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Numerical stability of discrete energy for a
thermoelastic-Bresse system with second sound
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Abstract.  Our contribution consists of studying numerical methods based on finite element space
and finite difference schema in time of the linear one-dimensional thermoelastic Bresse system with
second sound. We establish some a priori error estimates, and present some numerical analysis results of
discrete energy under different decay rate profiles. Moreover, we study the behaviors of discrete energy
with respect to the system parameters and the initial data. Some numerical simulations will be given in
order to validate the theoretical results.
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1 Introduction

Generally, the Bresse system, also known as the curved beam model [6], is represented by the system

P1@i — k(@ + W +1Iw), —lko (wy —1@) =0, in (0,1) x (0,0),
P2 — bW + k(9 + W +1Iw) =0, in (0,1) x (0,0), (D
P1W — ko (Wx _l(p)x+lk(¢x+ 1/’+1W) =0, in (07 1) X (0700)7

where the functions @, v, and w represent, respectively, the transverse displacement of a curved beam,
the rotation angle of the filament, and the longitudinal displacement are represented. These physical
quantities are influenced by the beam’s material properties, represented by positive constants such as kg =
EH,k=GH,b=EI,l=1/Rand p;,p»,l,G,E,H,R. The model considers axial force, shear force, and
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bending moment indicated respectively, by the terms ko (wy — 1) ,k (@, + ¥ +Iw) and by,. Extensive
research on the Bresse system focuses on its well-posedness and stability, examining the influence of
feedback mechanisms and wave speed parameters oy = k/p1, o = b/p, and a3 = ko/p1, references to
significant contributions in this field include a range of studies in [1-3,8-11, 13,14, 17].

Recently, the authors in [2, 3, 13] consider a linear Bresse system coupled with heat equation via
Cattaneo’s law known as thermoelastic-Bresse system with second sound as follow:

(010 — k(@4 W +1Iw), —lko(we—19) + €86, =0, in(0,1)x (0,00),
P2y — bW + k(@ + W+ 1Iw) + €866, =0, in (0,1) x (0,0),
piwy —ko (we —1¢@), +1k(Qc+y+Iw)+€066,=0, 1in(0,1)x(0,00), (2)
P36, +qx + (€10 + &Yy +Ewy) =0, in (0,1) x (0,0),
\th—i'ﬁq"i_exzoa in (Ovl)x(oaoo)a
with the initial and boundary conditions
(P(xvo) = (PO(X)7 QDI(X,O) =0 (X), in (07 1)
W(xv 0) = V/O(x)v l[/,(x,O) =¥ x)v in (O’ 1)
W(xa 0) = W()(X), Wt(x70) =Wwi ()C), in (07 1) 3)
0(x,0) = 6p(x), ¢q(x,0)=qo(x), in (0,1)
(p(07t):WX(Ovt>:WX(Ovt):CI( 7t):07 in (0700)
L o(L,r)=wy(l,1) =w(l,1) =6(1,1) =0, in (0,00)

where € € {0,1} and €1&, = €163 = g3 = 0 with p3, 7, B and § are positive constants, 0 is the temper-
ature deviations and ¢ is the heat fluxe.

The authors in [ 3] analyzed the system represented by (2), with setting & = 1 and & = & = 0. They
demonstrated that this case leads to exponential stability under the following conditions:

k 2
o = s, <1—p2> (”1—1> ~ % 0 and 7issmall
p1b ) \ tkps3 bp,

and the system, as discussed in [13], is not exponentially stable if either of the following conditions is

met 5
P2k> ( P1 >
oy #0a3 or l-—— )| =——-1])——#0,
e ( o6 ) \ zkps bpr 7
demonstrating that the polynomial stability of the system’s responses exhibit a decay rate proportional

tor 2. Recently, in [2], the authors considered system (1) with &3 = 1,€&; = & = 0 under the restriction
1# Z+mm, ¥meN.The authors showed that the solution lacks exponential stability if either condition

k p3Tk ) 5277/( kpz
1—— 1] - =1—-—=0, 4
( ko) ( pP1 kop1 bp, @
or ) , .
P1 Y p1
2+ (1+2PL) (2 Pt vmez 5
7 ( koP2> <2 +m7t> +pz(k—i—ko) " ©)

is not satisfied.
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Additionally, the authors established that the solution achieves exponential stability when both (4)
and (5) are met. Furthermore, for the system represented by (2) with sitting &3 = 1, & = & =0, the study
in [2] demonstrated polynomial stability with a decay rate of t‘é, provided that (5) is satisfied while (4)
is not.

n [3], the authors focused on the problem defined by (2) — (3), particularly when £y =1 and & =
& = 0. Utilizing semi-group theory, they investigated the existence, uniqueness, and smoothness of
the solution. Additionally, they provided and substantiated a result concerning the lack of exponential
stability of the system’s solutions, which is contingent upon the following specific constants defined as:

— kopa
Ho=1—"%p>

—L52_ _kpa\ (tbps
= 1 bPl)(Pz 1)’
() e
K2 = p1 1 ko) (1 p1 >’

and further restrictions on / and g, U, 4o that follows:

1+ §+m7t, Vm € N. (6)

bpi 2 kpi
2 Z Pl YmeZ 7
# < kon) ( +mﬂ) p2 (k+ ko) " @
po#0 and  py=pp =0. ®)

The Bresse system achieves indirect stabilization through its second equation when & =1 and &y = & =
0, or through its third equation when &3 =1 and € = & = 0. Conversely, the system’s first hyperbolic
equation, defined by € = 1 and &, = & = 0, experiences indirect damping due to its interaction with
the latter two equations, which collectively describe the heat conduction process within Cattaneo’s law.
At present, there are some theoretical and numerical results on the asymptotic behavior of thermoelastic
problems [15, 16].

In this paper, we consider the following model

P10y — k(@ +w+Iw), —lko(wy —19)+86,=0, in (0,1)x (0,0),
P2V — bW +k (@ + W +1w) =0, in (0,1) x (0,e0),
Piwy —ko (wy —1@), + 1k (@ + ¥ +1w) =0, in (0,1) x (0,00), )
P36+ ¢+ 8¢y =0, in (0,1) x (0,e0),
qu"‘BQ""ex:Ov in (O,I)X(O,OO),

with the initial and boundary conditions

(cco (x,0) = @ (x), @ (x,0) = @y (x), 0 (x,0) = 6 (x), forxe (0,1),
¥ (x,0) = vo (x), ¥ (x,0) = ¥1 (x), ¢(x,0) = qo (x),  forxe (0,1),
0) =

w(x, wo (x), wy (x,0) = wy (x), forx € (0,1), (10)
q’( ) x( 7t)—wx(0 t): (O7t): ) vVt >0,
Lo (1,1) =y (1,t)=w(l,t)=06(1,1)=0, vt > 0.
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where p1, p2, p3, b, k, ko, T, B, & and [ are positive constants, the initial data ¢g, @1, Wy, W1, wo, w1, 6y
and gg belong to a suitable Hilbert space, and the unknowns of (9)-(10) are the following variables:

(@, ¥,w,0,9) : (0,1) x (0,00) — R, (11)

In [3], the authors stated the well-posedness and stability of the system (9)-(10) and proved the
nonexponential and exponential decay under new conditions on the parameters of the system. The present
paper is mainly concerned with the solution of (9)-(10). Our paper is organized as follows. In Section 2,
we establish the stability property of the discrete energy and get some a priori error estimates. In Section
3, we validate the theoretical analysis with a numerical simulator and deduce the energy decay of the
discrete energy. Finally, a conclusion will be given.

2 Discrete energy behavior

In this section, we introduce a fully discrete approximation of system (9) with initial and boundary
conditions (10) by using the finite elements for the spatial approximation and the implicit Euler scheme
to discretize the time derivatives. Then we establish the stability property, from which we deduce the
energy decay of the discrete energy.

2.1 Variational formulation

We introduce the energy functional &(¢) associated to (9) — (10) by

1 1
é"(t)ZE/O [k((px+W+IW)2+k0(Wx_l(P)2+b(lI/x)2 +p1u® + pV? + pi12 + p30° + 147 dx, (12)

where u = @, v = y; and z = wy,.
The following energy decay property was proved in [3].

Theorem 1. We assume that (6), (7) and (8) hold. Then the energy & (t) decays exponentially, ie, there
exist positive constant ay et ay such that the energy function satisfies &(t) < a8 (0)e" "Vt > 0.

To obtain the variational formulation of Problem (9), we consider the following spaces

H*IZ{fGHl(O,l):f(O)ZO}, ﬁg:{feHl(()?l):f(l):O}?

and the following functions @ = @, ¥ = W, w = w; and denote by (-) the scalar product in the space
L?(0,1), with corresponding norm || - ||. We rewrite system (9) as follows

(010 — k(@ + Y+ 1w)x — Lko(wx — 19) + 86, =0,
P2V — bW + k(@ + y +1w) =0,
P1w; —ko(wy — @)+ k(@ + @ +1w) =0, (13)
P36 +q:+ 8¢, =0,

( Tq: +Bg+ 6, =0.

To get the weak form associated to system (13), we multiply the equations by test functions f, ae
H!(0,1) and x, &, n € H!(0,1) and integrating by parts that follows:
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P1 (alvé:)‘i_k((px‘i‘ll’-i-lw,Cx)_kOl(Wx lo, C) (x;%x): )

P2 (Vs X) +b (W, Xx) k(@ +y+1w,x) =0,

pl(Wta§)+k0(Wx Z(P gx)+lk(¢x+‘//+lw,§):0’ (14)
(8:,m) +(gx,m) + 6 (@,m) =0,

)+B (g, )+ (6, ) =0.

For our purposes, we considered J a nonnegative integer and & = } a subdivision of the interval [0, 1]
givenby 0 =xo < xy <---<xy_1 <xy=1,suchthatx; = jh,Vj=0,...,J and

T<ql‘7

S'(}:{ueH*l(O,l)‘uEC([(),l]), u

is a linear polynomial } , (15)

() xjs1)

is a linear polynomial } . (16)

(xj.Xjy1)

Sh= {MGI-Z}(O,I)‘ weC([0,1]), u
For a given final time T and a positive integer N, let Ar = % be the time step and ¢, = n/A\t, n=0,...,N.
The finite element method for (14) with Dirichlet homogeneous boundary conditions using the back-

ward Euler scheme is to find @', ¢} € Sk and @', w" and 6] € S" C H' (0, 1) such that, forn=1,...,N
and for all §,, n, € S, xn, &n, iy € ST

(5 (01 =001 6) Tk (@ + i 41w Gue) — Tho (W), — 1971, 61) = 8 (6)1,20) =0,

B =0 2) b (Wi ) K (@ W5 Iwh, ) = O,
B (W —wi !, &) ko (Wi — 19)!, Ene) + Tk (@)l + Wi+ Iwh, &) =0, (17)
B (0p =6, ) + (g i) + 8 (91, m0) = O,
\é (qz —qulﬂxh) +ﬁ (CIZvah) + (Q}rllxaah) = 07
where ) | |
Cn OO o YAV o Wi Wi
h = At Vi = Ar T A (13)

are approximations to ¢y (t,), W, (t,) and wy, (t,) , respectively. Here, (p,?, @? RV 1/7}? , wg, Wg, 6,? and
q2 are given approximations to the initial conditions ¢g, @1, Yo, Wi, wo, w1, 8o, qo respectively.
The following inequality will often be used

1
(a=b,a) = 3 (la— oI + llal = 16]°) . (19)

The next result is a discrete version of the energy decay property satisfied by the solution of system (9).

Theorem 2. Let the following discrete energy:

n 1 ~n -~n 7 n n n
& =5 (P (1917 + 11 ) +p2 191 +Kll@f+ v +

(20)
b IVR? + ko Iwh — 1071+ p3 1671 + 714411
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Then, the decay property
-1
& =& <0,
At -
holds for n=1,2,...,N, where ||-|| represents the norm in the space L*(0,1).

21

Proof. Let &, = @', xpn =, & =w)}, N, = 6} and o, = ¢}} in (17). By (18) and (19), we deduce that

£ (192 = 3 F + 18017 — 190 ) 4 (ot vitgn) )
—lko (Wy.—195,01) + 6 (6), @) =0,
%(H%’ sl e 7 [ il )+m(H%x v+ v’ 03
— v 1H >+k(‘PZx+V’h+lwhv‘l’h): ;
23 (173 P 0 — 1P ko o — ) ”
+ik (@ +yp +1Iwr, W) =0,
2At (th 0, IH +||9h|| —Hen 1”) (qp,65) — 6 (v, 6p,) =0, (25)
o (=i I+ il =1l [1*) + B g5 + (85ssai) = 0. (26)

Using again (18) and (19), we obtain

Mn_un—l 1 2 2
<u",fﬂ>=(u", & )=2At(Hu"—u" I+ = e ) o
1 nin2 _||,,n—1 2)
> (P = [l "]°)
it results that
k
K (@ + Y+ @+ T+ 1) =57 (Il ft- i+ i = [l v 0w [F). 28)
and ko
~ 112
ko (=19 5 = 17) > - (I — 171> = i =19 [) (29)
by summing equations (22)-(26), we have
2 ~ 1112
0 = £ (19017~ 19 1°) + & (]~ 1w 1)
1112 ) n—112 0|2 n—112
+ 85 (Il = 1w 17) + £ (el = ox~"I1) + =% (ll* = Nl 'II")
2 n—11|2 ~n - 2
ot (vl = llvi 1) + 25 1@ - 9|1 +zmH% gl
ezl P o g~ +m||wi1x I +2A,||9" o’
+l3||qh|| +k(¢zx+%+lwz,@lx+v7§+lﬁz)+l§o(whx L9} W~ 197) > (30)
25 (1" - lla )+%(IIWZ‘H 1) + o (v = i I
~n—1 n||? n—1]|2 T nl|? n—11|2
e (A | )+m (HG 1P = D6 17) + o (llail* = llas 1)
25 (Ilo+ v+l = o+ v 0wy |)

(p (gan 1
34 (Hwhx_l(th = [[wi' =t H) ,
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n—1

which implies that % <0, and the theorem is proved using the definition of the discrete energy. [l

As a consequence, the following stability estimates are derived.

Remark 1. Note that, to find the solution of (17) a square linear system of algebraic equations needs to
be solved. It follows from the above proof that when all data are zero, the solution {fﬁ;}, v w6, qZ} is
zero. Then, (17) admits a unique solution.

2.2 Error Estimate

Now, we will give some estimates for the difference between the exact solution and the numerical solu-
tion.
Theorem 3. There exists a positive constant C, independent of the discretization parameters h and /At
such that for all {,, ah}ﬁvzo € Sk, and {xn, &, nh}fio € Sp
max {1 = 9P+ 90— P+ - e — P
ety (¢Zx+wﬁ+1wz)||2+ [ 1"~ (v, —t0f) [+ 0" —

+Hq"—612H2}§CAt§1 o - lef—'V_W\Z -

o -2 | - P+ 19— Gl + 197 - 71

O A A e A émr|+||el N [ P e A &)
-+ £ (16 -¢- @ - g u+uw X (w"“ ARl

7 (g )+ ot - (G,H A P L
(ot =0l + v~ w1+ we - w,9X||+||w | +|reo ol e P

+||<Phx+wh+lwh—(</>x+vf°+lw°)Hz+ w0 —19° — (wl, —19) ).

Proof. Step 1: For a continuous function g(¢), let g" = g(t,). Subtracting equation (14); at time ¢, for
(=g ¢ Sg and the discrete variational equation (17), we obtain

-n (p (p’l n n n n n n
P1 (‘P; - ! ,Ch> k(@7 + " +Iw") — (@ + v, +1wy) , Cie)

(32)
—lkO(Wz—l(Pn—(WZX—Z‘PZ)»Ch)—5( 9/17Chx): .
Thus, for all { € S%, we obtain
-~n (ph (ph -~n n n n n\ =n -~n
p1| ¢ —T,(P — @ | Fh(Qf + " +1Iw" — (@ + vy +In)), o — @)
—lko (W"-“P"-(WZx—lfPZ’)@"—@Z’)—5(9"—91?@;’—%) o)

e/l (P (p n n 1 n 1 1 el
=p (<p, Thxp —Ch> k(e + "+ 1w — (@ + Wi+ Wh) 07 — G

— lko (W — 19" — (wiy, — 19}), 9" — §1) — 8 (6" — 6}, 9 — G ).
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Similarly, from equations (14),—(14)s and (17),-(17)s we deduce, for all x,&, and 1, € S", o € Sh -

pz(le,” Vi~ Vi "’h - w”>+b(vﬂ;—1/fﬁm P - )

e (@7 D" — (@) + W+ Dwp) W' =)

1 (34)
_ ~ ll/h wn ~n
=p2 | W=V X | O (W W W )
+ k(@YY W — (@ + Wy +1wh) W' —X) s
~n Wh_WZ 1 ~n  ~n n n
pr (7= ) o (1" — (o, — 19f) 7 — )
t
k(@ + Y+ 1w — (@p + Yy +1wy) W —w)) 35)
~n Wh WZ 1 n n n
=p1|\w — Ta _éh +k0 (Wx_l(p (th_l(ph) éhx)
+ 1k (@ +y" + 1w — (@ + W +1wy) W = &),
n ehn_e}rllfl n n n n n n
p3 Qt—Tﬁ — 6y | + (4} — 1y, 0" — 6;) + (@) — @1, 0" — 6y)
(36)
n 65_9;1171 n n n
=p3| 6 _T’e — M | + (g% — 45, 0" — M) + 8 (O — Ppx, 0" — M),
o (g =90 " — ) + B (4" — a4 — ) + (6] — 1" — )
- (37)

:T(% Gt g — o)+ B (4" — " — o) + (67— 6" — a0

Step 2 : Using (19), the first term in equation (33) become
— i n—1 - - ~n  ~n— - — — — e —
(W—“"”A“? ,<p”—<p,2’)= ((p{’—"’ S <p,,) A (o= = (g —op").0"—¢p)
~ An_ mn—1 ~n ~
= (- a) vkl g @ g e
o (o= el e =o' ).

Then

(-0 gr-ap) = (-2 0 -ap) + ok (Il - ol -l - &)
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In the same way, for (34)-(37) we find

— gl ~
(v =S r—w) > (== +25 (|7 =W = v = v ).
(=g =iy ) > (= lvw =)+ ok (15— e =)
n -1
(or 580 01) = (op— 4~ 071 - Jor g~ ot 07 '),
n_ n—1 n
(¢~ =~ 1) = (=T =a) ok (e =il o =)
Using again (27) for

W'=Y =y, oY W — (@ + Wy 4 Iwy) and wi — 19" — (wi, —L@y)

and adding (33)-(37) we obtain

(97— @5l = 18" = "+ [ — ] — [l = ")
+J’&§v7”v~fﬁzw TP o (lwr = vl e = v )
o ([lzrym+iw = (gp + wi +1wy) ||°
—lor i = (g w )H2>
7 ([we = 197 = (wh — 1) [P = [[wa~ =1 = (w1 ") |[")
+£f@nw2 lom =63~ P) + % (ll" =il = o' =i I)
SC( o= H +a (@ -0 (@ - ). 9" = &)

+H<P —%H +H<P ChH +H<Px Cth +Hw 1" — (wi + o) | (39)
Wil v — 2l + [ w2 — v

+ Wr—”“"‘lf v VAR Al (T VA IR VA 7y
o (= (=) = &) || — | 15— a9 — Gl

n—1

1

n n— 2
+| 16— 555 H +]j6"—6z|* + |6z — nz|I?
2 (=0 (o= 1) ")
n__ n— 2
T L s Py
n—1

+24 ("= = (g —d ") q"— ou)
+llg =gl + lla = o>+l = g+ 2 = )

Step 3. Multiplying the latter inequality by A¢ and summing over n we obtain, for all {{,, Nx}i_o € Sg,
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and {5, &, o} € So, we have

~n a2 e a2 e 2 e on )2
10" — Qh 1"+ V" = W lI™ + (W = wh[I” + 1w — il
17+ " I — (@ + Wi IR+ [|wh — 19" — (Wi, — 19} |
n
2 2 ~i  ~=i|2 S =12 i i )2
+l6" =651+ lg" —ail> < (19— @l + 17— %+ 7~ )
i=1

|| = TP || @+ W+ Iy — (@4 W+ D) ||P + || — 19 — (wh — 193 ||

S o I = AT L
e R e e e e R G A A A W o)
" _ y -yt 2+i(~i_~i71_(~i_~i71) V- x) + || W)

t s AWV Y=V, )V =X t AL

Lo i i i1y i g ;0 -6 ? i 4—q"! ’
+E(W —w = (W =Wl o = &) 4|6 — ~ +la -4,

Lo i i pi-1\ pi i Lo Y S L R
+E(9l_91 1_(9h_9h 1)79_n11>+E(q —q 1_(Qh_Qh 1)7q_ah)

1 = G+ 18— Gl + 19— 2l -+ 198 = 2+ 19— &+ [ €l
(0= mia|*+ gk — |+ |6 = i |+ [l ¢’ = ]|*) € (10 = @I + | v — wII
w0 (2 = Wl + o 1wl — (0 + WO 1) |
+ (=19~ (o~ 1) [+ (6"~ @) + 1~ 45l
Taking into account that (with an equivalent result for similar terms) [5]
G R S SR G ARG SR

+2H<ph AR Ca C;i“)HSC(II@”—62\|2+|!¢"—C£||2+\\¢£—C;?Hz (40)

)

+H¢1—czu)+cmzua—¢zu2+ zuw G- @ g™’
i=1

and applying a discrete version of Gronwall’s inequality [12], the result follows. O
The linear convergence of the numerical method is summarized in the following corollary.
Corollary 1. Assume that the solution to the continuous problem is sufficiently regular, that is
¢, v, € H (0,T;L*(0,L)) "W (0,T;H"' (0,L)) NH* (0,T;H' (0,L)), (41)

and
0, € H*(0,T;L*(0,L)) NL~ (0,T;H*(0,L))NH"' (0,T;H' (0,L)). (42)
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Then, there exists a positive constant C, independent of the discretization parameters h and /\t, such that

~n 2 e a2 nen 2 e )2 2
10" — @ 1"+ 1" — wi ™+ W' — Wil + 19 — Wi 1™ + 19 + v + 1" — (@ + i + D) |

n n n n\ (|12 n n 2 n n2 2 2 (43)
W — 19" — (Wi —L@)[I” + 110" — 871" + [|l¢" — g~ < C (B> + A1)
Proof. The result is a consequence of following estimates as in [7] and [12]:
RS ~ntl 1 201 |12
s Z H‘Pn—(:;f— (‘PnJr -Gt )H <Ch H(ptHLZ(O,T;HI(O,L))'
n=1
O

3 Numerical simulation

The initial phase of our study focuses on validating the accuracy of our numerical approach, emphasizing
the error analysis stemming from the nonhomogeneous equation (44). By choosing external forces g;,
for i = 1,2,3,4,5, we ensure the system’s exact solution is predetermined. To illustrate the system’s
exponential energy decay, the homogeneous equation (9) will be analyzed:

P10y — k(@ +wHIw), —lko(wy — @)+ 86, =gy, in (0,1)x (0,00),
P2V — bWex + k(@ + Y +1w) = g, in (0,1) x (0,e),
Piwi —ko (We —19), + k(@ + Yy +1w) = g3, in (0,1) x (0,e0), (44)
P36 +gx + 80y = ga, in (0,1) x (0,e0),
Tq + Bq+ 6, = gs, in (0,1) x (0,00),

with the boundary conditions

(45)

¢ (0,7) = vy, (0,£) = wy (0,1) = q(0,1) =0, Vr>0,
oc(L,t)=y(l,t)=w(l,t)=6(1,/)=0, Vt>0.

The finite element method Py for (44) with boundary conditions (45), using the backward Euler scheme,
can be written as a linear system as follows:

( % (U" = U"1) + kRD" — kCP" — KICW" — LkgCW" + PhoM®" + 5CO" = G,
%M(V" — V") £ bBRY" 4 kCD" + kMY" + kIMW" = G4,
%M(Z" — 7" ) kgRW" + klCD" + IKCD" + kMW" + PKMW" = G, (46)
%M(@” — @) +CQ" + 8CU" = G,
M@~ Q")+ BMQ" +CO" = G,

where
O =AU"+ D", W= AV P W= A2 W
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and
0 74 Wo
n n n
1% w
" = .1 5 Y = .1 ; w" = .1 ;
o7 v Wy
? v wo
(pl’l l[/” {/{/,’l’l
vr=| |, v T 2= ],
of 7% Wy
6y 96
n n
Q" = y 0" = %
67 q;
with

M= (Mij) = (Vi,Vj)ocij<s» R=Rij) = (Vix, Vix)o<ij<s>
C = (Cij) = (Vi: Vi)o<ijey» D= Dij) = (Vi, Vir)oei j<s »
Gj=(8i:Vi)o<ijes-

Problem (46) consists of five uncoupled, linear systems of algebraic equations with tridiagonal matrices,
each having a unique solution.

3.1 Example 1: Error estimate
First, we performed a simulation to test the numerical error estimate. We solved problem (46) where

g1,82,83,84, and gs, along with the initial data, are calculated from the exact solution provided below:

o(x,1) = exp(r) (1 - X122, y(x,1) = exp(t)(1 — )22,
w(x, 1) =exp(t)(1 —x)°x%,  0(x,1) = exp(t)(1 —x)%x%,
g(x,1) = exp(t)(1 —x)%.
A curved beam with a radius of curvature R = 1 and length / = 1 was considered, with p; = 1, pp =2,
p3=1,k=1,ko=1, =300, and b = 1. The computed errors for 7 = 1 are shown in Tables 1 and 2,
where Error is defined by

~n__ ~n|2 ~n __ =~nj?2 ~n _ ~n

Error=|¢" — @I+ 19" — wp|* + " — wi >
T — Tl w1 — (g w1 (47)
+ W= 19" — (Wi — 1o 1>+ (16" — 6711 + 1l — g4I

where

7 1/2
A =m3x<2 y¢7\2h) : (48)
j=0



Numerical stability of discrete energy for a thermoelastic-Bresse system with second sound

%1078

Asymptotic behaviour
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h2+ At?

2 25 3
x1078

Figure 1: The evolution of Error.
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Moreover, the convergence order p is defined by px = In(u,)/In(2), forn=1,2,--- and W, = e, /ey 41

where ¢, = HX” —Xlﬂ

Table 1: Numerical errors for ¢, y, and w.

2 , X =0,y w. The following table gives the error calculated between the solution
and the approximate solution using our approach following the discretizations parameters.

h=At

lo" — op

ly' v

v —wi

Po

Ppsi

Dw

0.0500
0.0250
0.0125
0.0063
0.0031

1.100486649
0.156606691
0.027644177
0.005674667
0.001277543

0.333376294
0.034906201
0.004616606
0.000798858
0.000163380

0.336645966
0.036084485
0.004862647
0.000846337
0.000172703

2.812923885
2.502098326
2.284367982
2.151163884

3.255596264
2.918578833
2.530821625
2.289707693

3.221781607
2.891564895
2.522437719
2.292939090

The numerical errors for some values of J and At is given in Table 2

Table 2: Numerical errors for some values of J and At for T = 1.

JI| At —

0.02000

0.01000

0.00500

0.00250

0.00125

20
40
80
160
320

0.008805078
0.002517476
0.000693652
0.000197536
0.000065883

0.008762398
0.002486375
0.000673492
0.000183505
0.0000549726

0.008744467
0.002472914
0.000665303
0.000178347
0.000051369

0.008736530
0.002466716
0.000661690
0.000176242
0.000050040

0.008732996
0.002463743
0.000660006
0.000175309
0.000049494

We observe that the error diminished by a factor of 2, indicating a linear convergence rate, as illus-
trated in Figures 1 and 2.
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Asymptotic behaviour

log(Error)

-12 -1 -10 -9 -8 -7 -6 -5
log(h 2+ At?)

Figure 2: The evolution of log(Error).

3.2 Example 2: Energy decay

In this experiment, we investigated how energy decay evolves over time. The discrete energy is defined
as follows:

G =5 (o (192174 1707) + o2 19321+ & [+ i+ |

(49)
bl ko [[wi — 107+ ps 165+ < lai*) -

The discretization parameters are h = Wlo and Ar = %, T = 20 and the initial data

Po(x) =2’ (x—1)%, @1(x) =x*(x— 1), yo(x) = yi1(x) = @p(x) = x*(x— 1)?,
o (x) =x}(x— 1), 6y(x) =x*(x—1)%,go(x) = x*(x—1)2.

Case 1: up#0and g = u, =0:
In this instance, we have selected the following values:

p1=1.8, pp=12, p3=1.3, k=31.500000000000107,
ko=1.5, =1, §=1, b="21.538461538461608.

As anticipated, the system progressed towards a zero steady-state, with the energy diminishing to zero
rapidly, demonstrating the exponential decay of system energy as illustrated in Figure 3.

Case 2: =0, iy #0and y, =0:
For this particular case, we use the following data:

pi=1, pp=1, p3=3, k=1, kg=1, [=1, §=10, b=2.

When yy =0, y; # 0, and y, = 0, such that conditions (6), (7), and (8) are not satisfied, the energy
does not decay exponentially, as depicted in Figure 4. The numerical schemes were implemented using
MATLAB on a Intel Core i5-6006U CPU @ 2.00 GHz.
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05 Behavior of the discrete energy
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Figure 3: Numerical energy of the system in the Case 1.
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Figure 4: Numerical energy of the system in the Case 2.

4 Conclusions
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In this article, the stability of discrete energy for a thermoelastic-Bresse system with second sound was
carried out. In order to study the behavior of discrete energy, we first devised a numerical scheme based
on finite elements for the spatial approximation and the implicit Euler scheme to discretize the time
derivatives. The stability properties are then established, from which we deduce the energy decay of
the discrete energy. The semi-discrete and completely discrete schemes a priori error estimates are then
proved. Finally, several numerical tests were performed for this system, and the results show that the

convergence matches what is predicted by the theories.
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