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Abstract. Linear systems of equations with Z-numbers have recently attracted some interest. Some
approaches have been developed for solving these systems. Since, there are many ambiguities and un-
certainties in such issues, there is no analytic solution for these kinds of systems. Therefore, numerical
schemes are usually used to estimate the solution of them. In this research, a computational scheme for
solving linear systems involving trapezoidal Z-numbers is presented. The proposed approach is designed
in such a way that it is firstly converted the Z-numbers coefficients to the corresponding fuzzy numbers
and then using a ranking function, the fuzzy coefficients are converted to real coefficients. In this trend,
after two stages, firstly, the original Z-numbers system becomes a fuzzy linear system and the fuzzy sys-
tem is converted to a real system. Then, the obtained crisp linear system is solved based on the artificial
neural network algorithm. Finally, two sample trapezoidal Z-numbers systems are solved based on the
given approach to illustrate the process of the proposed algorithm.

Keywords: Z-Numbers, Trapezoidal Fuzzy number, Weighted Z-number, Linear system of equations, Artificial
Neural Networks, Ranking Function.
AMS Subject Classification 2010: 34A30, 03E72, 92B20, 65F99, 62N05.

1 Introduction

Fuzzy linear systems are one of the considerable mathematical models in science and engineering and
presenting any efficient method to evaluate the solution of such systems is important. Fuzzy system of
equations have been considered by many researchers to develop this subject [1, 5, 15, 21–23, 25, 38, 50].
Artificial neural networks (ANN) were applied in [38] to solve fuzzy linear systems of equations. In
real world problems considering the reliability of uncertain information is essential. Thus, in order to
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remove this drawback in information analysis, Zadeh [48] introduced the concept of Z-number in 2011
to model uncertain information. Z-number is combined with two parts, the first part is restriction and
the second part is reliability, which consists of thinking of humans. Z-number has an extreme ability
to demonstrate human knowledge in comparison to the classical fuzzy number [2, 10, 11, 36, 43, 46].
One of the issues with the Z-number is the yielded results can not be represented in the form of Z-
number. Many researchers applied Z-number in their works, such as arithmetic of discrete or continuous
Z-numbers [3, 4], Z-evaluations [42], the Z-Advanced numbers process [6], solving system of equations
[36], sensor data fusion [30], ranking Z-numbers [43], Z-numbers DEA [9], and other decision making
models with Z-number [27, 31, 33, 39, 44–46]. Ranking Z-numbers is also an important topic in solving
some issues with uncertainty. Many ranking approaches of Z-number suggested such as ranking using the
concept of value and ambiguity at levels of decision-making [14], ranking by using tangent function [18],
ranking by defining the sigmoid function of Z-number [19], ranking based on the developed golden rule
representative value [13] and others.

In [28], the authors proposed an algorithm to solve a triangular Z-number system of equations by
means of an aspect of the neural network. In this work, we develop this idea to propose an approach by
means of another ranking function to approximate the solution of a Z-based linear system of equations
(LSE) in the form ÃZY = b̃Z , where Y is a crisp unknown vector and ÃZ and b̃Z are the trapezoidal Z-
numbers coefficients matrix and right hand side vector, respectively. In order to compute the vector Y ,
at first by applying a special conversion method, the Z-numbers are converted to regular fuzzy numbers,
then a ranking function is used to convert the obtained fuzzy numbers to the crisp real numbers. Finally,
the system is solved by the ANN algorithm.

The novelty of this work can be summarized as follows:
• Considering a trapezoidal Z-number LSE with Z-number coefficients of matrix and also Z-number
right hand side vector,
• Converting the required Z-number system by choosing a ranking function and a conversion method, to
determine a crisp LSE,
• Applying the ANN technique with backward propagation in the proposed algorithm to solve the ob-
tained crisp LSE.

In Section 2, the notions of fuzzy numbers and concept of Z-numbers are recalled. Section 3 estab-
lishes some methods for converting the weighted Z-number to the regular fuzzy number. In Section 4 the
review of the ANN method and the proposed algorithm to solve the LSE with trapezoidal Z-number co-
efficients are presented. In Section 5, two sample trapezoidal Z-number systems are considered to solve
based on the given algorithm and all steps of the presented algorithm are described in detail. Finally,
concluding remarks are summarized.

2 Preliminaries

Here, some definitions of fuzzy sets theory ( [47]) such as fuzzy number and also the concept of Z-
numbers with their properties are reviewed.

Definition 1. [17] A function F̃ : R→ [0, 1] is said to be a fuzzy number when the following conditions
are satisfied:

(1) F̃ is normal, that is ∃a ∈ R such that F̃(a) = 1,
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(2) F̃ is fuzzy convex set

(i.e. F̃(θx1 +(1−θ)x2)≥min
{

F̃(x1), F̃(x2)
}

f or all x1,x2 ∈ R,θ ∈ [0,1]),

(3) F̃ is upper semi-continuous on R,

(4) the closure of supp(F̃), i.e. the
{

x ∈ R : F̃(x)> 0
}

is compact set.

Let E denote the set of all fuzzy numbers. The r−cut set, 0 < r≤ 1, of a fuzzy number is defined as a
closed interval [F̃ ]r = {x∈R : F̃ (x)≥ r}= [F̃(r), F̃(r)], for all r∈ [0,1] (see [8]), where F̃ , F̃ : [0,1]→R,
as the end-points of r-cuts of F̃ are increasing and decreasing functions, respectively.

Definition 2. [49] Let F1,F2 ∈ E and [F̃1]r = [F̃1(r), F̃1(r)], [F̃2]r = [F̃2(r), F̃2(r)] and r ∈ [0,1]. Then

[F̃1 + F̃2]r = [F̃1(r)+ F̃2(r), F̃1(r)+ F̃2(r)],

[−F̃1]r = [−F̃1(r),−F̃1(r)],

[F̃1− F̃2]r = [F̃1(r)− F̃2(r), F̃1(r)− F̃2(r)],

[β F̃1]r = [β F̃1(r),β F̃1(r)], (β ≥ 0),

[β F̃1]r = [β F̃1(r),β F̃1(r)], (β < 0).

Definition 3. [16] A triangular fuzzy number T̃ can be defined by a triple (t1, t2, t3) in which the values
t1, t2 and t3 are real numbers with following membership function:

T̃ (x) =


0, −∞ 6 x 6 t1,
x−t1
t2−t1

, t1 6 x 6 t2,
t3−x
t3−t2

, t2 6 x 6 t3,

0, t3 6 x 6+∞.

(1)

Definition 4. [40] A generalized trapezoidal fuzzy number can be expressed as T̃ = (t1, t2, t3, t4;ω)
where the values t1, t2, t3 and t4 are real numbers, ω ∈ (0,1] is a constant, and the membership function
of T̃ is defined as:

T̃ (x) =



0, −∞ 6 x 6 t1,
ω(x−t1)

t2−t1
, t1 6 x 6 t2,

ω, x ∈ [t2, t3],
ω(t4−x)

t4−t3
, t3 6 x 6 t4,

0, t4 6 x 6+∞.

(2)

In the special case of ω = 1, T̃ is called the normal trapezoidal fuzzy number, which is denoted by
T̃ = (t1, t2, t3, t4).
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Yager in [41] proposed a ranking function like R for a given fuzzy number F̃ with [F̃ ]r = [F̃(r), F̃(r)]
as follows:

R(F̃) =
1
2

∫ 1

0
r
(

F̃(r)+ F̃(r)
)

dr, (3)

which is reduced for the trapezoidal fuzzy number T̃ = (t1, t2, t3, t4) as:

R(T̃ ) =
t1 + t2 + t3 + t4

4
. (4)

The following ranking property is satisfied for F̃1, F̃2 ∈ E and any a ∈ R:

R(aF̃1 + F̃2) = aR(F̃1)+R(F̃2).

Definition 5. Let T̃ and T̃ ′ be two normal trapezoidal fuzzy numbers, then

1. T̃ ≺ T̃ ′⇔R(T̃ )< R(T̃ ′).

2. T̃ � T̃ ′⇔R(T̃ )> R(T̃ ′).

3. T̃ ≈ T̃ ′⇔R(T̃ ) = R(T̃ ′).

Definition 6. [7,32] The ordered pair (F̃ , R̃), where F̃ is the restriction of an uncertain variable on real
values and R̃ is a measure of reliability of F̃, is called a Z-number, denoted by Z̃ = (F̃ , R̃).

The R̃, as the reliability part of Z̃, can be converted to a classical number. To this end, let R̃ =
{(t, R̃(t)) : t ∈ [0,1]}, where R̃(t) is the membership function. Then, the corresponding crisp number can
be obtained by means of the following center of gravity method:

α =

∫
S tR̃(t)dt∫
S R̃(t)dt

, (5)

where S = supp(R̃) = [0,1]. For triangular fuzzy number R̃ = (t1, t2, t3), Eq. (5) may be described as:

α =
t1 + t2 + t3

3
. (6)

Definition 7. [32] The fuzzy expectation of the fuzzy set F̃ = {(t, F̃(t)); t ∈U} is defined as:

EF̃(t) =
∫

U
tF̃(t)dt. (7)

Let Z̃α denote as the weighted Z-number (WZ-number), defined by

Z̃α = {(t, Ãα(t)) : Z̃α(t) = αF̃(t), t ∈U}, (8)

then, from (5), (7) and (8), we have

EÃα = αEF̃ , t ∈U, α ∈ (0,1],

Subject to Ãα(t) = αF̃(t), t ∈U.
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3 Methods of conversion

In the sequel, two conversion methods to convert a WZ-number to a normal trapezoidal fuzzy number
are presented.

3.1 First conversion method [32]

In this method, the WZ-number in Eq. (8) is converted to the following normal fuzzy number:

Z̃′ = {(t, Z̃′(t)) : Z̃′(t) = αF̃(
t√
α
), t ∈U}. (9)

By applying Eqs. (5), (7) and (9), we have

EZ̃′(t) = αEF̃(t), (t ∈
√

αU),0 < α ≤ 1,

Subject to Z̃′(t) = F̃(
t√
α
), (t ∈

√
αU).

The following example illustrates the mentioned scheme. Let the Z-number as:

Z̃ = (F̃ , R̃) =
[
(0.6,0.7,0.8,0.9;1),(0.1,0.25,0.4;1)

]
.

From Eq. (5), the reliability is converted to the following crisp number:

α = 0.25, Z̃α = {0.6,0.7,0.8,0.9;0.25},

where, Z̃α is the WZ-number that is converted to the following regular fuzzy number:

Z̃′ = {
√

0.25×0.6,
√

0.25×0.7,
√

0.25×0.8,
√

0.25×0.9;1}
= {0.3,0.35,0.4,0.45;1}.

3.2 Second conversion method (The proposed scheme)

In [9], first the triangular fuzzy number of the first part of Z-number is converted to the corresponding
WZ-number. Then, the WZ-number related to first part of Z-number, is converted into a regular fuzzy
number. In this work, the mentioned idea is applied for the Z-number with the first part as a trapezoidal
fuzzy number and a triangular fuzzy number as the reliability part of it.

It is noted that the method of converting WZ-number, based on its reliability, into a regular fuzzy
number, increases the domain of the ambiguity of the Z-number in case of normality. Since the member-
ship function of the WZ-number is trapezoidal, the corresponding regular fuzzy number is trapezoidal
too. Furthermore, the slope of the sides of the normal trapezoidal fuzzy number is equal to the sides of
the WZ-number and there is a relationship between the slope of sides and the value of α . Since the WZ-
number has a trapezoidal membership function with Z̃α = (t1, t2, t3, t4), then its corresponding regular
fuzzy number has trapezoidal membership function as Z̃′ = (t ′1, t

′
2, t
′
3, t
′
4). Let t2 = t ′2, t3 = t ′3, with equal

slope of sides. In order to evaluate the value of t ′1, the left side slope of Z̃α must be considered, which is
equals to α

t2−t1
and hence the left side linear equation of the fuzzy number is

Z̃′(x) =
α

t2− t1
x+h, x≤ t2.



758 S.M. Hashemi Moosavi, M.A. Fariborzi Araghi, Sh. Ziari

In order to find the value of h, we put the point of (t2,1) in this equation, so we have h = 1− αt2
t2−t1

. Thus,
the left side membership function of normal fuzzy number is obtained as follows:

Z̃′(x) =
α

t2− t1
x+1− αt2

t2− t1
, x≤ t2, (10)

where α is defined in Eq. (5). To identify the value of t ′1, we solve the equation Z̃′(t ′1) = 0 in terms of t ′1.
Thus

t ′1 =
αt2− t2 + t1

α
. (11)

The same steps are carried out to find the value of t ′4. The right side slope of the WZ-number and
its corresponding normal fuzzy number is α

t3−t4
. Then, the rule of membership function of the right hand

side of a normal fuzzy number is

Z̃′(x) =
−α

t4− t3
x+h, x≥ t3.

To find the value of h, we put the point of (t3,1) in this equation, so we have h = 1+ αt3
t4−t3

. Therefore,
the right side membership function of normal fuzzy number is obtained as follows:

Z̃′(x) =
−α

t4− t3
x+1+

αt3
t4− t3

, x≥ t3. (12)

Now, the value of t ′4 is identified by solving the equation Z̃′(t ′4) = 0, so, we get:

t ′4 =
αt3− t3 + t4

α
. (13)

Figure 1: A WZ-number and its conversion to the regular fuzzy number.

Fig. 1 shows the weighted Z-number with height α and presents the conversion into the regular fuzzy
number as schematically. The following example shows the mentioned method. Let

Z̃ = (F̃ , R̃) =
[
(0.6,0.7,0.8,0.9;1),(0.1,0.25,0.4;1)

]
.
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From (5), the part of reliability should be converted to a crisp real numbers as follows:

α = 0.25, Z̃α = {0.6,0.7,0.8,0.9;0.25}.

Now, we find the regular trapezoidal fuzzy number using Eqs. (11) and (13) as follows:

t ′1 =
αt2− t2 + t1

α
=

0.25×0.7−0.7+0.6
0.25

,

t ′2 = t2 = 0.7,

t ′3 = t3 = 0.8,

t ′4 =
αt3− t3 + t4

α
=

0.25×0.8−0.8+0.9
0.25

.

Hence, we obtain

Z̃′ = (0.3,0.7,0.8,1.2;1) .

4 The proposed algorithm

In this section, at first a brief review of the ANN which is applied in the given algorithm is presented.
Then, the proposed algorithm to approximate the solution of the Z-number system is presented.

The ANN in backward propagation case, with the following two-stage learning algorithm, is one of
the efficient computational schemes in engineering sciences (See [12, 20]):
(1) forward computation of working signal,
(2) backward propagation of training error.

In order to solve a crisp LSE by applying the ANN method, a two-layer backward propagation neural
network is designated. Fig. 2 shows the architecture of this ANN where, wi’s show the weights of the
ANN related to the yi’s (the components of the unknown vector Y ), ai j’s, and ti, i, j = 1,2, . . . ,n, are
the inputs and output of the ANN method, respectively to evaluate the crisp linear system Ay = b, with
following objective function:

ai1

ai2

...

ain

w1

w2

...

wn

ti

input layer hidden layer

output layer

Figure 2: The architecture of an ANN to solve linear system AY = b.
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min
n

∑
j=1

(ei)
2 , ei = ti− yi.

Here, a numerical algorithm is proposed in order to approximate the solution of such systems. To this end,
the ANN with a two-layer network is considered, where the inputs are in the first layer and the weights of
the neural network are the second layer as outputs. Using optimization techniques the training of ANN
is based on minimizing the sum of squared errors [20, 38]. It should be noted that one of the important
criteria in training ANN is the repetitions that the network performs during the training. The higher
the number of repetitions in the network training, the lower the network simulation error; but when the
number of iterations exceeds a value, the error of the method will also increase.

In this work, the MATLAB Neuro Solution package is applied and the final solution is evaluated with
specific standard criteria [24, 26, 29, 34, 37, 49].

The following algorithm is introduced in order to compute the solution of a LSE with trapezoidal
Z-number coefficients as:

ÃZY = b̃Z, (14)

where, the coefficients of the matrix (ÃZ) and the components of the vector (b̃Z) are Z-numbers containing
of the trapezoidal fuzzy numbers, and the crisp unknown vector is Y = (y1,y2,y3, . . . ,yn)

T where yi ∈ R,
i = 1,2,3, . . . ,n. The MATLAB package is applied to implement this algorithm.

Algorithm 1.

1. Transform the coefficients of ÃZ and b̃Z to WZ-number by means of Eq. (5).

2. Rewrite the obtained WZ-number coefficients to normal fuzzy number coefficients to achieve the
fuzzy system as Ã′Y = b̃′.

3. Transform the obtained fuzzy coefficients, apply Eq. (4) to the classical corresponding coefficients to
get the crisp LSE as A′′Y = b′′, where A′′ = [a′′i j], i, j = 1,2, . . . ,n and b′′ = (b′′1,b

′′
2, . . . ,b

′′
n)

T .

4. Apply the following ANN steps to compute the obtained crisp LSE:

4.1. Input data ”ε” (tolerance), γ (learning parameter), random (initial) vector weight w(0) =

(w(0)
1 ,w(0)

2 , . . . ,w(0)
n )T , and let k = 0 and e(0) = 0.

4.2. Calculate t(k)i = ∑
n
j=1 a′′i jw

(k)
j , e(k)i = b′′i − t(k)i .

4.3. Evaluate the residual error as E(k) = 1
2‖b

′′−A′′w(k)‖2 = 1
2 ∑

n
i=1
(
ek

i
)2 and update the weights

by the following formula:

w(k+1)
j = w(k)

j +∆w(k)
j , j = 1,2, . . . ,n where ∆w(k)

j = γ

n

∑
i=1

e(k)i a′′i j.

4.4. If E(k) ≥ ε then k = k+1 and return to step 4.2, else go to step 4.5.

4.5 Write w j, j = 1,2, . . . ,n.
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5 Illustrative examples

In the sequel, Algorithm 1 is applied on two sample trapezoidal Z-number linear systems. The learning
parameter is evaluated as γ = 1

2tr(A′′T A′′)
[35], the initial weight vector is considered as w(0) = 0, and

ε = 5×10−7 in both examples.

Example 1. Consider the Z-number system ÃZY = b̃Z, where

ÃZ =

[
[(5,7,8,10),(0.4,0.5,0.6)] [(2,2,4,4),(0.7,0.8,0.9)]
[(5,7,8,10),(0.4,0.5,0.6)] [(−4,−4,−2,−2),(0.7,0.8,0.9)]

]
,

b̃Z
T
=
[
[(7,9,12,16),(0.28,0.4,0.54)] [(1,3,6,8),(0.28,0.4,0.54)]

]
,

with the crisp exact solution y1 = y2 = 1.

Step 1. The Z-number inputs are transformed to the following weighted fuzzy number entries by means
of Eq. (6):

Ãα =

[
(5,7,8,10 ;0.5) (2,2,4,4 ;0.8)
(5,7,8,10 ;0.5) (−4,−4,−2,−2 ;0.8)

]
,

b̃α
T
=
[
(7,9,12,16 ,0.4067) (1,3,6,8 ;0.4067)

]
.

Step 2. The obtained weighted fuzzy numbers are converted to the following normal fuzzy numbers
based on the first conversion method ( [32]):

Ã′ =
[
(3.53554.94975.65697.0711) (1.78891.78893.57773.5777)
(3.53554.94975.65697.0711) (−3.5777−3.5777−1.7889−1.7889)

]
,

b̃′
T
=
[
(4.46415.73967.652810.2037) (0.63771.91323.82645.1018)

]
.

Step 3. The entries of the obtained fuzzy numbers system are converted to the following classical LSE
by applying the ranking method mentioned in Eq. (4):

A′′ =
[

5.3033 2.6833
5.3033 −2.6833

]
,

b′′T =
[
7.0151 2.8698

]
.

Step 4. Solve the above crisp LSE based on the ANN method to find the outputs in Table 1.

Table 1: Numerical results of Example 1, with ε = 0.5×10−6 using method of [32].
y1 y2

0.9320 0.7724
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If in Step 2, each element of matrix Ãα and vector b̃α is converted to normal fuzzy numbers, by
applying the proposed conversion method, we get

Ã′ =
[
(3,7,8,12) (2,2,4,4)
(3,7,8,12) (−4,−4,−2,−2)

]
,

b̃′
T
=
[
(4.0824,9,12,21.8353) (−1.9176,3,6,10.9176)

]
.

Then, after converting the coefficients of the above fuzzy linear system to the corresponding crisp
system by using the ranking function mentioned in Eq. (5), we get

A′′ =
[

7.5 3
7.5 −3

]
,

b′′T =
[
11.7294 4.5

]
.

By solving the crisp LSE A′′Y = b′′ based on the ANN method, the results of Table 2 are ob-
tained, which shows that the proposed conversion method is more accurate than the other existing
conversion method results in Table 1.

Table 2: Numerical results of Example 1, with ε = 0.5×10−6 using the proposed conversion method.
y1 y2

1.0820 1.2049

Example 2. Let

ÃZ =


[(6,8,9,10),Sure] [0̃,Certainly] [(−2,−1,0,0),Sure] [0̃,Certainly]
[(4,6,7,8),Likely] [(−4,−2,−1,0),Likely] [0̃,Certainly] [(1,3,4,5),Usually]

[0̃,Certainly] [(3,5,6,7),Usually] [(1,2,3,5),Sure] [0̃,Certainly]
[(0,1,2,4),Sure] [0̃,Certainly] [(−4,−2,−1,0),Usually] [(1,2,3,5),Likely]

 ,

b̃Z
T
=
[
[(7,9,10,11),Likely] [(8,10,12,14),Sure] [(3,5,6,7),Usually] [(1,3,5,7),Likely]

]
,

where, 0̃ = (0,0,0). Table 3 shows the classification of the reliability values into four different levels
(certainty, sure, usually and likely) [9].

The steps of Algorithm 1 are determined as follows:

Step 1. Find the weighted fuzzy number entries:

Ãα =


(6,8,9,10;0.9333) (0̃;1) (−2,−1,0,0;0.9333) (0̃;1)
(4,6,7,8;0.6) (−4,−2,−1,0;0.6) (0̃;1) (1,3,4,5;0.75)

(0̃;1) (3,5,6,7;0.75) ((1,2,3,5;0.9333) (0̃;1)
(0,1,2,40.9333) (0̃;1) ((−4,−2,−1,0;0.75) (1,2,3,5;0.6)

 ,
b̃α

T
=
[
(7,9,10,11;0.6) (8,10,12,14;0.9333) (3,5,6,7;0.75) (1,3,5,7;0.6)

]
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Table 3: Classifying the reliability values and related fuzzy numbers.

Reliability levels Corresponding fuzzy numbers
Certainly (1, 1, 1),

Sure (0.8, 1, 1),
Usually (0.65, 0.75, 0.85),
Likely (0.5, 0.6, 0.7).

Step 2. Convert the above entries to the following regular fuzzy numbers based on the method in [32]:

Ã′ =


(5.80,7.73,8.69,9.66) 0̃ (−1.93,−0.97,0,0) 0̃
(3.10,4.65,5.42,6.20) (−3.10,−1.55,−0.77,0) 0̃ (0.87,2.60,3.46,4.33)

0̃ (2.60,4.33,5.20,6.06) (0.97,1.93,2.90,4.83) 0̃
(0,0.87,1.73,3.46) 0̃ (−3.46,−1.73,−0.87,0) (0.77,1.55,2.32,3.87)

 ,
b̃′

T
=
[
(5.42,6.97,7.75,8.52) (7.73,9.66,11.59,13.53) (2.60,4.33,5.20,6.06) 0.772.323.875.42

]
.

Step 3. Convert the above fuzzy components to achieve the following crisp system using the ranking
function (Eq. (4)):

A′′ =


7.9701 0 −0.7246 0
4.8412 −1.3556 0 2.8146

0 4.5467 2.6567 0
1.5156 0 −1.5156 2.1302

 ,
b′′T =

[
7.1651 10.6268 4.5467 3.0984

]
.

Step 4. Solve the yielded crisp LSE by the ANN technique, the final computed results are reported in
Table 4.

Table 4: Approximate solution of Example 2, by applying conversion method in [32].

y1 y2 y3 y4

1.0579 -0.0215 1.7581 1.9456

If in Step 2, each element of matrix Ãα and vector b̃α is converted to the normal fuzzy numbers,
by applying the proposed scheme, the following results are found:

Ã′ =


(5.8571,8,9,10.0715) 0̃ (−2.0715,−1,0,0) 0̃
(2.6667,6,7,8.6667) (−5.3333,3,−2,−1,0.6667) 0̃ (0.3333,3,4,5.3333)

0̃ (2.3333,5,6,7.3333) (0.9285,2,3,5.1429) 0̃
(−0.0715,1,2,4.1429) 0̃ (−4.6667,−2,−1,0.333) (0.3333,2,3,6.333)

 ,
b̃′

T
=
[
(5.6667,9,10,11.6667) (7.8571,10,12,14.1429) (2.3333,5,6,7.3333) (−0.3333,3,5,8.3333)

]
.

Then, using ranking function (Eq. (5)), the following results are obtained:
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A′′ =


8.2322 0 −0.7679 0
6.0834 −0.9333 0 3.1666

0 5.1666 2.7679 0
1.7679 0 −1.8333 2.9166

 ,
b′′T =

[
9.0833 11.0000 5.1666 4.0000

]
.

At last, by solving the above crisp LSE based on the ANN scheme, the results in Table 5 are
obtained.

Table 5: Approximate solution of Example 2, by applying the suggested conversion method.

y1 y2 y3 y4

1.2005 0.4425 1.0407 1.2979

As we observe in Tables 4 and 5, since the proposed conversion method contains the whole support
of each fuzzy number (first part) into the Z-number, the final results of the proposed scheme are more
accurate than the method in [32].

6 Conclusion

In this work, solving a trapezoidal Z-number LSE based on the suggested algorithm was discussed. In
this case, the given system was converted to a crisp LSE. Then, the ANN method was applied to get
the final results, which are more accurate than the method in [32]. The suggested algorithm may be
performed on other Z-numbers complicated systems.
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