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Abstract. Nonlinear programming has always had an important place in the literature, from the past
to the present. This study aims to solve the continuous constrained optimization problem, which is an
important subclass of nonlinear programming problems. A new twice differentiable smoothing tech-
nique for exact penalty functions is presented. It has been demonstrated that any optimum solution of
the smoothed exact penalty function coincides with an optimal solution of the original problem. Error
analysis is carried out to demonstrate that the optimal solution of the smoothed exact penalty problem
approximates to an optimal solution to the constrained optimization problem. The proposed smoothing
technique is used to develop an algorithm that produces an optimal solution for the constrained optimiza-
tion problem. The convergence of the method is demonstrated based on both theoretical and numerical
considerations. Numerical examples are provided to illustrate the effectiveness of the proposed method.

Keywords: Constrained optimization, smoothing technique, exact penalty function.
AMS Subject Classification 2010: 90C30, 65K05,65D15.

1 Introduction

We consider the following problem

(P)

min
x∈Rn

f (x)

s.t. ci(x)≤ 0, j = 1,2, . . . ,m,

where f : Rn→R and ci(x) : Rn→R, i ∈ I = {1,2, ...,m} are continuously differentiable functions. The
set of feasible solution is defined by C0 := {x ∈ Rn : ci(x)≤ 0, i = 1,2, . . . ,m} and we assume that C0 is
non-empty [11, 12, 23, 33].
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The penalty function approach is a crucial method for solving the problem (P). It has been exten-
sively utilized to address practical models, such as petrolium industries [14], economic load dispatching
problems [9], and design problems [16]. The penalty function approach involves converting a constrained
optimization problem into an unconstrained one. Applying the penalty function technique to (P) results
in the transformation of the problem into the following unconstrained optimization problem:

min
x∈Rn

F(x,ρ), (1)

where F(x,ρ) = f (x)+ρ ∑ j H (ci(x)) and ρ > 0 parameter. The most common H functions are H(t) =
max{0, t}2, H(t) = max{0, t}, H(t) = max{0, t}p (0 < p ≤ 1), H(t) = log(1 + max{0, t}), etc. [13,
25]. Furthermore, when the parameter ρ grows, the solution of problem (1) approaches the solution
of problem (P). Precision is considered to be one of the desirable characteristics of penalty functions.
The function F(x,ρ) is referred to be an exact penalty function for problem (P) if there exists a suitable
choice of parameters such that the optimal solution to the penalty problem is also an optimal solution
to the original problem [7, 20, 30]. For further information, we recommend consulting the studies by
Dolgopolik and Antczak [1, 8].

One of the first known penalty functions is called the l2 penalty function that is defined as

F2(x,ρ) = f (x)+ρ ∑
i

max{ci(x),0}2. (2)

It is differentiable but not necessarily exact when f and ci (i = 1,2, . . . ,m) are continuously differentiable
[30]. The l1 penalty function is well-known as one of the most common exact penalty functions. It is
defined as

F1(x,ρ) = f (x)+ρ ∑
i

max{ci(x),0}, (3)

by Eremin [10] and Zangwill [37]. It is exact but lacks differentiability. The primary drawback of
the l1 exact penalty function is that it restricts the employment of efficient algorithms such as Steepest
Descent, Newton, Quasi-Newton, etc., in solving the penalty problem. Alternatively, to enhance the
efficiency of the exact penalty function, lower-order exact penalty functions have gained prominence in
the literature [24, 25]. The lower order lp-exact penalty function is defined as

Fp(x,ρ) = f (x)+ρ ∑
i

max{ci(x),0}p, (4)

where 0 < p < 1 [5, 27]. Like the l1 penalty function, the lp penalty function is also exact but lacks
differentiability and it is non-Lipschitz when 0 < p < 1. Additionally, the presence of a non-smooth
penalty function, particularly with a high penalty value, might lead to numerical instability in the solution
process. In order to eliminate the deficiencies arising from the non-smooth penalty forms, smoothing
techniques are proposed [6, 29, 38]. The smoothing approach involves representing a non-differentiable
function using a set of smooth functions. Let R+ represent non-negative real numbers, a smoothing
function is defined formally as follows.

Definition 1. [3,4] A function f̃ : Rn×R+→R is called a smoothing function of a non-smooth function
f : Rn→ Rm if, for any ε > 0, f̃ (x,ε) is continuously differentiable and

lim
z→x,ε↓0

f̃ (z,ε) = f (x),

for any x ∈ Rn.
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Smoothing functions are used to solve various non-smooth optimization problems [2, 15, 31, 34, 35].
Smoothing technique is used for non-smooth penalty problems for the first time by Pinar and Zenios
in [22]. As a result, many smoothing techniques are developed for the exact penalty function in the
literature [17, 18, 21, 26, 28, 32, 36].

As it is well-known that gradient based methods (e.g. Newtonian methods) which are powerful
tools in nonlinear programming, usually need second-order continuously differentiability of the objective
function. Hence, it is crucial to devise smoothing methods that render l1 and lp exact penalty functions
continuously differentiable to the second order. While various smoothing techniques have been explored
in the literature separately for l1, lp, and other penalty functions. There are very few studies that have a
unified strategy that encompasses all of them.

The objective of this study is to introduce a twice continuously differentiable smoothing function to
approximate the exact penalty function in a common form. By implementing the suggested smoothing
technique for the exact penalty functions, we obtain a surrogate smoothed penalty problem. An inves-
tigation is conducted on the connections between the solutions produced for the original, exact penalty
and the smoothed exact penalty problems. The objective is to develop an algorithm to solve problem (P)
based on the smoothed penalty problem. This algorithm is applied to solve some test problems, and the
results are reported in order to reveal the numerical performance of the proposed algorithm.

2 Main results

2.1 A new exact penalty function

In this part of the study, first we recall the definition a class of exact penalty functions as follows:

s(t) =

{
0, t < 0,
t p, t ≥ 0,

where 0 < p ≤ 1. According to the new formula, the exact penalty function for problem (P) is defined
by

F(x,ρ) = f (x)+ρ ∑
i

s(ci(x)), (5)

and the obtained penalty form of the problem (P) is given by

(PF) min
x∈Rn

F(x,ρ).

The following assumptions are needed to state the exactness of the above penalty problem.

Assumption 1. f (x) is a coercive function, i.e., lim||x||→∞ f (x) = ∞.

Assumption 1 implies that there exists a compact set Y ⊂Rn such that all local minimizer of problem
(P) are included in int Y .

Assumption 2. The number of local minimizers of the problem (P) is finite.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then, there exist a threshold value ρ̄ such that
ρ ∈ [ρ̄,∞), every solution of (PF) is a solution of (P).

Proof. The proof is similar to the proof of [27, Corollary 2.3].
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2.2 Smoothing techniques

The differentiability of penalty functions established with the function t is not always ensured. Par-
ticularly, at the instant t = 0, the function s lacks differentiability. Hence, we provide the subsequent
smoothing functions for the function s.

The smoothing function of s is defined as

sε(t) =

0, t < 0,
t p+4

t4 + ε4 , t ≥ 0,
(6)

where ε > 0 is the smoothing parameter.

Lemma 1. For any t ∈ R, the function sε(t) satisfies the followings:
(i) sε(t) is twice continuously differentiable,
(ii) limε→0 sε(t) = s(t),
(iii) 0≤ s(t)− sε(t)≤ Kε p, 0 < K < 1.

Proof. ( i) For any ε > 0, we have

s′ε(t) =

0, t < 0,
pt p+7 +(p+4)ε4t p+3

(t4 + ε4)2 , t ≥ 0,

and

s′′ε (t) =

0, t < 0,
p(p+7)t p+6 +(p+4)(p+3)t p+2ε4

(t4 + ε4)2 − 8pt p+10 +8(p+4)t p+6ε4

(t4 + ε4)3 , t ≥ 0.

It is easy to see that functions s′ε(t) and s′′ε (t) are continuous at the transition points t = 0.
(ii) We have the following clarification:

lim
ε→0

sε(t) =


lim
ε→0

0 = 0 = s(t), t < 0,

lim
ε→0

(
t p+4

t4 + ε4 ) = t p = s(t), t ≥ 0.

(iii) For any ε > 0,

s(t)− sε(t) =

0, t < 0,

t p− t p+4

t4 + ε4 , t ≥ 0,

For t < 0, the difference is 0, let us assume that t ≥ 0. Now compute the maximum value of difference
d(t) = s(t)− sε(t). It is easy to see that d(t) ≥ 0 and d(0) = 0. For any t > 0, the derivative of d(t) is
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(a) For s(t) = max{0, t}.
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(b) For s(t) = max{0, t} 1
2 .

Figure 1: The blue graph represents s(t), the green graph is s1(t) and the red graph is s0.5(t).

obtained as

d′(t) =pt p−1− (p+4)t p+3(t4 + ε4)− t p+44(t3)

(t4 + ε4)2

=
pt p−1ε8 + pε4t p+3−4ε4t p+3

(t4 + ε4)2

=
ε4t p−1

(
pt4 + pε4−4t4

)
(t4 + ε4)2 .

Therefore the stationary point of d(t) is obtained as t = ∓ 4
√
−p
p−4 ε . Since t > 0, we have t = 4

√
−p
p−4 ε .

Thus, the maximum difference is obtained as

d
(

4

√
−p

p−4
ε

)
= Kε

p,

where K =
(

p
4−p

) p
4 (

1− p
4

)
.

Example 1. Let us consider the functions s(t) = max{0, t} and s(t) = max{0, t} 1
2 . The smoothing

functions sε(t) are given in the following Fig. 1. In Fig. 1 (a) and (b), the smoothing parameter ε is taken
as 1 and 0.5. It is observed that the smoothing functions approach the original function when ε → 0.

By utilizing the smoothing function given in (6), the smoothed exact penalty function is obtained as

F̃(x,ρ,ε) = f (x)+ρ ∑
i∈I

sε (ci(x)) .

Therefore the smoothed penalty problem is obtained as

(SPF) min
x∈Rn

F̃(x,ρ,ε).

Let us now analyze the error estimates.
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Theorem 2. For any x ∈ Rn, the inequality

0≤ F(x,ρ)− F̃(x,ρ,ε)≤ Kε
pmρ, (7)

holds and
lim
ε→0

F̃(x,ρ,ε) = F(x,ρ), (8)

is satisfied for ε,ρ > 0.

Proof. For any ρ,ε > 0,

F(x,ρ)− F̃(x,ρ,ε) = f (x)+ρ ∑
i∈I

s(ci(x))−

[
f (x)+ρ ∑

i∈I
sε(ci(x))

]
= ρ ∑

i∈I
[s(ci(x))− sε(ci(x))] .

Thus, we have 0≤ F(x,ρ)− F̃(x,ρ,ε)≤ Kε pmρ, and lim
ε→0

F̃(x,ρ,ε) = F(x,ρ).

The following corollary shows that the distance between F(x,ρ) and F̃(x,ρ,ε) reduces as ε → 0.

Corollary 1. Let {εk} → 0 and {xk} be an optimal solution of the problem minx∈Rn F̃(x,ρk,εk). If x̄ is
limit point of {xk}, then x̄ is the optimal solution to the problem (PF).

Definition 2 ([30]). Let f ∗ be the optimal objective function value of the problem (P) and x be a feasible
solution. If the condition f (x)− f ∗ ≤ ε holds, then x is called ε−approximate solution.

Definition 3 ([30]). If ci(xε)≤ ε for any i ∈ I and for ε > 0, then the xε is called as ε−feasible solution
of the problem (P).

Lemma 2 ([13,30]). Let x∗ be the optimal solution to the problem (PF). If x∗ is a feasible solution to the
problem (P), then x∗ is the optimal solution for (P).

Now, we present the following theorem regarding the connections between optimal solutions of prob-
lems (P), (PF), and (SPF).

Theorem 3. Assume that ρ > 0, x∗ is an optimal solution of the problem (PF) and xε be an optimal
solution of the problem (SPF). Then,

lim
ε→0

F̃(xε ,ρ,ε) = F(x∗,ρ). (9)

Moreover, if x∗ is the optimal solution to the problem (P) and xε is the ε-feasible solution for the problem
(P), then xε is the approximate solution to the problem (P).

Proof. Assume that x∗ is an optimal solution of (PF) and xε is an optimal solution of (SPF). By taking
into account Theorem 2 and following inequalities

F(x∗,ρ) ≤ F(xε ,ρ), (10)

F̃(xε ,ρ,ε) ≤ F̃(x∗,ρ,ε), (11)
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we obtain

0 ≤ F(x∗,ρ)− F̃(x∗,ρ,ε)≤ F(x∗,ρ)− F̃(xε ,ρ,ε)

≤ F(xε ,ρ)− F̃(xε ,ρ,ε)≤ Kε
pmρ.

Therefore, (9) holds. Let x∗ be an optimal solution of (P) and xε be ε−feasible solution (P). Since we
have

0≤

[
f (x∗)+ρ ∑

i
s(ci(x∗))

]
−

[
f (xε)+ρ ∑

i
sε(ci(xε))

]
≤ Kε

pmρ,

ci(x∗)≤ 0 and ci(xε)≤ ε , we have

ρ ∑
i

s(ci(x∗)) = 0, 0≤ ρ ∑
i

sε(c j(xε))≤ Kε
pmρ, (12)

and we obtain | f (xε)− f (x∗)| ≤ 2Kε pmρ.

2.3 Algorithm

In this section, the following algorithm is proposed to solve the penalty problem (P) by considering the
surrogate problem (SPF).

Smoothing Penalty Algorithm (SPA)

Step 1 Choose x0 ∈Rn, ε0 > 0, ρ0 > 0 and the tolerance parameter is chosen as ε = 10−4. Determine the
parameters N > 1, 0 < δ < 1. Let k = 0 and go to Step 2.

Step 2 Consider xk as an initial point and minimize F̃(x,ρk,εk) by using any local search methods. Let
xk+1 be an optimal solution.

Step 3 If xk+1 is a ε-feasible solution to the problem (P), then STOP. Otherwise, take ρk+1 = Nρk, εk+1 =
δεk and k = k+1, and go to Step 2.

Remark 1. During Step 2 of SPA, the selection of gradient-based local search method (such as Steepest
Descent, Newton, Quasi-Newton, etc.) depends on the level of smoothing approximation.

Remark 2. From the 3rd step of SPA and Theorem 3, an approximate optimal solution of the problem P
can be obtained.

We denote the following index sets

I−ε (x) = {i|ci(x)< ε, i ∈ I}, I+ε (x) = {i|ci(x)≥ ε, i ∈ I}.

For the convergence of SPA, the following theorem is presented.

Theorem 4. Assume that Assumptions 1 and 2 are held. Then the sequence {xk} generated by SPA is
bounded, and the limit point x̄ is the optimal solution to the problem (P).
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Proof. The boundedness of {xk} is proved first. Since the sequence {F(xk,ρk,εk)} is bounded, then
there exists a number L such that

F̃(xk,ρk,εk)≤ L, k = 0,1,2, . . . . (13)

On the contrary, let
{

xk
}

be unbounded i.e., when k→ ∞, ‖xk‖→ ∞. Inequality (13) is re-stated as

L≥ F̃(xk,ρk,εk)≥ f (xk), k = 0,1,2, . . . (14)

and it contradicts with the Assumption 1. Therefore, {xk} must be bounded.
Now, we demonstrate that the limit point x̄ of {xk} is the optimal solution of (P). We first prove that

x̄ is a feasible solution for the problem (P). Let limk→∞ xk = x̄. On the contrary, suppose the point x̄ is
not a feasible solution to (P). Then there exists i ∈ I for ci(x̄)≥ α > 0 such that

F̃(xk,ρk,εk) = f (xk)+ρk ∑
i∈I

sεk(ci(xk))

= f (xk)+ρk ∑
i∈I+εk

(xk)

sεk(ci(xk))+ρk ∑
i∈I−εk

(xk)

sεk(ci(xk)), (15)

where ci(xk) ≥ α > 0, the set {i : ci(xk) ≥ α} is non-empty. There is i0 ∈ I with ci0(x
k) ≥ α . Since

ρk→ ∞ as k→ ∞, from the equation (15) we obtain

F̃(xk,ρk,εk)→ ∞. (16)

This contradicts the boundedness of the sequence {F̃(xk,ρk,εk)}. Thus x̄ would be a feasible solution to
the (P) problem.

Let us show that x̄ is an optimal solution for (P). Assume x∗ is an optimal solution for (P) and xk is
an optimal solution for the problem minx∈Rn F̃(xk,ρk,εk). Then we have

F̃(xk,ρk,εk)≤ F̃(x∗,ρk,εk), k = 1,2, . . . . (17)

Similarly, we have

f (xk)+ρk ∑
i∈I

sεk(ci(xk))≤ f (x∗)+ρk ∑
i∈I

sεk(ci(x∗)), k = 1,2, . . .

and
f (xk)≤ f (x∗). (18)

So while k→ ∞,
f (x̄)≤ f (x∗). (19)

Since x∗ is the optimal solution for (P), we have

f (x̄)≥ f (x∗). (20)

From (19) and (20), we obtain f (x̄) = f (x∗). It means that x̄ is the optimal solution for (P).
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Table 1: Numerical results for the Problem 1.

p k ρk εk xk+1 f (xk+1) max(ci)

1
0 10 1 (0.194848,0.858616,2.069137,−0.996066) −45.3617 0.4501
1 20 0.075 (0.171191,0.837043,2.012521,−0.966813) −44.3066 0.0284
2 40 0.0056 (0.169725,0.835985,2.008664,−0.965255) −44.2384 0.0018
3 80 4.2187e−04 (0.169640,0.835930,2.008400,−0.965133) −44.2338 8.3059e−05

0.5
0 10 1 (0.191811,0.855439,2.063492,−0.995154) −45.2608 0.4119
1 100 0.1 (0.170412,0.836305,2.010702,−0.965982) −44.2728 0.0153
2 1000 0.01 (0.169142,0.835397,2.009040,−0.964597) −44.2353 0.0006
3 10000 0.001 (0.169097,0.835357,2.008952,−0.964592) −44.2338 2.2512e−05

0.1
0 10 1 (2.160854,2.211429,4.992058,−3.197717) −79.4523 50.8584
1 70 0.1 (0.170114,0.836020,2.010008,−0.965673) −44.2599 0.0103
2 490 0.01 (0.169577,0.835659,2.008613,−0.964972) −44.2345 0.0003
3 3430 0.001 (0.169562,0.835649,2.008573,−0.964957) −44.2338 8.3706e−06

3 Numerical results

To evaluate the numerical efficiency of SPA, we implement it on various benchmark problems found in
the literature. The tables contain detailed results, and evaluations of these outcomes are provided. Firstly,
the tables include a list of abbreviations used.

k : Number of iterations,

xk : the result of k−th iteration,

ρk : penalty function parameter in the k−th iteration,

εk : smoothing parameter of the k−th iteration ,

ci(xk) : constraint function value at xk,

F̃(xk,ρk,εk) : value of function F̃ at point xk,

f (xk) : value of function f at point xk.

Problem 1 ([17]). Consider the following problem which is called as Rosen-Suzuki problem:

min f (x) = x2
1 + x2

2 +2x3 + x2
4−5x1−21x3 +7x4

s.t. c1(x) = 2x2
1 + x2

2 + x2
3 +2x1 + x2 + x4−5≤ 0,

c2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1− x2 + x3− x4−8≤ 0,

c3(x) = x2
1 +2x2

2 + x2
3 +2x2

4− x1− x4−10≤ 0.

We select the starting point as x0 = (0,0,0,0), ρ0 = 10, ε0 = 1. The obtained numerical results are
illustrated in Table 1.

Applying SPA, the minimum value is found as −44.2338 for three different p values. In [17] and
[30], the minimum values are found as −44.23040 and −44.2338, respectively. It is seen that proposed
algorithm provides numerically better results than [17].
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Table 2: Numerical results for the Problem 2.

p k ρk εk xk+1 f (xk+1) max(ci)

1
0 10 1 (2.523920,4.260011,0.973563) 943.1775 0.4657
1 60 0.01 (2.500148,4.221540,0.964771) 944.2091 0.0029
2 360 0.0001 (2.500003,4.221295,0.964715) 944.2156 1.8428e−05

0.5
0 1000 1 (2.506229,4.230478,0.966764) 943.9648 0.1128
1 8000 0.1 (2.500255,4.221665,0.964750) 944.2057 0.0045
2 64000 0.01 (2.500009,4.221320,0.964671) 944.2153 0.0002
3 512000 0.001 (2.500000,4.221302,0.964667) 944.2157 −2.3762e−05

0.1
0 1000 1 (2.505230,4.228200,0.966348) 944.0211 0.0877
1 8000 0.01 (2.500013,4.221286,0.964775) 944.2154 0.0001
2 64000 0.0001 (2.500006,4.221281,0.964774) 944.2157 −2.6880e−07

Problem 2 ([30]). Consider the following problem

min f (x) = 1000− x2
1−2x2

2− x2
3− x1x2− x1x3,

s.t. c1(x) = x2
1 + x2

2 + x2
3−25 = 0,

c2(x) = (x1−5)2 + x2
2 + x2

3−25 = 0,

c3(x) = (x1−5)2 +(x2−5)2 +(x3−5)2−25≤ 0.

We select x0 = (2,2,1) as a starting point ρ0 = 10 and ρ0 = 1000, ε0 = 1. The obtained numerical results
are illustrated in Table 2.

By considering SPA, the obtained minimum values using three different p values are lower than the
value 944.2157 which is computed in [30]. As seen from Table 2, the solutions are obtained with a lower
number of iterations than [30].

Problem 3 ([19]). Consider the following problem

min f (x) =−x1x2x3,

s.t. c1(x) = x2
1 +2x2

2 +4x2
3−48≤ 0.

We select x0 = (3,3,3) as a starting point ρ0 = 10 and ρ0 = 100, ε0 = 1. The obtained numerical results
are illustrated in Table 3.

By considering SPA, the obtained minimum values using three different p values are similar to the
result in [19]. As seen from Table 3, the solutions are obtained with a lower number of iterations than
[19].



A new smoothing exact penalty function technique 163

Table 3: Numerical results for the Problem 3.

p k ρk εk xk+1 f (xk+1) max(ci)

1
0 10 1 (4.014449,2.838644,2.007225) −22.8235 0.3474
1 30 0.001 (3.994331,2.819267,2.009295) −22.6268 0.0003
2 90 0.00001 (3.994328,2.819263,2.009282) −22.6268 −6.7974e−09

0.5
0 10 1 (4.012771,2.837457,2.006385) −22.8448 0.3070
1 30 0.01 (3.992859,2.818700,2.010478) −22.6273 0.0012
2 90 0.0001 (3.992851,2.818700,2.010411) −22.6265 4.2335e−06

0.1
0 100 1 (4.005350,2.832210,2.002675) −22.7183 0.1285
1 400 0.1 (3.988135,2.817613,2.013771) −22.6288 0.0042
2 1600 0.01 (3.988070,2.817522,2.013615) −22.6259 0.0001
3 6400 0.001 (3.988067,2.817519,2.013610) −22.6258 4.5717e−06

Table 4: Numerical results for the Problem 4.

p k ρk εk xk+1 f (xk+1) max(ci)

1
0 100 1 (2.340485,1.951866,−0.480279,4.368116,−0.624371,1.039865,1.592081) 680.3210 0.2187
1 500 0.01 (2.333113,1.950701,−0.479270,4.366800,−0.624250,1.037373,1.597314) 680.6287 0.0014
2 2500 0.0001 (2.332967,1.950705,−0.479249,4.366787,−0.624252,1.037318,1.597434) 680.6317 9.7652e−06

0.5
0 10 1 (2.345867,1.952200,−0.481684,4.369682,−0.624298,1.040767,1.590960) 680.1369 0.3526
1 80 0.01 (2.329879,1.950641,−0.479399,4.367403,−0.622420,1.037868,1.593847) 680.6344 0.0007
2 640 0.0001 (2.329628,1.950710,−0.479361,4.367406,−0.622420,1.037769,1.594064) 680.6323 1.3692e−06

0.1
0 10 1 (9.665132,11.880905,−0.001194,10.999269,−0.083889,1.120468,1.468908) 15.9126 60318.3191
1 100 0.63 (4.621250,9.962333,−0.000532,10.986290,−0.150844,0.806047,1.672461) 35.2315 29948.2913
2 1000 0.3969 (2.249945,1.874762,−0.323445,4.553344,−0.552284,1.064130,1.509449) 681.6144 0.0354
3 10000 0.2501 (2.323612,1.951682,−0.362875,4.363414,−0.622020,1.053920,1.575226) 680.6504 0.0098
4 100000 0.1575 (2.321946,1.951802,−0.362695,4.363307,−0.622036,1.053274,1.576647) 680.6741 0.0014
5 1000000 0.0992 (2.321950,1.951792,−0.362696,4.363304,−0.622037,1.053275,1.576643) 680.6752 0.0004
6 10000000 0.0625 (2.321950,1.951789,−0.362696,4.363303,−0.622037,1.053276,1.576643) 680.6755 0.0001
7 100000000 0.0394 (2.321950,1.951788,−0.362696,4.363303,−0.622037,1.053276,1.576643) 680.6756 2.6725e−05

Problem 4 ([19]). Consider the following problem

min f (x) = (x1−10)2 +5(x2−12)2 + x4
3 +3(x4−11)2 +10x6

5 +7x2
6 + x4

7−4x6x7−10x6−8x7,

s.t. c1(x) = 2x2
1 +3x4

2 + x3 +4x2
4 +5x5−127≤ 0,

c2(x) = 7x1 +3x2 +10x2
3 + x4− x5−282≤ 0,

c3(x) = 23x1 + x2
2 +6x2

6−8x7−196≤ 0,

c4(x) = 4x2
1 + x2

2−3x1x2 +2x2
3 +5x6−11x7 ≤ 0.

We select x0 = (1,2,0,4,0,1,1) as a starting point ρ0 = 10 and ρ0 = 100 , ε0 = 1. The obtained numerical
results are illustrated in Table 4.
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Table 5: Numerical results for the Problem 5.

p k ρk εk xk+1 f (xk+1) max(ci)

1
0 10 1 (0.056466,1.029278,2.075206,−0.974306) −45.2034 0.4302
1 60 0.01 (0.000436,1.000235,2.000505,−0.999736) −44.0081 0.0029
2 360 0.0001 (0.000817,1.000188,1.999865,−0.998740) −43.9966 2.2158e−05

0.5
0 10 1 (0.052510,1.027057,2.069015,−0.973659) −45.0955 0.3928
1 80 0.01 (0.000237,1.000145,2.000155,−0.999936) −44.0033 0.0012
2 640 0.0001 (0.000834,1.000182,1.999806,−0.998928) −43.9968 3.8382e−06

0.1
0 100 1 (0.024624,1.012648,2.031673,−0.983253) −44.4860 0.1742
1 300 0.01 (−0.002643,0.999726,2.002024,−0.997763) −44.0007 0.0003
2 900 0.0001 (−0.002916,0.999595,2.001745,−0.997971) −43.9982 6.3476e−07

Problem 5 ([19]). Consider the following problem

min f (x) = x2
1 + x2

2 +2x2
3 + x2

4−5x1−5x2−21x3 +7x4,

s.t. c1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1− x2 + x3− x4−8≤ 0,

c2(x) = x2
1 +2x2

2 + x2
3 +2x2

4− x1− x4−10≤ 0,

c3(x) = 2x2
1 + x2

2 ++x2
3 +2x1− x2− x4−5≤ 0.

We select x0 = (0,0,0,0) as a starting point ρ0 = 10 and ρ0 = 100, ε0 = 1. The obtained numerical
results are illustrated in Table 5.

By considering SPA, the obtained minimum values for problems 3–5 using three different p values
are similar to the result in [19]. As seen from Tables 3–5, the solutions are obtained with a lower number
of iterations than the algorithm given by Liu in [19].

4 Conclusion

This paper introduces a new twice continuously differentiable smoothing exact penalty function that
includes both l1 and lp exact penalty forms. A novel minimization approach is devised to address problem
(P) using the surrogate problem (SPF). The algorithm is implemented on the test tasks and achieves good
outcomes.

The suggested method for smoothing non-smooth exact penalty functions possesses a versatile struc-
ture. The option is accessible for both Lipschitz and non-Lipschitz penalty functions. This feature is the
most crucial aspect of our smoothing process, setting it apart from other procedures.

SPA is consistently highly effective for optimization problems of small and medium scale. By im-
plementing this technique, the optimal value is efficiently determined, and the algorithm provides a high
level of precision in identifying the optimal value.
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