂F(x∗), F ′A(x

∗;A) = 2x∗D(Ax∗−b) = 2x∗D(|x∗|). (18)

Hence, using the Theorem 1

cond(F ;A) = ||F ′x(x∗;A)−1F ′A(x
∗;A)|| ||A||

||x∗||
≤ 2C||x∗||||A||. (19)

We can prove it.

Lemma 4. Let A be the data for the function (6). Then a bound for the condition number of F(x;A) is

cond(F ;A)≤ 2C||x∗||||A||, (20)

where, C is a bound for ∂F(x∗)−1, and x∗ is a solution of F(x).

4 Numerical Examples

In this section, the theoretical results from the previous sections are validated through numerical exper-
iments. The computational results of the method in (13) demonstrate that it effectively solves the AVE
(1), with the computational error for function (6) being approximately equal to, or even lower than, that
for the AVE (1). Several examples are provided to verify the conditions of Lemma 3, with various models
used for input data. The algorithm, referred to as SA, is detailed below and implemented using Wolfram
Mathematica 13.2.
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Algorithm 1 An Smoothing Algorithm for Solving Absolute Value Equations(SA).

1: Choose the matrix A ∈ Rn×n, vector b ∈ Rn, and initial vector x0 with components strictly greater
than 0.

2: Set tolerance and maximum iterations maxIter.
3: Define the function: F(x) =

(
D(Ax−b)2−D(x)2

)
u

4: Define the Jacobian matrix: ∂F(x) = ∂F(x) = 2(D(Ax−b)A−D(x))
5: Set j = 0.
6: while ‖F(x j)‖2 > tolerance and j < maxIter do
7: if min(|x j|) = 0 then
8: Adjust x j to ensure no component is zero:
9: x j = 0.1+ ε , where ε is a small positive amount.

10: end if
11: Solve the linear system ∂F(x j)H j =−F(x j) to find the vector H j.
12: Set y j = H j + x j.
13: Solve the linear system ∂F(x j)M j =−F(y j) to find the vector M j.
14: Set x j+1 = M j + y j.
15: Increment j = j+1.
16: end while
17: Return min(|x j|)) and x j as the solution.

In Tables 1, 2, and 3, n and j denote the problem size and the number of iterations, respectively. The
columns ||F(x j)|| and ||G(x j)|| represent the norms of the functions (6) and (3), respectively, calculated
at the final iteration. The tolerance level has been set to 10−6. Additionally, we compute the Approximate
Computational Order of Convergence (ACOC) using the following formula [7]

ACOC =
ln
(
||zk+1−zk||
||zk−zk−1||

)
ln
(
||zk−zk−1||
||zk−1−zk−2||

) . (21)

To ensure that none of the components of the obtained root are zero, which is necessary to satisfy the
conditions of Theorem 1, the absolute value of all components was calculated, and the minimum value
among them was determined. Additionally, at each step of the proposed algorithm SA, a check is per-
formed, and if any component is zero, a small value is added to the vector to avoid zero components.

In Tables 1, 2, and 3, a comparison between the proposed Algorithm SA and Algorithm 1 from [12]
is provided. For this purpose, the required parameters are defined as follows: δ = 0.5, σ = 10−5, µ0 = 1,
p = 2, and β = (min(1, ||Hp(µ0,x0,A,B,b)||))2 + 0.1. Additionally, the variables τk, αk, and ∆zk are
computed iteratively within the algorithm. The smoothing function φp(x,µ) = p

√
xp +µ p is defined,

transforming the absolute value equation G(x) = Ax−B|x|−b into(
µ

Ax−BΦp(x,µ)−b

)
= 0, Φp(x,µ) = (φp(x1,µ),φp(x2,µ), . . . ,φp(xn,µ))

T ,

where it suffices for both µ and Hp(µ,x,A,B,b) = Ax−BΦp(x,µ)−b to vanish. Although the efficient
Algorithm 1 in [12] incorporates multiple parameters to accelerate convergence, the algorithm SA pre-
sented in this paper achieves higher speed and accuracy. This is demonstrated through tests on three
matrices, A1, A2, and A3, in the following examples.
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Table 1: Comparison of the algorithm SA with Algorithm 1 in paper [12] for the matrix A1.

n Algorithm SA Algorithm 1 in [12]
j ||F(x j)|| ||G(x j)|| time ACOC min(|x∗|) j ||G(x j)|| µ time

10 7 5.35103e-11 2.47994e-11 0. 3.19738 1.05599 8 3.73066e-10 5.25627e-10 0.
50 8 3.21239e-11 8.33566e-12 0. 3.25347 1.08951 8 2.33259e-8 2.31964e-8 0.025625
100 9 2.34269e-7 1.13033e-7 0. 3.83023 1.00546 8 3.68088e-7 2.78098e-7 0.025625
300 9 4.07181e-10 9.76172e-11 0.046875 3.06315 1.00605 9 1.33156e-9 2.02348e-7 0.209375
500 9 1.04635e-9 2.75719e-10 0.109375 3.19207 1.0018 9 6.09483e-8 6.37309e-8 0.41875
1000 11 3.59595e-9 8.94203e-10 0.828125 2.96811 1.00002 10 1.17743e-8 1.16879e-7 2.125
3000 11 2.72738e-8 6.78912e-9 24.3906 2.70581 1.00039 10 1.26661e-7 7.30427e-9 36.8125

Table 2: Comparison of the proposed algorithm SA with Algorithm 1 in the paper [12] for the matrix A2.

n Proposed Algorithm SA Algorithm 1 in [12]
j ||F(x j)|| ||G(x j)|| time ACOC min(|x∗|) j ||G(x j)|| µ time

10 8 4.15038e-12 9.37486e-13 0. 2.90619 1.32536 9 1.7809e-10 2.83331e-10 0.015625
50 9 5.06895e-11 9.96302e-12 0. 2.81905 0.993656 9 9.37263e-9 9.97254e-9 0.015625
100 10 5.92947e-9 2.77732e-9 0.015625 3.90934 1.0351 9 1.75483e-7 1.45069e-7 0.03125
300 10 4.16966e-7 2.07083e-7 0.078125 3.18499 0.99055 10 1.48579e-10 1.21976e-10 0.140625
500 11 1.29293e-9 2.76103e-10 0.25 3.7573 0.846637 10 1.30956e-8 1.74386e-8 0.34375
1000 12 4.71025e-9 9.59544e-10 1.1875 2.56405 0.890179 11 9.87817e-10 1.22836e-10 2.29688
3000 14 3.81488e-8 7.4269e-9 31.5938 2.43326 0.949937 13 1.19409e-8 1.37132e-7 32.4688

Example 1. We consider a random matrix A1 as follows:

A1=10(5+8RandomReal[{0,1},{n,n}]);

B=-IdentityMatrix[n];

x=1+2RandomReal[{0,1},n];

b=A.x-Abs[x];

x0=x+.1

In this example, we choose positive elements for A1. Also, we choose a random vector x with the
components in the interval [1,3] with a uniform distribution.

Example 2. In this example, we choose the matrix A2 with negative components. The vectors x and b
are generated by

A2 = 10 (-3 - 7 RandomReal[{0, 1}, {n, n}]);

B=-IdentityMatrix[n];

x = (-1 - 3 RandomReal[{0, 1}, n]);

b = -(A.x - Abs[x]);

x0=x-0.1

Similar to the Example 1, the results are reported in Table 2.

Example 3. Here, we consider another matrix A3, with arbitrary components. The vectors x and b are
also as follows
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A3 = 10 (-20 +10 RandomReal[{0, 1}, {n, n}]);

B = -IdentityMatrix[n];

x = (-1 - 3 RandomReal[{0, 1}, n]);

b = A.x - Abs[x];

x0=x-0.1

Again, similar to the Example 1, the results are shown in Table 3.

Table 3: Comparison of the proposed algorithm SA with Algorithm 1 in paper [12] for the matrix A3.

n Proposed Algorithm SA Algorithm 1 in [12]
j ||F(x j)|| ||G(x j)|| time ACOC min(|x∗|) j ||G(x j)|| µ time

10 7 5.15581e-7 2.29392e-7 0. 2.95997 1.05959 8 2.23759e-10 3.40483e-10 0.015625
50 9 2.84346e-9 1.33862e-9 0. 3.73513 1.04304 8 1.22135e-8 1.27559e-8 0.015625
100 9 2.23854e-10 4.24258e-11 0. 2.32618 1.00115 8 1.60054e-7 1.33523e-7 0.03125
300 11 9.88384e-10 2.01637e-10 0.046875 2.44464 1.01019 9 2.98226e-10 2.51496e-10 0.109375
500 10 2.71921e-9 5.46811e-10 0.234375 2.63987 1.0029 9 1.09284e-8 1.45707e-8 0.28125
1000 12 3.37636e-8 1.5848e-8 0.859375 2.8777 1.00786 11 1.95668e-9 5.33908e-11 1.03125
3000 13 7.98398e-7 3.87551e-7 24.4688 2.56357 1.00019 12 1.83168e-8 1.65008e-7 18.2344

As shown in Tables 1-3, the proposed Algorithm SA works practically by the ACOC near to 3, and
it can obtain a solution for the AVE (1), and yield desirable results for different scales of problems. The
computation time is also displayed in a column titled “time,” indicating the low computational cost.

Example 4. In this example, the proposed Algorithm SA is compared with the efficient Traub method
in [8] using the Hilbert matrix, known for its ill-conditioning and numerical challenges. A scaling factor
was applied to the Hilbert matrix, which was tested in various sizes. The results of this comparison,
summarized in Table 4, highlight the performance and robustness of both methods. The Traub method,
while often converging quickly, was highly sensitive to numerical precision, requiring a minimum setting
of 200 to avoid divergence. Notably, in cases of convergence, the norm ||G(x j)|| was found to be exactly
zero, raising concerns about the validity of the results. In contrast, the proposed method exhibited greater
stability, converging consistently without such high precision requirements. Consequently, there were
more instances of divergence in Traub method compared to the proposed method. The results, including
computation time (time) and the number of iterations ( j), are detailed in Table 4. The maximum number
of iterations (maxIterations) was set to 50, with a tolerance of 10−10

A =k HilbertMatrix[n];

b = Table[1,{i,1,n}];

x0=Table[0.1,{i,1,n}];

tolerance = 10^(-10);

maxIterations = 50

5 Conclusions

In this paper, a smooth function was introduced to determine the roots of the AVE (1), and Traub’s method
was extended using this proposed smooth function, resulting in cubic convergence. It can be concluded
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Table 4: Comparison of the proposed method with Traub method in Paper [8].

Proposed method Traub method
k n j ||F(x j)|| ||G(x j)|| time j ||G(x j)|| time
1 219 37 2.36511e-13 1.2339e-14 1.25 50 33832 257.938

50 9 9 2.80679e-16 8.00593e-16 0. 50 0.12569 0.0625
50 58 10 1.29697e-15 3.04452e-15 0.015625 50 3.37652 5.45313
100 128 29 1.53322e-15 5.34754e-15 0.296875 50 0.211609 24.3906
300 182 36 4.595e-15 1.97757e-14 0.75 50 0.331168 49.0156
500 44 45 2.05302e-15 1.50696e-14 0.09375 50 1.65797 4.23438
500 94 19 7.29298e-14 8.94958e-14 0.140625 50 0.00508866 15.9219
700 36 14 9.61267e-15 1.83493e-14 0.015625 9 0. 0.421875
1000 65 14 2.91708e-15 1.63757e-14 0.046875 50 0.00759145 7.09375

that the proposed smoothing method (13) provides reliable solutions for problems of any scale, given an
appropriate choice of initial data. Furthermore, the computational error is comparable to or lower than
that of the original AVE (1). A practical bound for the condition number of the proposed equation (6)
was also derived. Compared to the methods discussed, the proposed approach demonstrates superior
stability, speed, and accuracy. Finally, numerical examples were presented to validate the theoretical
findings.
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