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Abstract. In this paper, we focus on the utilization of the feasible value constraint technique to address
multiobjective optimization problems (MOPs). It is attempted to overcome certain drawbacks associated
with this method, such as restrictions on functions and weights, inflexibility in constraints, and challenges
in assessing proper efficiency. To accomplish this, we propose an improved version of the feasible value
constraint technique. Then, by incorporating approximate solutions, we establish connections between ε-
(weakly, properly) efficient points in a general MOP and ε-optimal solutions to the scalarization problem.
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1 Introduction

The MOPs form a branch of mathematical programming that involves minimizing multiple objective
functions over a given set of decisions. Due to the inherent conflicts among the objectives, it is difficult
to find a single solution that optimizes all objective functions simultaneously. Therefore, the goal of an
MOP is to discover the best possible trade-off among these criteria. Points satisfying a trade-off among
conflicting objective functions are referred to as efficient points. The set consisting of the images of
these points in the objective space is called an efficient frontier. In [5, 12, 14–16, 20, 27, 28] applications
of MOPs in various real-world problems have been studied. Moreover, theory and methodology for
solving MOPs have witnessed significant advancements, as evidenced by a range of works found in the
literature (see for instance [1,4,7,31]). Scalarization techniques are commonly used strategies for solving
MOPs. These approaches entail transforming MOP into a single objective problem, which may involve
the incorporation of parameters or additional constraints (see [4, 7, 8] for more details).
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Certain scalarization techniques allow for obtaining a reliable approximation of the efficient frontier
by modifying the parameters. Notable examples within this category include the weighted constraint
approach [3], the feasible value constraint technique [2], and the objective constraint method [22]. In
the feasible value constraint technique, the optimization focuses on a specific kth objective, while the
remaining weighted objectives are incorporated as constraints.

An important purpose of the scalarization techniques is to demonstrate relevant conditions that
connect the optimal solutions of the scalarization problem with the efficient solutions of the MOP. A
renowned illustration of such conditions is the characterization of weakly and properly efficient solu-
tions in convex MOPs, which are identified as the optimal solutions of the weighted sum method with
nonnegative and positive weights (for more details we refer the reader to [1, 4]). In [2], some necessary
and/or sufficient conditions for (weakly) efficient solutions of the feasible value constraint technique
have been gained. However, it should be emphasized that this scalarization technique does not yield
results regarding proper efficiency. In this paper, we use the idea introduced in [6,21] and present a novel
version of the feasible value constraint technique. To do this, we aim to determine various necessary and
sufficient conditions for different types of efficient solutions in MOPs without limitations. On the other
hand, there has been a growing interest in the past few decades towards approximate efficient solutions of
MOPs. There are several valuable reasons for this trend. Firstly, numerical algorithms commonly provide
approximate solutions instead of exact ones. Furthermore, in certain circumstances where assumptions
such as compactness or boundedness may lead to an empty efficient solution set for the MOP, whereas
the approximate efficient solutions set remains nonempty. This is advantageous because it often requires
fewer assumptions or weaker hypotheses, making it more applicable in practical situations. The notion
of approximate solution was initially introduced by Kutateladze [18]. In [19], Loridan extended this con-
cept, and later, White proposed six types of the approximate solutions in the framework of MOPs [30].
Subsequently, many researchers developed into studying the properties of these approximate solutions,
and provided various necessary and sufficient conditions for ε-(weakly, properly) efficient solutions in
MOPs (see [9,10,17,21,24]). From a practical perspective, it is worth mentioning the works of Shao and
Ehrgott, which employ the application of approximate efficient solutions in the field of radiation therapy
process [25, 26]. Considering the previous discussions, the study of approximate efficiency for MOPs is
significant. It is important to note that the results obtained in this work are applicable and do not depend
on any specific convexity assumptions.

The remaining part of this paper is organized in the following manner. Section 2, presents the essen-
tial preliminaries are required for the subsequent sections. In Section 3, a comprehensive formulation
of the feasible value constraint technique is proposed, and its properties are studied. Section 4, estab-
lishes necessary and sufficient conditions for ε-(weakly, properly) efficient solutions in the general MOP.
Finally, the paper is closed with some conclusions in the last section.

2 Prerequisites

A general MOP can be formulated as

min
x∈X

f (x) = ( f1(x), . . . , fp(x)), (1)

where each fi, for 1 6 i 6 p denotes a real-valued function defined on Rn (the decision space), and
X ⊂Rn is a non-empty feasible set. Let us express some fundamental definitions for a better understand-
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ing.

Definition 1 ([4]). Let f (x), f (x̂) ∈ Rp, where x, x̂ ∈ X . Then

(1) f (x)5 f (x̂) if and only if fi(x)6 fi(x̂) for all i = 1, . . . , p,

(2) f (x)< f (x̂) if and only if fi(x)< fi(x̂) for all i = 1, . . . , p,

(3) f (x)≤ f (x̂) if and only if f (x)5 f (x̂) and f (x) 6= f (x̂).

Definition 2 ([13]). The Hadamard product of two vectors U,V ∈ Rp is defined by
U ◦V = (u1v1, . . . ,upvp)

T .

Definition 3 ([4]). Consider the MOP (1). The feasible solution x̂ ∈ X is called

(1) Weakly efficient solution if there is no another x ∈ X such that f (x)< f (x̂),

(2) Efficient solution if there is no another x ∈ X such that f (x)≤ f (x̂).

Definition 4 ([4]). A feasible solution x̂ ∈ X is said to be a properly efficient solution of the MOP (1),
if it is an efficient solution and there exists a positive constant M such that for each 1 6 i 6 p and for
any x ∈ X with fi(x)< fi(x̂), there exists 1 6 j 6 p such that f j(x)> f j(x̂), and the following inequality
holds

fi(x̂)− fi(x)
f j(x)− f j(x̂)

6 M.

In the rest of the paper, we will denote weakly efficient solutions, efficient solutions, and properly
efficient solutions as XwE ,XE and XpE , respectively.

Definition 5 ([29]). Let ε > 0. Consider a real-valued function h defined on X ⊆ Rn. A feasible point
x̂ ∈ X is referred to as an ε-optimal solution for the problem min

x∈X
h(x), if h(x̂)− ε 6 h(x) for all x ∈ X .

Definition 6 ([21]). Consider ε ∈ Rp
= = {x ∈ Rp | x = 0}. A feasible point x̂ ∈ X for the MOP (1) is

called

(1) ε-Weakly efficient solution if there is no other x ∈ X such that f (x)< f (x̂)− ε ,

(2) ε-Efficient solution if there is no other x ∈ X such that f (x)≤ f (x̂)− ε .

Definition 7 ([21]). A feasible point x̂ ∈ X is called ε-properly efficient solution for the MOP (1) if
it is ε-efficient solution and there exists a positive constant M such that for each 1 6 i 6 p and any
x ∈ X satisfying fi(x)< fi(x̂)− εi, there exists 1 6 j 6 p such that f j(x)> f j(x̂)− ε j and the following
inequality holds

fi(x̂)− fi(x)− εi

f j(x)− f j(x̂)+ ε j
6 M.

In the rest of this paper, the sets of all ε-weakly efficient, ε-efficient, and properly ε-efficient solu-
tions will be referred to as XεwE ,XεE and Xε pE , respectively.
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One approach for solving the MOP (1) is the feasible value constraint technique. It can be formulated
using the following scalarization model [2]

min fk(x) (2)

s.t. wi fi(x)6 wk fk(x̂), i = 1, . . . , p, i 6= k,

x ∈ X .

Here, min
i=1,...,p

{
inf
x∈X

fi(x)
}
> 0, and the weights wi are defined as wi =

1/ fi(x̂)
p

∑
j=1

1/ f j(x̂)
for 1 6 i 6 p.

3 Improved scalarization problem

In this part, based on the ideas presented in [6,21], we introduce a generalized form of problem (2). This
formulation aims to enhance the results and provide a characterization of (properly) efficient solutions
for this model. The general form can be written as follows

min fk(x)−∑
i 6=k

γis+i +∑
i 6=k

µis−i (3)

s.t. wi fi(x)+ s+i − s−i 6 αi, i = 1, . . . , p, i 6= k,

x ∈ X , s+i ,s
−
i > 0, i = 1, . . . , p, i 6= k,

where the weights wi, µi, and γi for 1 6 i 6 p and i 6= k are non-negative, and each αi denotes an arbitrary
upper bound for the function fi. In addition, s+i and s−i are assumed to be the components of the ith

vectors of s+ and s−, respectively. Note that for a given feasible solution (x,s+,s−) of problem (3),
x ∈ Rn and (s+,s−) ∈ Rp−1×Rp−1. By the next Lemma, we can assume that µ− γ = 0.

Lemma 1. Suppose there exists 16 i6 p and i 6= k such that µi−γi < 0. Then problem (3) is unbounded,
otherwise there exists a partition I ∪ Ī of 1 6 i 6 p and i 6= k such that s+i = 0 for all i ∈ I, and s−i = 0
for all i ∈ Ī.

Proof. The proof follows a similar approach to the proof of [6, Lemma 5.1].

The following lemma describes the first characteristic of the scalarization model (3).

Lemma 2. Suppose that γ = 0, and let the optimal solutions set for problem (3) be nonempty. Then there
exists an optimal solution (x̂, ŝ+, ŝ−) of problem (3) such that

w j f j(x̂)+ ŝ+j − ŝ−j = α j, (4)

for some 1 6 i 6 p, i 6= k. In case γ > 0, all constraints are active for each optimal solution of problem
(3).

Proof. Let (x̂, ŝ+, ŝ−) be an optimal solution of problem (3), and for some j 6= k, we have w j f j(x̂)+ ŝ+j −
ŝ−j < α j. Suppose that v > 0, such that w j f j(x̂)+ ŝ+j − ŝ−j + v = α j. Define new variables as follows

s+i =

{
ŝ+i , i 6= j,k
ŝ+i + v, i = j.
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It can be verified that (x̂,s+, ŝ−) is a feasible solution for problem (3) with the following property

fk(x̂)−∑
i6=k

γis+i +∑
i 6=k

µiŝ−i = fk(x̂)−∑
i6=k

γiŝ+i − γ jv+∑
i 6=k

µiŝ−i

6 fk(x̂)−∑
i 6=k

γiŝ+i +∑
i6=k

µiŝ−i . (5)

Equation (5) indicates that if γ j > 0, then the solution (x̂,s+, ŝ−) yields a better objective value for
problem (3) compared to (x̂, ŝ+, ŝ−), and it is equivalent to (x̂, ŝ+, ŝ−) when γ j = 0.

The next theorem states the relationships between optimal solutions of the scalarization model (3)
and efficient solutions of the MOP (1).

Theorem 1. Assume that w = 0.

(i) Let (x̂, ŝ+, ŝ−) be an optimal solution of the scalarization model (3) for some 1 6 k 6 p. Then, x̂ is
a weakly efficient solution of the MOP (1).

(ii) Let (x̂, ŝ+, ŝ−) be an optimal solution of the scalarization model (3) for all 1 6 k 6 p. Then, x̂ is
an efficient solution of the MOP (1).

Proof. (i) Consider an arbitrary k ∈ {1, . . . , p} and assume that x̂ is not a weakly efficient solution of the
MOP (1). This implies that there exists a feasible point x ∈ X such that fi(x) < fi(x̂) for all 1 6 i 6 p.
Consequently, one obtains

wi fi(x)+ ŝ+i − ŝ−i 6 wi fi(x̂)+ ŝ+i − ŝ−i
6 αi,

where 1 6 i 6 p, i 6= k. Obviously, (x, ŝ+, ŝ−) is a feasible point for the scalarization model (3), and

fk(x)−∑
i6=k

γiŝ+i +∑
i 6=k

µiŝ−i < fk(x̂)−∑
i6=k

γiŝ+i +∑
i 6=k

µiŝ−i .

This contradicts the optimality of (x̂, ŝ+, ŝ−). Therefore, we conclude that x̂ is a weakly efficient
solution of the MOP (1).

(ii) If x̂ is not an efficient solution of the MOP (1), then there exists a feasible point x ∈ X such that
fi(x) 6 fi(x̂) for all 1 6 i 6 p, and f j(x) < f j(x̂) for some 1 6 j 6 p. Similar to part (1), one deduces
(x, ŝ+, ŝ−) is a feasible point of problem (3) so that

f j(x)−∑
i 6= j

γiŝ+i +∑
i 6= j

µiŝ−i < f j(x̂)−∑
i 6= j

γiŝ+i +∑
i6= j

µiŝ−i .

This leads to contradiction with the optimality of (x̂, ŝ+, ŝ−) for the scalarization model (3) with k = j.

If w > 0, then we can get an additional sufficient condition for obtaining efficient solutions of the
MOP (1) using the scalarization model (3).
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Theorem 2. Assume that w > 0. If (x̂, ŝ+, ŝ−) is an optimal solution of the scalarization model (3) for
some 1 6 k 6 p, and either γ > 0 or µ > 0 with ŝ− > 0, then x̂ is an efficient solution of the MOP (1).

Proof. Let γ > 0 (the case µ > 0 and ŝ− > 0 is similar) and suppose that x̂ is not an efficient solution
of the MOP (1), hence there exists a feasible point x ∈ X satisfying fi(x) 6 fi(x̂) for all 1 6 i 6 p, and
f j(x)< f j(x̂) for some 1 6 j 6 p. Since wi > 0, for all 1 6 i 6 p, we have

wi fi(x)+ ŝ+i − ŝ−i 6 wi fi(x̂)+ ŝ+i − ŝ−i
6 αi,

for all 1 6 i 6 p with i 6= k. We need to consider the following two cases.
If j = k, then similar to part (ii) of Theorem 1, we have a contradiction. We now turn to the case j 6= k,
where

w j f j(x)+ ŝ+j − ŝ−j < w j f j(x̂)+ ŝ+j − ŝ−j
6 α j.

Consider 0 < v 6 w j f j(x̂)−w j f j(x) and define

s+i =

{
ŝ+i , i 6= j,
ŝ+i + v, i = j.

It can be easily verified that (x,s+, ŝ−) is a feasible point for problem (3) and also

fk(x)−∑
i 6=k

γis+i +∑
i 6=k

µiŝ−i = fk(x)−∑
i 6=k

γiŝ+i − γ jv+∑
i 6=k

µiŝ−i

< fk(x)−∑
i 6=k

γiŝ+i +∑
i6=k

µiŝ−i .

This contradicts the optimality of (x̂, ŝ+, ŝ−), leading to a contradiction.

In continuation, we prove that any efficient solution can be viewed as an optimal solution for the
scalarization model (3).

Theorem 3. If x̂ is an efficient solution of the MOP (1), then there exist w≥ 0, (γ,µ)= 0 and (α, ŝ+, ŝ−)
such that (x̂, ŝ+, ŝ−) is an optimal solution of problem (3) for all 1 6 k 6 p.

Proof. Let γ = µ = ŝ− = ŝ+ = 0, and assume that the feasible point (x,s+,s−) is an optimal solution of
problem (3), hence fk(x) < fk(x̂) for some 1 6 k 6 p. Define αi = wi fi(x̂)− s−i for all 1 6 i 6 p with
i 6= k. Therefore

wi fi(x)6 wi fi(x)+ s+i 6 αi + s−i
= wi fi(x̂), (6)

for all i 6= k. From (6) and the assumption wi > 0 for all i 6= k, we arrive at fi(x) 6 fi(x̂) for all i 6= k.
These inequalities with fk(x) < fk(x̂) imply that f (x) ≤ f (x̂). This leads to a contradiction with the
efficiency of x̂.
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To verify the existence of properly efficient solutions, we express the following lemma which depicts
a connection between the properly efficient solutions of the MOP (1) while the feasible set X is replaced
by the feasible set of the scalarization model (3).

Lemma 3. Assume that f (X) is bounded and wi > 0 for all 1 6 i 6 p with i 6= k. If x̂ is a properly
efficient solution of the MOP (1) with the feasible set problem (3) and there exists a partition I ∪ Ī of
{1,2, . . . , p}−{k} such that wi fi(x̂)< αi for all i ∈ I, and wi fi(x̂)> αi for all i ∈ Ī, then x̂ is a properly
efficient solution of the MOP (1) for the feasible set X.

Proof. The proof is similar to the proof of [21, Lemma 3.3].

Theorem 4. Let f (X) be bounded and (w,γ,µ) > 0. If (x̂, ŝ+, ŝ−) is an optimal solution of the scalar-
ization model (3) for some 1 6 k 6 p, and there exists a partition I ∪ Ī of 1 6 i 6 p and i 6= k such that
ŝ+i > 0, ŝ−i = 0 for all i ∈ I and ŝ−i > 0, ŝ+i = 0 for all i ∈ Ī, then x̂ is a properly efficient solution of the
MOP (1).

Proof. Our proof involves looking at Lemma 2. Hence, wi fi(x̂)+ ŝ+i − ŝ−i = αi for all i 6= k. Moreover,
wi fi(x̂)< αi for all i ∈ I and wi fi(x̂)> αi for all i ∈ Ī. Thus

fk(x̂)−∑
i 6=k

γiŝ+i +∑
i6=k

µiŝ−i = fk(x̂)−∑
i∈I

γiŝ+i +∑
i∈Ī

µiŝ−i (7)

= fk(x̂)−∑
i∈I

γi(αi−wi fi(x̂))+∑
i∈Ī

µi(wi fi(x̂)−αi) (8)

= fk(x̂)+∑
i∈I

γiwi fi(x̂)+∑
i∈Ī

µiwi fi(x̂)−∑
i∈I

γiαi−∑
i∈Ī

µiαi. (9)

Define

λi =


γiwi, i ∈ I,
µiwi, i ∈ Ī,
1, i = k.

Since the term −∑
i∈I

γiαi−∑
i∈Ī

µiαi is constant, x̂ is an optimal solution of the weighted sum problem

min
{ p

∑
i=1

λi fi(x) | wi fi(x)< αi, i ∈ I,wi fi(x)> αi, i ∈ Ī
}
, (10)

where λ > 0. By Geoffrion’s Theorem [11], x̂ is a properly efficient solution of the MOP (1) with respect
to a feasible set of problem (10). Now, from Lemma 3, it can be concluded that x̂ is also a properly
efficient solution of the MOP (1) with the feasible set X .

The following example illustrates how model (3), in contrast to model (2), can effectively identify
properly efficient solutions for MOP (1).

Example 1. Consider the following problem [23]

min ((x1−5)2 +(x2−5)2 + x2
3,(x1−6)2 +(x2−6)2 +(x3−6)2)

s.t. x1 + x2 + x3 6 5,
x1,x2,x3 > 0.

(11)
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Table 1: The results of model (3) correspond to MOP (11).

x̂1 x̂2 x̂3 ŝ+2 ŝ−2
2.2222 2.2222 0.5556 0.0000 58.1852
2.0833 2.0833 0.8333 0.0000 57.3750
2.0000 2.0000 1.0000 0.0000 57.0000
1.9444 1.9444 1.1111 0.0000 56.7963
1.9048 1.9048 1.1905 0.0000 56.6735
1.8750 1.8750 1.2500 0.0000 56.5938
1.8519 1.8519 1.2963 0.0000 56.5391
1.8333 1.8333 1.3333 0.0000 56.5000
1.8182 1.8182 1.3636 0.0000 56.4711
1.8056 1.8056 1.3889 0.0000 56.4491
1.7949 1.7949 1.4103 0.0000 56.4320
1.7857 1.7857 1.4286 0.0000 56.4184
1.7778 1.7778 1.4444 0.0000 56.4074
1.7708 1.7708 1.4583 0.0000 56.3984
1.7647 1.7647 1.4706 0.0000 56.3910
1.7593 1.7593 1.4815 0.0000 56.3848
1.7544 1.7544 1.4912 0.0000 56.3795
1.7500 1.7500 1.5000 0.0000 56.3750
1.7460 1.7460 1.5079 0.0000 56.3711

As is mentioned in [23], the properly efficient set is the segment joining the points (5
2 ,

5
2 ,0) and

(5
3 ,

5
3 ,

5
3).

Table 1 shows the results obtained from model (3), with the parameters α2 = 0, w2 = γ2 = 1, and
1 6 µ2 6 20. As indicated in Table 1, the proper efficiency of all points can be identified using Theorem
4, whereas model (2) fails to detect the proper efficiency of these points.

When f (X) is unbounded, the result of Theorem 4 in general may not be correct.

Example 2. Consider the following MOP [6]

min ( f1(x), f2(x)) = (x1,x2)
s.t. x1x2 = 1,

−1 6 x1 < 0.

It is evident that XE = X . Now, we display that XpE = /0. Let us consider an arbitrary solution x̂ = (x̂1, x̂2).
We define xε = (xε

1,x
ε
2) = (−ε,− 1

ε
), where 0 < ε <−x̂1. Thus, xε ∈ X . Consequently, we have f1(xε)>

f1(x̂), and f2(xε)< f2(x̂). According to Definition 4, we achieve

f2(x̂)− f2(xε)

f1(xε)− f1(x̂)
=

1
x̂1
+ 1

ε

−ε− x̂1
=− 1

ε x̂1
. (12)

As ε → 0, there is no exists positive constant M in which the result in Eq. (12) is less than or
equal to M. Hence, x̂ ∈ XpE . Since x̂ is an arbitrary solution, we conclude that XpE = /0. Consequently,
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an optimal solution of the scalarization model (3) cannot be a properly efficient solution. Let us assume
k = w2 = 1,γ2 = 4,µ2 = 5, and α2 =−1

2 . Then, the scalarization model (3) possesses an optimal solution
(x̂1, x̂2) = (−1,−1) and (ŝ+2 , ŝ

−
2 ) = (1

2 ,0).

At the end, we are going to verify that any properly efficient solution of MOP (1) can be looked at as
an optimal solution of the scalarization model (3) with w > 0.

Theorem 5. Let x̂ be a properly efficient solution of the MOP (1). Then for all 1 6 k 6 p, there exist
w> 0, (γ, µ̂)= 0, and (α, ŝ+, ŝ−) such that (x̂, ŝ+, ŝ−) is an optimal solution of problem (3) for all µ = µ̂.

Proof. The proof is taken from [21, Theorem 3.6]. Now, let k ∈ {1,2, . . . , p}. Putting γ = 0, ŝ+ = 0 and
αi = wi fi(x̂), where the weights wi for 1 6 i 6 p with i 6= k are positive constants. Let ŝ−i = 0 for all i 6= k.
Since x̂ is a properly efficient solution of the MOP (1), there exists M > 0 such that for all 1 6 i 6 p and
x ∈ X with fi(x)< fi(x̂). Hence there exists j ∈ {1, . . . , p} such that f j(x̂)< f j(x) and

fi(x̂)− fi(x)
f j(x)− f j(x̂)

6 M.

Define µ̂i =
M
wi

for all 1 6 i 6 p with i 6= k. Let (x,s+,s−) be a feasible point of problem (3). Since
γ = 0, we can put s+i = 0, and so s−i > max{0,wi fi(x)−αi} = max{0,wi fi(x)−wi fi(x̂)}, for all i 6= k.
We have to show that

fk(x)+∑
i 6=k

µis−i > fk(x̂)+∑
i6=k

µiŝ−i = fk(x̂). (13)

If fk(x) > fk(x̂), then inequality (13) holds else if fk(x) < fk(x̂) define J = {1 6 j 6 p, j 6= k | f j(x̂) <
f j(x)}. The set J is nonempty because x̂ is a properly efficient solution. Since fk(x)< fk(x̂), there exists
j ∈ J such that fk(x̂)− fk(x)6 M( f j(x)− f j(x̂)), and also

fk(x)+∑
i6=k

µ̂is−i > fk(x)+∑
i6=k

µ̂i max{0,wi fi(x)−wi fi(x̂)}

> fk(x)+∑
i∈J

µ̂i(wi fi(x)−wi fi(x̂))

> fk(x)+ µ̂ jw j( f j(x)− f j(x̂))

= fk(x)+M( f j(x)− f j(x̂))

> fk(x̂).

Consequently, we deduce that inequality (13) holds for all µ = µ̂ .

4 ε-weakly and ε-properly efficient solutions

In this part, we present several sufficient conditions that can be applied to characterize approximate
(weakly and properly) efficient solutions of the general MOP (1) through the utilization of the scalariza-
tion model (3).

The following theorem establishes some sufficient conditions for the ε-weakly efficient solution.
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Theorem 6. Let ε > 0, and ε = 0. If (x̂, ŝ+, ŝ−) is an ε-optimal solution of problem (3) for some k ∈
{1,2, . . . , p}, and also

(i) ε 6 min
i=1,...,p

εi, then x̂ is an ε-weakly efficient solution of the MOP (1).

(ii) ε 6 ∑
i6=k

γiwiεi, then x̂ is an ε-weakly efficient solution of the MOP (1).

(iii) ε 6 ∑
i 6=k

µiwiεi and w◦ ε 5 ŝ−, then x̂ is an ε-weakly efficient solution of the MOP (1).

Proof. Here, we present the proof of part (iii). The proofs for parts (i) and (ii) are similar and will be
omitted.

(iii) Suppose that x̂ is not an ε-weakly efficient solution of the MOP (1), then there exists x ∈ X such
that f (x)< f (x̂)− ε . Therefore, wi fi(x)6 wi fi(x̂)−wiεi for i 6= k. This implies that

wi fi(x)+ ŝ+i − ŝ−i +wiεi 6 wi fi(x̂)+ ŝ+i − ŝ−i
6 αi,

for i 6= k. Set s−i = ŝ−i −wiεi for all i 6= k. Therefore, (x, ŝ+,s−) is a feasible point of problem (3) such
that

fk(x)−∑
i 6=k

γiŝ+i +∑
i6=k

µis−i = fk(x)−∑
i 6=k

γiŝ+i +∑
i6=k

µiŝ−i −∑
i 6=k

µiwiεi

< fk(x̂)−∑
i 6=k

γiŝ+i +∑
i6=k

µiŝ−i − ε.

This is a contradiction to the ε-optimality of (x̂, ŝ+, ŝ−).

By utilizing positive parameters and weights, we can derive several sufficient conditions for the ε-
efficient solution of the MOP (1).

Theorem 7. Let ε > 0, and ε = 0. If (x̂, ŝ+, ŝ−) is an ε-optimal solution of problem (3) for some k ∈
{1,2, . . . , p} such that

(i) (w,γ)> 0 and ε 6 ∑
i6=k

γiwiεi, then x̂ is an ε-efficient solution of the MOP (1).

(ii) (w,µ)> 0, w◦ ε 5 ŝ− and ε 6 ∑
i 6=k

µiwiεi, then x̂ is an ε-efficient solution of the MOP (1).

Proof. (i) Assume that x̂ is not an ε-efficient solution of the MOP (1), then there exists x ∈ X such that
fi(x)6 fi(x̂)− εi for all i, and f j(x)< f j(x̂)− ε j for some j. Hence, for all i 6= k we have

wi fi(x)+ ŝ+i − ŝ−i 6 wi fi(x̂)+ ŝ+i − ŝ−i −wiεi

6 αi,

and

w j f j(x)+ ŝ+j − ŝ−j < w j f j(x̂)+ ŝ+j − ŝ−j −w jε j

6 α j,
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for some j 6= k. Let us consider v j > 0 such that v j 6 w j( f j(x̂)− f j(x)− ε j). It follows that w j f j(x)+
ŝ+j − ŝ−j + v j +w jε j 6 α j. Putting

s+i =

{
ŝ+i +wiεi, i 6= j, k
ŝ+i + vi +wiεi, i = j.

Therefore, (x,s+, ŝ−) is a feasible point of problem (3) such that

fk(x)−∑
i 6=k

γis+i +∑
i 6=k

µiŝ−i = fk(x)−∑
i 6=k

γiŝ+i −∑
i 6=k

γiwiεi− γ jv j +∑
i6=k

µiŝ−i

< fk(x̂)−∑
i 6=k

γiŝ+i +∑
i 6=k

µiŝ−i − ε.

This contradicts the ε-optimality of (x̂, ŝ+, ŝ−). The proof of part (ii) runs as part (i) and will be omitted.

The next theorem finds out additional sufficient conditions for the ε-efficient solution of the MOP
(1).

Theorem 8. Let ε > 0, and ε = 0. If (x̂, ŝ+, ŝ−) is an ε-optimal solution of problem (3) for some k ∈
{1, . . . , p}, in which

(i) ε < ∑
i6=k

γiwiεi, then x̂ is an ε-efficient solution of the MOP (1).

(ii) ε < ∑
i6=k

µiwiεi and w◦ ε 5 ŝ−, then x̂ is an ε-efficient solution of the MOP (1).

Proof. The proof is similar in spirit to that of Theorem 7.

Finally, we demonstrate that under the conditions stated in Theorems 7 and 8, we can derive ε-
properly efficient solutions for the MOP (1) using the scalarization problem (3).

Theorem 9. Let ε > 0, and ε = 0. Suppose that (x̂, ŝ+, ŝ−) is an ε-optimal solution of problem (3) for
some k ∈ {1,2, . . . , p}. If

(i) (w,γ)> 0 and ε 6 ∑
i6=k

γiwiεi, then x̂ is an ε-properly efficient solution of the MOP (1).

(ii) (w,µ)> 0,w◦ ε 5 ŝ− and ε 6 ∑
i 6=k

µiwiεi, then x̂ is an ε-properly efficient solution of the MOP (1).

Proof. Here, we provide the proof for part (i). The proof of the second part resembles to the first part
and will be omitted. By part one of Theorem 7, x̂ is an ε-efficient solution of the MOP (1). Let x̂ /∈ Xε pE .
Thus, for all M > 0 there exists l ∈ {1, . . . , p}, and x ∈ X with fl(x)< fl(x̂)− εl such that

fl(x̂)− fl(x)− εl

f j(x)− f j(x̂)+ ε j
> M, (14)
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for all j with f j(x)> f j(x̂)− ε j. For the index l, there exists v > 0 such that

wl fl(x)+ v = wl fl(x̂)−wlεl. (15)

Thus we arrive at

wl fl(x)+ ŝ+l + v+wlεl− ŝ−l = wl fl(x̂)+ ŝ+l − ŝ−l
6 αl.

Define J = {1 6 j 6 p | f j(x)> f j(x̂)− ε j}. Since x̂ ∈ XεE , hence J 6= /0 . From (14) and (15) it follows
that f j(x)< f j(x̂)+ v

Mwl
− ε j, for all j ∈ J. Therefore, by the ε-optimality of (x̂, ŝ+, ŝ−) we get

w j f j(x)+ ŝ+j − ŝ−j < w j f j(x̂)+ ŝ+j − ŝ−j

6 α j +
vw j

Mwl
−w jε j.

for all j ∈ J. So, we attain

w j f j(x)+ ŝ+j +w jε j− ŝ−j −
vw j

Mwl
6 α j.

On the other hand, if i /∈ J∪{l}, then fi(x) 6 fi(x̂)− εi. Therefore, by the ε-optimality assumption
for all i /∈ J∪{l}, we achieve

wi fi(x)+ ŝ+i +wiεi− ŝ−i 6 wi fi(x̂)+ ŝ+i − ŝ−i
6 αi.

Define

s+i =

{
ŝ+i + v+wiεi, i = l,
ŝ+i +wiεi, i 6= l,

and

s−i =

{
ŝ−i + vwi

Mwl
, i ∈ J,

ŝ−i , i /∈ J.

Thus, (x,s+,s−) is a feasible point of problem (3) and

fk(x)−∑
i 6=k

γis+i +∑
i6=k

µis−i = fk(x)− ∑
i 6=l,k

γi(ŝ+i +wiεi)− γl(ŝ+l + v+wlεl)

+ ∑
i∈J−{k}

µi(ŝ−i +
vwi

Mw j
)+ ∑

i/∈J−{k}
µiŝ−i

= fk(x)−∑
i 6=k

γiŝ+i +∑
i6=k

µiŝ−i + ∑
i∈J−{k}

µi
vwi

Mwl
− γlwlv−∑

i 6=k
γiwiεi

< fk(x)−∑
i 6=k

γiŝ+i +∑
i6=k

µiŝi
−− ε,
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Table 2: Summary of results for a solution (x̂, ŝ+, ŝ−) of problem (3).

Condition on the parameters Implication for x̂ Reference
Optimal for some k and (w,µ,γ)= 0 x̂ ∈ XwE Theorem 1 (1)
Optimal for all k and (w,µ,γ)= 0 x̂ ∈ XE Theorem 1 (2)
Optimal for some k, µ = 0 and (w,γ)> 0 x̂ ∈ XE Theorem 2
Optimal for some k, γ = 0 and (w,µ, ŝ−)> 0 x̂ ∈ XE Theorem 2
Optimal for some k, (w,µ,γ)> 0,
f (X) is bounded and all constraints are inactive x̂ ∈ XpE Theorem 4
Form of solution Optimality for problem (3)
x̂ ∈ XE There exists (α, ŝ+, ŝ−) such that Theorem 3

(x̂, ŝ+, ŝ−) is optimal for all k.
x̂ ∈ XpE For all k, there exists (α, ŝ+, ŝ−) Theorem 5

such that (x̂, ŝ+, ŝ−) is optimal.

Table 3: Summary of results for an ε-optimal solution of problem (3) for some k.

Condition on the parameters Implication for x̂ Reference
ε 6 min

i=1,...,p
εi x̂ ∈ XεwE Theorem 6 (1)

ε 6 ∑
i6=k

γiwiεi x̂ ∈ XεwE Theorem 6 (2)

ε 6 ∑
i6=k

µiwiεi, w◦ ε 5 ŝ− x̂ ∈ XεwE Theorem 6 (3)

(w,γ)> 0, ε 6 ∑
i 6=k

γiwiεi x̂ ∈ XεE Theorem 7 (1)

(w,µ)> 0, ε 6 ∑
i6=k

µiwiεi, w◦ ε 5 ŝ− x̂ ∈ XεE Theorem 7 (2)

0 < ε < ∑
i 6=k

γiwiεi x̂ ∈ XεE Theorem 8 (1)

0 < ε < ∑
i 6=k

µiwiεi, w◦ ε 5 ŝ− x̂ ∈ XεE Theorem 8 (2)

(w,γ)> 0, ε 6 ∑
i 6=k

γiwiεi x̂ ∈ Xε pE Theorem 9 (1)

(w,µ)> 0, ε 6 ∑
i6=k

µiwiεi, w◦ ε 5 ŝ− x̂ ∈ Xε pE Theorem 9 (2)

0 < ε < ∑
i 6=k

γiwiεi x̂ ∈ Xε pE Theorem 10 (1)

0 < ε < ∑
i 6=k

µiwiεi, w◦ ε 5 ŝ− x̂ ∈ Xε pE Theorem 10 (2)

the last inequality holds under the assumption that

M >
1

γlw2
l

∑
i∈J−{k}

µiwi.

This contrary to the ε-optimality of (x̂, ŝ+, ŝ−).

More sufficient conditions for the ε-properly efficient solution of the MOP (1) are as follows.

Theorem 10. Let ε > 0, and ε = 0. Assume that (x̂, ŝ+, ŝ−) is an ε-optimal solution of problem (3) for
some k ∈ {1, . . . , p}. If

(i) ε < ∑
i6=k

γiwiεi, then x̂ is an ε-properly efficient solution of the MOP (1).
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(ii) ε < ∑
i6=k

µiwiεi and w◦ ε 5 ŝ−, then x̂ is an ε-properly efficient solution of the MOP (1).

Proof. The proof is similar to that of Theorem 9.

5 Conclusions

In this research, we introduced a general formulation of the feasible value constraint technique for ef-
fectively solving MOPs. By incorporating slack and surplus variables, the suggested model enables the
characterization of both properly efficient and efficient solutions for a MOP. Regarding the significance
of epsilon efficient solutions in addressing MOPs, we extracted necessary and sufficient conditions for
ε-(weakly, properly) efficient solutions based on the proposed model. To provide a brief overview of
the results obtained, Tables 2 and 3 portray a summary of key findings derived from the mentioned
scalarization model.
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