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Abstract. This research aims to investigate the stabilization of highly nonlinear hybrid stochastic differ-
ential delay equations (HSDDEs) with Lévy noise by delay feedback control. The coefficients of these
systems satisfy a more general polynomial growth condition instead of classical linear growth condition.
Precisely, an appropriate Lyapunov functional is constructed to analyze the stabilization of such systems
in the sense of H∞-stability and asymptotic stability. The theoretical analysis indicates that the delay can
affect the stability of highly nonlinear hybrid stochastic systems.
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1 Introduction

In mathematics and engineering, the dynamics of many stochastic differential systems are often influ-
enced by both their current and past states (see e.g., Mao et al. [23], Bahar et.al. [3]). Stochastic dif-
ferential delay equations (SDDEs) are commonly used to model these systems with delays. However,
many real systems may undergo abrupt changes in their structure and parameters. Therefore, HSDDEs
are used to model these practical systems (see e.g., [4, 8, 22, 28]). The HSDDEs can be described by

dx(t) = σ(x(t),x(t−ω(t)),ξ (t), t)dt +ϕ(x(t),x(t−ω(t)),ξ (t), t)dB(t), (1)

where x(t) and ξ (t) are often referred to as the state and mode respectively, and ξ (t) is a Markov chain
which takes its values in S = {1,2, . . . ,N}. There is already a vast amount of literature on the stabilization
of HSDDEs (see e.g., [5,7,20,26,30]). It is well known that the feedback control based on the continuous-
time state observations (or based on the discrete-time state observations) can stabilize an unstable system
or destabilize a stable system. Using the continuous-time feedback control, most researchers study the
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stabilization and destabilization of HSDDEs systems (see e.g., [14, 19, 29]). For example, Lu et al.
[19] studied the asymptotically stability of unstable hybrid stochastic differential equation system via
feedback control.

In fact, many practical systems are influenced not only by time delays but also by the perturbation of
random factors. In order to model more realistic systems, many literatures have incorporated Lévy noise
into HSDDEs (see e.g., [10, 13, 15, 18, 31]). The HSDDEs with Lévy noise can be described by

dx(t) =σ(x(t),x(t−ω(t)),ξ (t), t)dt +ϕ(x(t),x(t−ω(t)),ξ (t), t)dB(t)

+
∫

L
φ(x(t),x(t−ω(t)),ξ (t), t, l)Ñ(dt,dl),

(2)

where N(·, ·) is a Poisson random measure on [0,+∞)×Rn with compensator Ñ(dt,dl) = N(dt,dl)−
λ (dl)dt, where λ is the intensity measure. An important issue in the investigation of HSDDEs with Lévy
noise is the stochastic stabilization. Many studies with Lévy noise discussed the stability and stabilization
under the influence of linear conditions (see e.g., [2, 6, 11, 16, 17, 21, 27]). Li et al. [16] showed the
exponential stability of the controlled hybrid stochastic differential equations with Lévy noise. However,
the stabilization of highly nonlinear HSDDEs driven by Lévy noise has not been fully investigated, which
motivates the present work. This paper is different from the aforementioned literature as more techniques
are needed to overcome the difficulties of both Lévy noise and highly nonlinear conditions. Therefore,
the study of the stabilization in the present work is more complex and difficult.

The organization of this paper is described as follows. The foundational concepts regarding HSDDEs
with Lévy noise and some conditions are provided in Section 2. We consider the influence of delay on
the stability of HSDDEs system in Section 3. Finally, some conclusions are presented in Section 4.

2 Problem formulation and preliminaries

Let (Ω,F,{Ft}t≥0,P) be a complete probability space, and B(t) be an m-dimensional Brownian motion.
Define Q = (qi j)N×N as the generator of Markov chain ξ (t). Let η be a positive constant and ω̄ be a
value in [0,1). Define ω(·) from R+ to [0,η ] as a differentiable function with the condition ω̇(t) :=
dω(t)/dt ≤ ω̄ for each t ≥ 0. If W is a matrix, then W T represents its transpose. The trace norm of W
is |W |=

√
trace(W TW ). Let C([−η ,0];Rn) denote the family of continuous functions µ from [−η ,0] to

Rn. The norm of µ is ‖µ‖= sup
−η<θ<0

|µ(θ)|.

Consider an unstable HSDDEs system with Lévy noise in the form of (2). Our aim is to design a
delay feedback control u(x(t−ω(t)),ξ (t), t) for the controlled system

dx(t) = [σ(x(t),x(t−ω(t)),ξ (t), t)+u(x(t−ω(t)),ξ (t), t)]dt +ϕ(x(t),x(t−ω(t)),ξ (t), t)dB(t)

+
∫

L
φ(x(t),x(t−ω(t)),ξ (t), t, l)Ñ(dt,dl)

(3)

to be stable. We give the initial value

x0 = ε = {x(t) :−η ≤ t ≤ 0} ∈C([−η ,0];Rn) and ξ (0) = ξ0 ∈ S, (4)

where σ : Rn×Rn×S×R+→ Rn, u : Rn×S×R+→ Rn, ϕ : Rn×Rn×S×R+→ Rn×m and φ : Rn×Rn×
S×R+×Rn→ Rn. Assume that ξ (t), B(t) and N(t, l) are independent of each other. To guarantee the
existence and uniqueness of the global solution of (3), the following assumptions are necessary.
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Assumption 1. Suppose that Hc > 0 for each c > 0 and

|σ(x1,y1, i, t)−σ(x2,y2, i, t)|∨ |ϕ(x1,y1, i, t)−ϕ(x2,y2, i, t)|

∨
∫

L
|φ(x1,y1, i, t, l)−φ(x2,y2, i, t, l)|λ (dl)≤ Hc(|x1− x2|+ |y1− y2|)

(5)

for |x1|∨ |y1|∨ |x2|∨ |y2| ≤ c.

Assumption 2. Suppose that there are numbers m1 > 1, m2 > 1, m3 > 1 and H > 0 such that

|σ(x,y, i, t)| ≤ H(1+ |x|m1 + |y|m1),

|ϕ(x,y, i, t)| ≤ H(1+ |x|m2 + |y|m2),

|φ(x,y, i, t, l)| ≤ H(1+ |x|m3 + |y|m3).

(6)

We will refer to Assumption 2 as the polynomial growth condition. Moreover, a global Lipschitz
condition on the controller function u is required.

Assumption 3. Suppose that there exists a positive constant k5 such that

|u(x, i, t)−u(y, i, t)| ≤ k5|x− y|, (7)

and u(0, i, t) = 0.

Let us now recall the following definitions of H∞-stability and asymptotic stability.

Definition 1. (Mao et al. [24]) The trivial solution of (3) is said to be H∞-stable if for any x0 ∈ Rn,∫
∞

0
E|x(t)|pdt < 0 a.s..

It is said to be asymptotically stable if for any x0 ∈ Rn,

lim
t→∞

E|x(t)|p = 0 a.s..

Then, from Rhaima et al. [25] and Li et al. [12], we can find that hybrid system (3) has a unique
global solution. Let C2,1 (Rn×S×R+;R+) be the family of non-negative function V (x, i, t) which is
continuously twice differentiable in x and once in t, define LV as in [16] by

LV (x, i, t) = Vt(x, i, t)+Vx(x, i, t)[σ(x,y, i, t)+u(y, i, t)]

+
∫

L

[
V (x+φ(x,y, i, t, l), i, t)−V (x, i, t)−Vx(x, i, t)φ(x,y, i, t, l)

]
λ (dl)

+
1
2

trace
[
ϕ

T (x,y, i, t)Vxx(x, i, t)ϕ(x,y, i, t)
]
+

N

∑
j=1

γi jV (x, j, t).
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3 Stochastic stabilization by Lévy noise

To achieve stabilization for the hybrid system (3), we intend to employ a Lyapunov function on the
segment processes x̄t = {x(t + u) : −2η ≤ u ≤ 0} and ξ̄t = {ξ (t + u) : −2η ≤ u ≤ 0} for t ≥ 0. To
guarantee the proper definition of x̄t and ξ̄t for 0≤ t < 2η , we set x(u) = ε(−η) for u ∈ [−2η ,−η) and
ξ (u) = ξ0 for u ∈ [−2η ,0). Define a Lyapunov functional as

V (x̄t , ξ̄t , t) = M(x(t),ξ (t), t)+ τ

∫ 0

−η

∫ t

t+u

[
η |σ(x(s),x(s−ω(s)),ξ (s),s)+u(x(s−ω(s)),ξ (s),s)|2

+ |ϕ(x(s),x(s−ω(s)),ξ (s),s)|2 +
∫

L
|φ(x(s),x(s−ω(s)),ξ (s),s, l)|2λ (dl)

]
dsdu,

(8)
where τ > 0 and M ∈C2,1(Rn×S×R+;R+). In our discussion of stability for the controlled system (3),
we need to make the following assumption.

Assumption 4. For the functions M ∈C2,1(Rn× S×R+;R+), M1, M2 ∈C(Rn× [−η ,∞);R+) and con-
stants ρm, km > 0 (m = 1,2,3,4), assume that

LM(x,y, i, t)+ k1 |Mx(x, i, t)|2 + k2|σ(x,y, i, t)+u(y, i, t)|2 + k3|ϕ(x,y, i, t)|2

+ k4

∫
L
|φ(x,y, i, t, l)|2λ (dl)

≤−ρ1M1(x, t)+ρ2M1(y, t−ω(t))−ρ3M2(x, t)+ρ4M2(y, t−ω(t)),

(9)

where
ρ2 < ρ1(1− ω̄), ρ4 ≤ ρ3(1− ω̄), (10)

and LM(x,y, i, t) is indicated by condition (17) below.

Theorem 1. Under Assumptions 1, 2, 3 and 4, suppose that

c|x|p ≤M1(x, t), (11)

and

η ≤ 2
√

3k1k2

3k5
∧ 4k1k3

3k2
5
∧ 4k1k4

3k2
5

(12)

for c, p > 0. Then ∫
∞

0
E|x(t)|pdt < ∞. (13)

Consequently, the controlled system (3) is H∞-stable.

Proof. Fix the initial condition (4). Let h0 > 0 be a big enough positive integer such that ‖x0‖= ‖ε‖< h0.
For any integer h ≥ h0, the stopping time δh is defined as δh = inf{t ≥ 0 : |x(t)| ≥ h}. Noting that
the stopping time δh is increasing as h→ ∞. Therefore, we conclude that lim

h→∞

δh = ∞. Applying the

generalised Itô formula (see e.g., Mao and Yuan [24], D. Applebaum [1]) to V (x̄t , ξ̄t , t) yields,

dV (x̄t , ξ̄t , t) = LV (x̄t , ξ̄t , t)dt +P(t), (14)
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where

P(t) = Mx(x(t),ξ (t), t)ϕ(x(t),x(t−ω(t)),ξ (t), t)dB(t)

+
∫

L

(
M(x(t)+φ(x(t),x(t−ω(t)),ξ (t), t, l),ξ (t), t)−M(x(t),ξ (t), t)

)
Ñ(dt,dl)

+
∫

R

(
M(x(t),ξ0 + c(ξ (t),z), t)−M(x(t),ξ (t), t)

)
µ(dt,dz),

(15)

and

LV (x̄t , ξ̄t , t) = Mx(x(t),ξ (t), t)× [u(x(t−ω(t)),ξ (t), t)−u(x(t),ξ (t), t)]

+LM(x(t),x(t−ω(t)),ξ (t), t)

+ τη

[
η |σ(x(t),x(t−ω(t)),ξ (t), t)+u(x(t−ω(t)),ξ (t), t)|2

+ |ϕ(x(t),x(t−ω(t)),ξ (t), t)|2 +
∫

L
|φ(x(t),x(t−ω(t)),ξ (t), t, l)|2λ (dl)

]
− τ

∫ t

t−η

[
η |σ(x(s),x(s−ω(s)),ξ (s),s)+u(x(s−ω(s)),ξ (s),s)|2

+ |ϕ(x(s),x(s−ω(s)),ξ (s),s)|2 +
∫

L
|φ(x(s),x(s−ω(s)),ξ (s),s, l)|2λ (dl)

]
ds,

(16)

in which LM is defined by

LM(x,y, i, t) = Mt(x, i, t)+Mx(x, i, t)σ(x,y, i, t)+Mx(x, i, t)u(x, i, t)

+
∫

L

[
M(x+φ(x,y, i, t, l), i, t)−M(x, i, t)−Mx(x, i, t)φ(x,y, i, t, l)

]
λ (dl)

+
1
2

trace
[
ϕ

T (x,y, i, t)Mxx(x, i, t)ϕ(x,y, i, t)
]
+

N

∑
j=1

γi jM(x, j, t).

(17)

From condition (14), we can obtain that

EV
(
x̄t∧δh , ξ̄t∧δh , t ∧δh

)
=V

(
x̄0, ξ̄0,0

)
+E

∫ t∧δh

0
LV
(
x̄r, ξ̄r,r

)
dr. (18)

Let τ = 3k2
5/4k1, from Assumptions 3, 4 and condition (12), we have

LV
(
x̄r, ξ̄r,r

)
≤−ρ1M1(x(r),r)+ρ2M1(x(r−ω(r)),r−ω(r))−ρ3M2(x(r),r)+ρ4M2(x(r−ω(r)),r−ω(r))

+
k2

5
4k1
|x(r)− x(r−ω(r))|2−

3k2
5

4k1

∫ r

r−η

[
η |σ(x(s),x(s−ω(s)),ξ (s),s)+u(x(s−ω(s)),ξ (s),s)|2

+ |ϕ(x(s),x(s−ω(s)),ξ (s),s)|2 +
∫

L
|φ(x(s),x(s−ω(s)),ξ (s),s, l)|2λ (dl)

]
ds.

(19)
Note that ∫ t∧δh

0
M1(x(r−ω(r)),r−ω(r))dr ≤

∫ t∧δh

−η

M1(x(r),r)dr.
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Substituting (19) into (18) yields that

EV (x̄t∧δh , ξ̄t∧δh , t ∧δh)

≤V
(
x̄0, ξ̄0,0

)
+

ρ2

1− ω̄

∫ 0

−η

M1(ε(s),s)ds− ρ̄E
∫ t∧δh

0
M1(x(r),r)dr

+
ρ4

1− ω̄

∫ 0

−η

M2(ε(s),s)ds+
k2

5
4k1

E
∫ t∧δh

0
|x(r)− x(r−ω(r))|2dr

−
3k2

5
4k1

E
∫ t∧δh

0

(∫ r

r−η

[
η |σ(x(s),x(s−ω(s)),ξ (s),s)+u(x(s−ω(s)),ξ (s),s)|2

+ |ϕ(x(s),x(s−ω(s)),ξ (s),s)|2 +
∫

L
|φ(x(s),x(s−ω(s)),ξ (s),s, l)|2λ (dl)

]
ds
)

dr,

(20)

where ρ̄ = ρ1−ρ2/(1− ω̄) > 0 from condition (10). Applying the Fatou lemma (see [9]) and letting
h→ ∞ in (20), we can get that

ρ̄E
∫ t

0
M1(x(r),r)dr ≤ D1 + I1− I2, (21)

where

D1 = V
(
x̄0, ξ̄0,0

)
+

ρ2

1− ω̄

∫ 0

−η

M1(ε(s),s)ds+
ρ4

1− ω̄

∫ 0

−η

M2(ε(s),s)ds,

I1 =
k2

5
4k1

E
∫ t

0
|x(r)− x(r−ω(r))|2dr,

I2 =
3k2

5
4k1

E
∫ t

0

(∫ r

r−η

[
η |σ(x(s),x(s−ω(s)),ξ (s),s)+u(x(s−ω(s)),ξ (s),s)|2

+|ϕ(x(s),x(s−ω(s)),ξ (s),s)|2 +
∫

L
|φ(x(s),x(s−ω(s)),ξ (s),s, l)|2λ (dl)

]
ds
)

dr.

From the Fubini theorem, we have

I1 =
k2

5
4k1

∫ t

0
E|x(r)− x(r−ω(r))|2dr. (22)

For t ∈ [0,η ], we get that

I1 ≤
ηk2

5
k1

(
sup

−η≤s≤η

E|x(s)|2
)

=: D2. (23)

Therefore we have

I1 ≤ D2 +
k2

5
4k1

∫ t

η

E|x(r)− x(r−ω(r))|2 dr (24)
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for t > η . Moreover, according to Itô isometry and Eq. (3), we obtain that

E|x(r)− x(r−ω(r))|2

=E
∣∣∣∫ r

r−η

σ(x(s),x(s−ω(s)),ξ (s),s)+u(x(s−ω(s)),ξ (s),s)ds

+
∫ r

r−η

ϕ(x(s),x(s−ω(s)),ξ (s),s)dB(s)+
∫ r

r−η

∫
L

φ(x(s),x(s−ω(s)),ξ (s),s, l)Ñ(ds,dl)
∣∣∣2

≤3ηE
∫ r

r−η

|σ(x(s),x(s−ω(s)),ξ (s),s)+u(x(s−ω(s)),ξ (s),s)|2ds

+3E
∣∣∫ r

r−η

ϕ(x(s),x(s−ω(s)),ξ (s),s)dB(s)
∣∣2 +3E

∣∣∫ r

r−η

∫
L

φ(x(s),x(s−ω(s)),ξ (s),s, l)Ñ(ds,dl)
∣∣2

≤3ηE
∫ r

r−η

|σ(x(s),x(s−ω(s)),ξ (s),s)+u(x(s−ω(s)),ξ (s),s)|2ds

+3E
∫ r

r−η

∣∣ϕ(x(s),x(s−ω(s)),ξ (s),s)
∣∣2ds+3E

∫ r

r−η

∫
L

∣∣φ(x(s),x(s−ω(s)),ξ (s),s, l)
∣∣2λ (dl)ds

(25)

for r ≥ η . So it is easy to see that I1 ≤ D2 + I2 for t > η . That is,

I1 ≤ D2 + I2, t ≥ 0. (26)

Substituting (26) into (21), we have that

ρ̄E
∫ t

0
M1(x(r),r)dr ≤ D1 +D2. (27)

Let t→ ∞, and by the Fubini theorem, we obtain that∫
∞

0
EM1(x(r),r)dr ≤ (D1 +D2)/ρ̄ < ∞. (28)

Then from (11) and (28), the solution to (3) satisfies∫
∞

0
E|x(t)|pdt < ∞.

Therefore we complete the proof.

Theorem 1 indicates that certain selections of delay feedback control u(x(t−ω(t)),ξ (t), t) are fea-
sible for stabilizing the hybrid system (2). Then, our work will focus on asymptotic stability of the
controlled system (3). To this end, we also need E|x(t)|p to be uniformly continuous in t besides H∞-
stable. Let us now give an assumption.

Assumption 5. Suppose that there exist some positive numbers k6, k7 and k8 such that∫
L

(
|x(t)+φ(x(t),x(t−ω(t)),ξ (t), t, l)|p

−|x(t)|p− p|x(t)|p−2xT (t)|φ(x(t),x(t−ω(t)),ξ (t), t, l)|
)

λ (dl)

≤ k6 + k7|x(t)|m + k8|x(t−ω(t))|m.

(29)
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Theorem 2. Let all the conditions of Theorem 1 hold. If

p≥ 2 and pm3∨ (p+m1−1)∨ (p+2m2−2)≤ m, (30)

then (3) with the initial value (4) satisfies

lim
t→∞

E|x(t)|p = 0.

Namely, the controlled system (3) is asymptotically stable.

Proof. Utilizing the generalised Itô formula to |x(t)|p yields that

E|x(t2)|p−E|x(t1)|p = E
∫ t2

t1

(
p|x(t)|p−2xT (t)|σ(x(t),x(t−ω(t)),ξ (t), t)+u(x(t−ω(t)),ξ (t), t)|

+
p
2
|x(t)|p−2|ϕ(x(t),x(t−ω(t)),ξ (t), t)|2

+
p(p−2)

2
|x(t)|p−4|xT (t)ϕ(x(t),x(t−ω(t)),ξ (t), t)|2

+
∫

L

[
|x(t)+φ(x(t),x(t−ω(t)),ξ (t), t, l)|p−|x(t)|p

− p|x(t)|p−2xT (t)|φ(x(t),x(t−ω(t)),ξ (t), t, l)|
]
λ (dl)

)
dt

(31)
for any 0≤ t1 < t2 <∞. By condition (6), Assumption 5 and the inequality (a+b+c)2 ≤ 3(a2+b2+c2),
we obtain that∣∣E|x(t2)|p−E|x(t1)|p

∣∣
≤ E

∫ t2

t1

(
p|x(t)|p−1|σ(x(t),x(t−ω(t)),ξ (t), t)+u(x(t−ω(t)),ξ (t), t)|

+
p(p−1)

2
|x(t)|p−2|ϕ(x(t),x(t−ω(t)),ξ (t), t)|2

+ k6 + k7|x(t)|m + k8|x(t−ω(t))|m
)

dt

≤ E
∫ t2

t1

(
pH|x(t)|p−1[1+ |x(t)|m1 + |x(t−ω(t))|m1 ]+ pk5|x(t)|p−1|x(t−ω(t))|

+
3p(p−1)H2

2
|x(t)|p−2[1+ |x(t)|2m2 + |x(t−ω(t))|2m2 ]

+ k6 + k7|x(t)|m + k8|x(t−ω(t))|m
)

dt. (32)

Using the Young inequality, we have

|x(t)|p−1|x(t−ω(t))|m1 ≤ |x(t)|p+m1−1 + |x(t−ω(t))|p+m1−1. (33)

Therefore, it can be inferred from (31)-(33) that∣∣E|x(t2)|p−E|x(t1)|p
∣∣≤ D3(t2− t1), (34)
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where
D3 =k6 +(2pk5 + k7 + k8 +4pH +6p(p−1)H2)( sup

−η≤t<∞

E|x(t)|m)< ∞. (35)

Hence, E|x(t)|p is uniformly continuous in t. Consequently, we conclude that lim
t→∞

E|x(t)|p = 0 according
to (13).

4 Conclusion

In this paper, we focused on the stabilization of HSDDEs with Lévy noise via delay feedback control,
especially for those that do not conform to linear growth conditions. Considering the H∞ and asymptotic
stability of the controlled highly nonlinear HSDDEs driven by Lévy noise. By employing a Lyapunov
functional, we provided several sufficient conditions that ensure H∞-stability and asymptotic stability for
the hybrid controlled system. We have shown that the designed controller stabilizes the unstable highly
nonlinear HSDDEs system.
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by Lévy noises, Appl. Math. Comput. 375 (2020) 125080.

[28] L. Wu, X. Su, P. Shi, Sliding mode control with bounded L2 gain performance of Markovian jump
singular time-delay systems, Automatica. 48 (2012) 1929–1933.

[29] A. Wu, H. Yu, Z. Zeng, Variable-delay feedback control for stabilisation of highly nonlinear hybrid
stochastic neural networks with time-varying delays, Int. J. Control. 97 (2023) 744–755.

[30] C. Yuan, X. Mao, Stability of stochastic delay hybrid systems with jumps, Eur. J. Control. 6 (2010)
595–608.

[31] Q. Zhu, Asymptotic stability in the pth moment for stochastic differential equations with Lévy noise,
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