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Abstract. This work addresses the singularly perturbed time-fractional delay parabolic reaction-diffusion
of initial boundary value problems. The temporal derivatives discretization is handled by the Caputo frac-
tional derivative combined with the implicit Euler technique with uniform step size. It also utilizes the
nonstandard finite difference approach for the spatial derivative. The scheme has been demonstrated to
converge and has an accuracy of O(h2 +(∆t2−α)). To assess the suitability of the approach, two model
examples are taken into consideration. The findings, which are provided in tables and figures, illustrate
that the system has twin layers at the end of space domain and is uniformly convergent.
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1 Introduction

For prior couple decades, the fractional calculus approach has been extensively utilized in a broad range
of domains, notably mechanics, electricity, physics, biology, economics, control theory, signal and im-
age processing, transportation, resolve medical images issues, salesman and fuzzy problems [1–14]. A
fractional differential equation is a differential equation that can be earned in either the space or time
variable, which involves integer order derivatives to an arbitrary degree. For non-conservative structures,
time fractional refers to anomalous diffusion processes that are connected with time. Though it is very
tricky to obtain analytical solutions for these kinds of problems, numerical approaches are adopted to ap-
proximate the solutions. Fractional differential equations are currently enticed by different investigators
working on ways to approximate numerical solutions for these types of mathematical models owing to
their potential to simulate complex processes [15–17].
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The models of oil reservoir simulation, fluid flow in porous media, global water production, and
numerous other organic occurrences have been addressed with time-fractional reaction-diffusion equa-
tions [18]. The mere existence of an arbitrary order makes it tough to find exact solutions for such
situations. It is therefore becoming more and more crucial to develop dependable and efficient numerical
techniques for the numerical solutions of such equations. Time fractional reaction-diffusion has been
explored in [19–22].

This study addresses the initial boundary value problems of singularly perturbed time-fractional de-
lay parabolic reaction-diffusion in the domain D = (0, l)× (0,1]:

(
∂ α

∂ t,α
u− ε

∂ wu
∂w2 +b(w)u

)
(w, t,)+ p(w, t,)u(w, t,− τ) = f (w, t,), (w, t,) ∈ D (1)

with the vector condition

u(w, t,) = ϕb(w, t,), w ∈ D̄ = [0,1] (2)

and the boundary conditions

u(0, t,) = ϕl(t,), u(l, t,) = ϕr(t,), t, ∈ [0,T ] (3)

where ε is a small perturbation parameter which fulfills 0< ε < 1 , τ is delay parameter and b(w)≥ϑ > 0
is a smooth function. As soon as the functions b(w), p(w, t,),ϕb(w, t,),ϕl(t,),ϕr(t,), and f (w, t,)) meet the
required smoothness and compatibility requirements, the initial-boundary value problem admits a unique
solution u(w, t,). This solution illustrates twin boundary layers with a thickness of O(

√
ε) , that lies near

the boundaries w = 0 and w = 1.
When perturbation parameter is multiplied with the highest order derivative of singularly perturbed

parabolic reaction-diffusion equations, large deviation often serve to visualize the solution for the is-
sue [23]. In light of boundary layer behavior, while solving such problems, employing conventional
numerical methods upon an even grid, substantial instabilities might emerge whenever the perturbation
parameter gets nearer to zero throughout the entire region of interest. To prevent such oscillations, an
appropriate numerical method whose accuracy is independent of perturbation parameter will be used.
Therefore, an extensive amount of work has gone into establishing numerical techniques to handle the
singularly perturbed delay parabolic reaction-diffusion equations of one-dimensional initial boundary
value problems [24–32].

Yet nobody has attempted to apply the numerical approach to singularly perturbed time-fractional
delay parabolic reaction-diffusion equation, even though there have been several attempts to solve sin-
gularly perturbed delay parabolic reaction-diffusion with integer order. Consequently, in this study the
nonstandard finite difference approach for solving one-dimensional singularly perturbed time-fractional
delay parabolic reaction-diffusion equations is presented.

This study has a distinct structure: Section 2 covers preliminaries and properties of continuous solu-
tion. Numerical formulation and convergence analysis are presented in Sections 3 and 4. Sections 5 and
6 provide a discussion of the numerical results and conclusions, respectively.
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2 Preliminaries and properties of continuous solution

Definition 1. Assume that Re(J)> 0 for any complex number J. The function specified by

Γ(J) =
∫

∞

0
e−wwJ−1ds

is a gamma function.

Definition 2. When the function h(t,) possesses lowest bound of zero, then Caputo fractional derivative
is defined as

∂ α

∂ t,α
u(w, t,) =

1
Γ(k−α)

∫ t,

0
h(k)(ζ )(t,−ζ )k−α−1dζ ; α ∈ (k−1,k)

Definition 3. A function u(w, t,) and its Caputo fractional differentiation concerning t, is described as

∂ α

∂ t,α
u(w, t,) =


1

Γ(k−α)

∫ t,
0

∂ ku(w,ζ )
∂ζ k (t,−ζ )k−α−1dζ ; i f α ∈ (k−1,k)

∂ ku(w,t,)
∂ t, k ; i f α = k

Lemma 1. Let 0 < t,0 < 1 be the lowest possible value of the function h, where h ∈C1[0,1]. Then

∂
α
c h(t,0)≤

t,α0
Γ(1−α)

(h(t,0)−h(0))≤ 0,

where α ∈ (0,1) and ∂ α
C stands for the Caputo fractional derivative.

Proof. Let an auxiliary function q(t,) = h(t,)−h(t,0). Then, p(t,)≥ 0 and q(t,0) = h(t,0)−h(t,0) = 0. Now,

∂
α
C q(t,0) =

1
Γ(k−α)

∫ t, 0

0
(t,0−ζ )−αq′(ζ )dζ .

Applying integration by parts, we obtain

∂
α
C q(t,0) =

1
Γ(k−α)

(
−t,−α

0 q(0)−α

∫ t, 0

0
(t,0−ζ )−α−1q′(ζ )dζ

)
≤ 1

Γ(k−α)
(−t,−α

0 q(0))

≤ 1
Γ(k−α)

(−t,−α

0 (h(t,0)−h(0)))

≤ 0.

Given the data b(w), p(w, t,) and f (w, t,) are Holder’s continuous, and the compatibility criteria s at
the corner points (0,0),(1,0),(0,−τ) and (0,τ) have been met, it is shown, to ensure the existence of
the unique solution for Eqs. (1,2, 3). That is{

ϕb(0,0) = ϕl(0),
ϕb(1,0) = ϕr(0),{
∂ α ϕl(0)

∂ tα − ε
∂ 2ϕb(0,0)

∂w2 +b(0)ϕb(0,0)+ p(0,0)ϕb(0,−τ) = f (0,0),
∂ α ϕr(0)

∂ tα − ε
∂ 2ϕb(1,0)

∂w2 +b(1)ϕb(1,0)+ p(1,0)ϕb(1,−τ) = f (1,0),

(4)
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Lemma 2. Given a,b ∈ C0(D̄), let u ∈ C2(D)
⋂

C0(D̄). Considering u ≥ 0 on ∂D = D̄−D, it follows
that, Lεu≥ 0 in D yields u≥ 0 in D̄.

Proof. Let (υ ,ω) be a point that satisfy ξ (ω,υ) = min(w,t)∈D̄ ξ (w, t) and ξ (ω,υ)< 0. Then ξ (ω,υ) /∈
∂D and we have,

Lεξ (ω,υ) = εξww(ω,υ)−b(ω,υ)ξ (ω,υ)− ∂ αξ (ω,υ)

∂ tα
≤ 0.

Since ξww(ω,υ)≥ 0 and ∂ α ξ (ω,υ)
∂ tα = 0, Lεξ (ω,υ)≤ 0, which contradicts the initial assumption. There-

fore ξ (ω,υ)≥ 0 ∀(w, t) ∈ D̄.

Lemma 3. ( Stability Estimate)
Let u(w, t,) represent the solution of continuous problem of Eq. (1). Consequently,

‖u(w, t,)‖ ≤ (1+ϑT )max{‖Lεu‖,‖u‖∂D}

where ϑ = maxD̄ {0,1−ϑ} ≤ 1 and ‖u‖= maxD̄ |u(w, t,)| is the greatest that expressed in terms of ‖.‖.

Proof. One may refer [33] for details.

Lemma 4. The solution of problem (1) and its derivative satisfy∣∣∣∣∂ k+su(w, t)
∂wk∂ ts

∣∣∣∣≤C
[

1+ ε
−i
2

(
exp(
−w√

ε
+ exp(

−(1−w)√
ε

)

)]
with 0≤ k+2s≤ 4

Proof. The proof of this Lemma can be found in [34].

3 Development of numerical schemes

3.1 Temporal discretization

To discretize the time derivative of Eq.(1), we utilize the implicit Euler’s technique with uniform mesh
size ∆t, on the temporal domain DM

t, =
{

t, j = j∆t; j = 0,1, . . . ,M, t,M = T,∆t, = T
M

}
, where M denotes the

number of grid points along the time axis. The mesh for [−τ,T ] is defined as DM
t, =

{
t, j = j∆t,;−m≤ j ≤M

}
.

In the Caputo notion, the time-fractional derivative is contemplated. Therefore, the time-fractional
derivative term of Eq.(1) at time t, j+1 can be computed with the following quadrature formula utiliz-
ing the implicit Euler technique:

∂
α
t u(w, t, j+1) =

1
Γ(1−α)

∫ t, j+1

0

∂u(w,s)
∂ s

(t, j+1− s)−αds

=
1

Γ(1−α)

j

∑
r=0

(
u(w, t,r+1)−u(w, t,r)

∆t,

)∫ t, r+1

t, r

(t, j+1− s)−αds+ e j+1
∆t,

= β

j

∑
r=0

υr
(
u(w, t, j−r+1)−u(w, t, j−r)

)
+ e j+1

∆t, ,
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where

β =
(∆t,)−α

Γ(1−α)
, υr =

(
(r+1)1−α − (r)1−α

)
and e j+1

∆t, =
(∆t,)

Γ(1−α)

∫ t, r+1

t, r

(t, j+1− s)−αds.

Therefore, the Caputo fractional derivative ∂ α

t, u(w, t,) at the point (w, t, j+1) is estimated as

∂ α

t, u(w, t, j+1) = β

((
u(w, t, j+1)−u(w, t, j)

)
+∑

j
r=1 υr

(
u(w, t, j−r+1)−u(w, t, j−r)

))
. (5)

The time semi-discrete equation is obtained by substituting Eq.(5) into (1)

β

(
u(w,t, j+1)−u(w,t, j)

21−α

)
+β

(
∑

j
r=1

(
u(w, t, j−r+1)−u(w, t, j−r)

)
υr

)
− εu j+1

ww (w)+b(w)u j+1(w)

= f j+1(w)−

{
p(w, t, j+1)ϕb(w, t, j+1), j = 0,1, . . . ,m,

p(w, t, j+1)u(w, t, j−m+1), j = m+1, . . . ,M.

(6)

Adjusting Eq.(5) yields (
β +L ∆t

ε

)
u j+1(w) = Ri, (7)

where (
β +L ∆t

ε

)
u j+1(w) =−εu j+1

ww (w)+(β +b j+1(w))u j+1(w),

Ri =


(

βu j + f j+1−q j+1ϕb(t j+1)−β ∑
j
r=1 υr

(
u j−r+1−u j−r

))
(w), j = 0,1, . . . ,m,(

βu j + f j+1−q j+1u j−m+1−β ∑
j
r=1 υr

(
u j−r+1−u j−r

))
(w), j = m+1, . . . ,M,

which is the time semi-discrete of Eq.(1).

Lemma 5. In (6) an error R is limited as
∣∣e. j+1

∣∣≤C(∆t)(2−α).

Proof.

e.
j+1 =

O(∆t,)
Γ(1−α)

j−1

∑
r=0

∫ t, r+1

t, r

(
t, j+1− s

)
ds

=
O(∆t,)

Γ(1−α)

j

∑
r=1

(
( j− r+1)1−α − ( j− r)1−α

1−α

)
(∆t,)1−α

=
O((∆t,)2−α)

Γ(2−α)

(
( j− r+1)1−α − ( j− r)1−α

)
=

O((∆t,)2−α)

Γ(2−α)

(
( j+1)1−α

)
≤ C(∆t,)2−α .

Then
∣∣e. j+1

∣∣≤C(∆t,)(2−α) where C is a constant that remains unaltered by ε or ∆t,.
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3.2 Spatial discretization

To achieve the discretization of space derivative, we first split the spatial interval evenly using the step
size h = wi+1−wi =

1
N ; i = 0,1, . . . ,N − 1. This results in a consistent division of the solution area

0≤ w≤ 1. Considering the nonstandard finite difference methods from [35], we can apply to Eq.(7) and
get the following results

−ε

(
u j+1

i−1−2u j+1
i +u j+1

i+1
ς(i)

)
+(b(i)+β )u j+1

i

=

βu j
i + f j+1

i − p j+1
i ϕb j+1

i
−β ∑

j
r=1 υr

(
u j−r+1

i −u j−r
i )

)
, j = 0,1, . . . ,m,

βu j
i + f j+1

i − p j+1
i u j−m+1

i −β ∑
j
r=1 υr

(
u j−r+1

i −u j−r
i

)
, j = m+1, . . . ,M,

(8)

with ς(i) = 4ε

µ(i) sinh2 (
µ

h
2

)
, µ =

√
b(i)

ε
. Eq.(8) is concisely expressed as

Eiu
j+1
i−1 +Fiu

j+1
i +Giu

j+1
i+1 = Hi (9)

where

Ei = Gi =− ε

ς(i) , Fi =
2ε

ς(i) +b(i)+β ,

Hi =

βu j
i + f j+1

i − p j+1
i ϕb j+1

i
−β ∑

j
r=1 υr

(
u j−r+1

i −u j−r
i )

)
, j = 0,1, . . . ,m,

βu j
i + f j+1

i − p j+1
i u j−m+1

i −β ∑
j
r=1 υr

(
u j−r+1

i −u j−r
i

)
, j = m+1, . . . ,M.

4 Convergence analysis

Lemma 6. Let u j+1
i denote arbitrary grid function that fulfills both u j+1

0 ≥ 0 and u j+1
N ≥ 0. Then,(

β +L h,∆t
ε

)
u j+1

i ≥ 0 for i = 1,2, . . . ,N−1 implies u j+1
i ≥ 0 for all i = 0,1, . . . ,N.

Proof. Let k ∈ {0,1, . . . ,N} such that
u j+1

k = min
0≤i≤N

u j+1
i .

Assume that u j+1
k < 0. Then k 6= {0,N}. Further, we have uk+1−u j+1

k > 0 and uk−u j+1
k−1 < 0. Now,(

β +L h,∆t
ε

)
u j+1

i = βu j+1
i +

εσ

ς(i)

(
u j+1

i−1 −2u j+1
i− +u j+1

i+1

)
+biu

j+1
i ≤ 0,

which contradicts the assumption. Hence, u j+1
i ≥ 0, ∀i = 0,1, . . . ,N.

Lemma 7. (Stability) The result u j+1
i of the semi-discrete problem (9) provides the bound

∥∥∥u j+1
i

∥∥∥
∞

≤
‖
(

β +L h,∆t
ε

)
u j+1

i ‖

β +ϑ
+max{|ψi| ,max(ϕl,ϕr)} , (10)

where ϑ is the lower limit of bi.
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Proof. Consider the function (ϒ±)
j+1
i defined by

(
ϒ
±) j+1

i =+
‖
(

β +L h,∆t
ε

)
u j+1

i ‖

β +ϑ
+max{|ϒi| ,max(ϕl,ϕr)}±u j+1

i .

At the boundaries we have

(
ϒ
±) j+1

0 =+
‖
(

β +L h,∆t
ε

)
u j+1

i ‖

β +ϑ
+max{|ψi| ,max(ϕl,ϕr)}±ϕ

j+1
0

and (
ϒ
±) j+1

N =+
‖
(

β +L h,∆t
ε

)
u j+1

i ‖

β +ϑ
+max{|ψi| ,max(ϕl,ϕr)}±ϕ

j+1
N .

Now, for all i = 1,2, . . . ,N−1(
β +L h,∆t

ε

)
(ϒ±)

j+1
i = (β +bi)

‖(β+L h,∆t
ε )u j+1

i ‖
β+ϑ

+max{|ψi| ,max(ϕl,ϕr)}±
(

β +L h,∆t
ε

)
u j+1

i .

This yields

(
β +L h,∆t

ε

)(
ϒ
±) j+1

i = (β +ϑ)
‖
(

β +L h,∆t
ε

)
u j+1

i ‖

β +ϑ
max{|ψi| ,max(ϕl,ϕr)}±

(
β +L h,∆t

ε

)
u j+1

i

≥ (β +ϑ)
‖
(

β +L h,∆t
ε

)
u j+1

i ‖

β +ϑ
±
(

β +L h,∆t
ε

)
u j+1

i ≥ 0.

Hence, using Lemma 7, we get (ϒ±) j+1
i for all i = 0,1, . . . ,N.

Lemma 8. The bound below corresponds to the value for the denominator ς(i) of Eq. (8)

ε

∣∣∣∣ h2

ς(i)
−1
∣∣∣∣≤ Kh2

where K is a constant independent of ε

Proof. We have

ε

∣∣∣∣ h2

ς(i)
−1
∣∣∣∣= ∣∣∣∣ εδ

e
√

δ −2+ e−
√

δ
− ε

∣∣∣∣= b(i)h2

∣∣∣∣∣∣ δ +2− e
√

δ − e−
√

δ

δ

(
e
√

δ −2+ e−
√

δ

)
∣∣∣∣∣∣ ,

where δ = bih2

ε
. Let Θ(δ ) = δ+2−e

√
δ−e−

√
δ

δ(e
√

δ−2+e−
√

δ)
. Now, to evaluate the limit we can apply the L’Hopital’s rule

repeatedly and we obtain

lim
δ→0

Θ(δ ) =− 1
12

and lim
δ→∞

Θ(δ ) = 0.

Thus |Θ(δ )| ≤ K and

ε

∣∣∣∣ h2

ς(i)
−1
∣∣∣∣≤ Kh2bi ≤ Kh2.
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Lemma 9. For every k ∈ N, and for every fixed mesh, we have

lim
ε→0

max
1<i<N−1

(
ε
− k

2 exp
(
−Cwi√

ε

))
= 0

and

lim
ε→0

max
1<i<N−1

(
ε
− k

2 exp
(
−C(1−wi)√

ε

))
= 0

for wi = ih;h = 1
N ;∀i = 1, ..,N−1.

Proof. Taking into account the partition of an interval [0,1], where the points for i = 1(1)N − 1 are
wi = ih;h = 1

N , we have

max
1<i<N−1

(
ε
− k

2 exp
(
−Cwi√

ε

))
≤
(

ε
− k

2 exp
(
−Cw1√

ε

))
=

(
ε
− k

2 exp
(
−Ch√

ε

))
and

max
1<i<N−1

(
ε
− k

2 exp
(
−C(1−wi)√

ε

))
≤
(

ε
− k

2 exp
(
−CwN−1√

ε

))
=

(
ε
− k

2 exp
(
−Ch√

ε

))
.

Then applying L’Hopital’s rule repeatedly we get

lim
ε→0

(
ε
− k

2 exp
(
−Ch√

ε

))
= lim

r= 1
ε
→∞

rk exp(−Chr) = lim
r→∞

k!(Ch)−k exp(−Chr) = 0.

Lemma 10. The discrete solution u j+1
i in algorithm (8) fulfills the following constraint in terms of its

truncation error ∣∣∣u j+1(xi)−u j+1
i

∣∣∣≤Ch2.

Proof. Truncation error of spatial discretization by using rule in Lemma 8 gives∣∣∣(β +L h,∆t
ε

)(
u j+1(wi)−u j+1

i

)∣∣∣ =
∣∣∣−ε

(
d2

dw2 − 1
ς(i) (D

+
w D−w )

)
u j+1(wi)

∣∣∣
≤ εC

∣∣∣( d2

dw2 − 1
ς(i) (D

+
w D−w )

)
u j+1(wi)

∣∣∣
+ εC

∣∣∣( h2

ς(i) −1
)

D+
w D−w u j+1(wi)

∣∣∣
≤ εCh2

∣∣∣ d4

dw4 u j+1(wi)
∣∣∣+Ch2

∣∣∣ d2

dw2 u j+1(wi)
∣∣∣ .

(11)

Again applying Lemma 4 to Eq. (11) become∣∣∣(β +L h,∆t
ε

)(
u j+1(wi)−u j+1

i

)∣∣∣≤ εC∗h2
∣∣∣(1+ ε−2

(
exp(−wi√

ε
+ exp(−(1−wi)√

ε
)
))∣∣∣

+C∗h2
∣∣∣(1+ ε−1

(
exp(−wi√

ε
+ exp(−(1−wi)√

ε
)
))∣∣∣ , (12)

∣∣∣(β +L h,∆t
ε

)(
u j+1(wi)−u j+1

i

)∣∣∣≤C∗h2
∣∣∣(ε + ε−1

(
exp(−wi√

ε
+ exp(−(1−i)√

ε
)
))∣∣∣

+C∗h2
∣∣∣(1+ ε−1

(
exp(−wi√

ε
+ exp(−(1−wi)√

ε
)
))∣∣∣ . (13)
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Results from Eq.(13) and Lemma 9, gives∣∣∣(β +L h,∆t
ε

)(
u j+1(wi)−u j+1

i

)∣∣∣≤C∗h2 |1+ ε| (14)

Hence, an error bound becomes
∣∣∣u j+1(wi)−u j+1

i

∣∣∣≤Ch2.

Theorem 1. Let u(w, t,) be the solution of Eq.(1) and u(wi, t, j+1) be the solution of the total discretized
equation. Under the hypothesis of Lemma 5 and Lemma 10, the ε−uniform estimate holds

sup
1≤i≤N−1

= max
1≤i≤N−1,0< j<M

∣∣u(wi, t, j+1)−U(wi, t, j+1)
∣∣≤C

(
h2 +(∆t,)2−α

)
, (15)

where C is a constant that is not altered by ε,h or (∆t).

Proof. The proof followed by applying triangle inequality.

5 Numerical results

Model examples are offered to demonstrate the validity of the proposed data plan. The provided example
are calculated as follows: Double mesh formula used to determine maximum point-wise error is:

EN,M
ε = max

1≤i≤N−1

∣∣∣uN,M
i −u2N,2M

i

∣∣∣ ,
where uN,M

i is the numerical solution obtained on the mesh DN,M =DN
x ×DM

t, . To determine the ε−uniform

errors for any value of N and M, employ EN,M = maxε EN,M
ε . The formula for estimating the ε-uniform

rate of convergence of the scheme is:

rN,M
ε =

log(EN,M
ε )− log(E2N,2M

ε )

log(2)
.

Example 1.
∂ αu(w, t,)

∂ tα
− ε

∂ 2u(w, t,)
∂w2 +(1.1+w2)u(w, t,)+u(w, t,− τ) = t,3

with initial and boundary conditions

u(w,0) = 0, (w, t,) ∈ [0,1]× [−1,0],

and
u(0, t,) = 0 = u(l, t,) = 0; t ∈ [0,2].

Example 2.
∂ αu(w, t,)

∂ t,α
− ε

∂ 2u(w, t,)
∂w2 +

(1+w)2

2
u(w, t,)+u(w, t,− τ) = t3

with constraints of
u(w,0) = 0, (w, t,) ∈ [0,1]× [−1,0],

and
u(0, t,) = 0 = u(l, t,) = 0; t, ∈ [0,2].
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Table 1: Maximum absolute errors for different α values and fixed ε = 10−10 of Example 1 with (N,M)

α (32,4) (64,8) (128,16) (256,32)
0.25 1.3968e-02 1.0085e-02 1.6262e-02 2.0043e-02
0.50 4.7734e-02 2.0990e-02 1.8678e-02 2.4170e-02
0.75 1.0658e-01 5.9050e-02 2.8035e-02 1.7859e-02
0.90 1.5295e-01 1.0331e-01 5.4487e-02 2.6586e-02

Table 2: Maximum absolute error of Example 1 for α = 0.8 and (N,M)

ε (32,4) (64,8) (128,16) (256,32)
100 4.7900e-03 2.3719e-03 1.0967e-03 6.9576e-04
10−2 1.0788e-01 6.3516e-02 3.0331e-02 1.6603e-02
10−4 1.2061e-01 7.1515e-02 3.6598e-02 1.8552e-02
10−6 1.2120e-01 7.1866e-02 3.6754e-02 1.8625e-02
10−8 1.2120e-01 7.1866e-02 3.6760e-02 1.8626e-02
10−10 1.2120e-01 7.1866e-02 3.6760e-02 1.8626e-02
10−12 1.2120e-01 7.1866e-02 3.6760e-02 1.8626e-02
10−14 1.2120e-01 7.1866e-02 3.6760e-02 1.8626e-02
10−16 1.2120e-01 7.1866e-02 3.6760e-02 1.8626e-02

EN,M 1.2120e-01 7.1866e-02 3.6760e-02 1.8626e-02
rN,M 0.75401 0.96717 0.98082

Table 3: Maximum absolute errors for different α values and fixed ε = 10−10 of Example 2 with (N,M)

α (32,4) (64,8) (128,16) (256,32)
0.25 1.5356e-02 1.2000e-02 2.6519e-02 3.1007e-02
0.50 6.9433e-02 2.4254e-02 2.6583e-02 3.7466e-02
0.75 1.6207e-01 8.3164e-02 3.7525e-02 2.4763e-02
0.90 2.3213e-01 1.5015e-01 7.7367e-02 3.7252e-02
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Table 4: Maximum absolute error of Example 2 for α = 0.8 and (N,M)

ε (32,4) (64,8) (128,16) (256,32)
100 4.7122e-03 2.1731e-03 9.9120e-04 6.5133e-04
10−2 1.2994e-01 6.9327e-02 3.1071e-02 1.7352e-02
10−4 1.7689e-01 9.7089e-02 4.7711e-02 2.4097e-02
10−6 1.8435e-01 1.0291e-01 5.0301e-02 2.5351e-02
10−8 1.8435e-01 1.0291e-01 5.0760e-02 2.5578e-02
10−10 1.8435e-01 1.0291e-01 5.0760e-02 2.5578e-02
10−12 1.8435e-01 1.0291e-01 5.0760e-02 2.5578e-02
10−14 1.8435e-01 1.0291e-01 5.0760e-02 2.5578e-02
10−16 1.8435e-01 1.0291e-01 5.0760e-02 2.5578e-02

EN,M 1.8435e-01 1.0291e-01 5.0760e-02 2.5578e-02
rN,M 0.84106 1.0196 0.98879

Figure 1: Numerical solution of Example 1 for
N = M = 64 and ε = 10−10.
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Figure 2: Boundary layer formation of Exam-
ple 1.

The effectiveness of the nonstandard finite difference approach is verified on the problems 1 and 2
using different spatial and temporal sizes. The maximum absolute errors for different options of α and
fixed ε are reported in Tables 1 and 3. The statistics show that when α drops, the maximum absolute
errors likewise drops, suggesting that the fractional order model does an improved task of representing
real-world problems than the integer order model. Tables 2 and 4 demonstrate the maximum absolute
value that was attained. As the step size is reduced and ε → 0, the numerical results converge uniformly
and the rate of convergence becomes order one as noticed in the tables. Figures 1 and 3 also display
the behavior of the solution as determined by the numerical approach. The boundary layer behavior
of the problem, which features parabolic boundary layers at w = 0 and w = 1 is shown in Figures 2
and 4. In conclusion, Figures 5 and 6 exhibit the log-log scale of the maximum absolute error. This
scale indicates a monotonic decline in the maximum absolute error and perturbation value, so verifying
a correspondence with theoretical results.
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Figure 3: Numerical solution of Example 2 for
N = M = 64 and ε = 10−10.
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Figure 4: Boundary layer formation of Exam-
ple 2.
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Figure 5: Log-log scale plot for Example 1.
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Figure 6: Log-log scale plot for Example 2.

6 Conclusions

For the one-dimensional initial boundary value problem of singularly perturbed time fractional delay
parabolic reaction-diffusion equations, a nonstandard finite difference approach is implemented. Caputo
fractional derivative combined with the implicit Euler method are employed to discretize the time deriva-
tive. Through the use of the nonstandard finite difference method, the spatial derivative is discretized.
The convergence analysis of the scheme is proven to be accurate of order O(h2 +(∆t)2−α). The scheme
has twin layers at w = 0 and w = 1, and the findings from numerical examples verified an agreement.
The scheme is uniformly convergent.
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