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Abstract. Radial Basis Function Neural Network (RBFNN) is a type of artificial neural networks used
for supervised learning. They rely on radial basis functions (RBFs), nonlinear mathematical func-
tions employed to approximate complex nonlinear data. Determining the architecture of the network
is challenging, impacting the achievement of optimal learning and generalization capacities. This pa-
per presents a multi–objective model for optimizing and training RBFNN architecture. The model aims
to fulfill three objectives: the first is the summation of distances between the input vector and the cor-
responding center for the neurons in the hidden layer. The second objective is the global error of the
RBFNN, defined as the discrepancy between the calculated output and the desired output. The third
objective is the complexity of the RBFNN, quantified by the number of neurons in the hidden layer.
This innovative approach utilizes multiple objective simulated annealing to identify optimal parameters
and hyperparameters for neural networks. The numerical results provide accuracy and reliability of the
theoretical results discussed in this paper, as well as advantages of the proposed approach.
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1 Introduction

Multi–objective Optimization (MO) is a powerful tool for addressing problems that encompass multiple,
often conflicting objectives [1,7]. Its applications span various fields, including engineering, manufactur-
ing, finance, and economics. The primary goal of MO is to attain an optimal solution that simultaneously
satisfies all defined objectives [43].

In recent years, data processing has emerged as a significant challenge across various domains in en-
gineering sciences. Tasks such as classification [10, 27], identification [40, 41], and approximation [24]
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are ubiquitous challenges in various domains. For example, in the field of sensor development, method-
ologies such as rational design of field–effect sensors using partial differential equations, Bayesian inver-
sion, and artificial neural networks [19] play a central role. Similarly, advances such as hyperparameter
optimization of stacked asymmetric autoencoders for automatic personality trait perception [44], strate-
gies such as using layered training for semantic segmentation in self–driving cars [34], and techniques
such as a multi–level adaptive Monte Carlo algorithm for the stochastic drift–diffusion–Poisson sys-
tem [18] demonstrate the breadth of applications requiring sophisticated solutions. In each of these
tasks, a dataset is employed to formulate nonparametric or parametric functions, which subsequently
serve as generalizations for other data.

The Radial Basis Function Neural Network (RBFNN) is an artificial feedforward neural network in-
troduced by Broomhead and Lowe in [5]. Subsequently, theorists have studied fundamental features of
the RBF approximation, like density, uniqueness of interpolation, and rate of convergence [26, 29, 32].
An RBFNN has been proved to be able to approximate any continuous multivariate function on a com-
pact domain in an empirically arbitrary manner if provided with a reasonable number of radial func-
tion neurons [26, 32]. In recent years, RBFNN has been used in many applications in different fields
such as Differential equations [33], Nonlinear system identification [11], Biometric iris recognition [8],
Spacecraft relative navigation [31], Fuel flow prediction [2], Predicting trihalomethane levels in drink-
ing water [12], Vehicles using hypermutated firefly [13], Prediction of horizons wind speed [28]. The
RBFNN is grounded in the concept of RBFs, non-linear mathematical functions employed for approx-
imating complex non–linear data. The RBF networks comprise an input layer, a hidden layer, and an
output layer. The hidden layer is constituted by a series of neurons, each featuring its own RBF function.
Several approaches for learning RBFNNs were developed. The majority of them can be splitted into two
phases: (i) training the centers and radii in the hidden layer; (ii) adjusting the connection weights con-
necting the hidden layer with the output layer. In this type of learning, there is a separation between the
determination of the hidden layer parameters and the output layer weights during RBFNN training [39].
Another learning method is to train all RBFNN parameters in a fully supervised way, using the back-
propagation (BP) or gradient descent algorithm [16]. This process has the inconvenience of a long time
to learn and a high computing cost. While the RBFNN excels in approximating continuous functions
and accurately identifying nonlinear systems, it is not without its set of challenges. One notable issue is
the selection of the number of neurons in the hidden layer. Arbitrarily choosing this quantity can lead
to suboptimal solutions. Opting for a larger number of neurons may result in overlearning and incorrect
interpretations [14], whereas selecting too few neurons may lead to an inaccurate approximation of the
data pattern [38]. In these training strategies, the network architecture or the quantity of neurons in the
hidden layer is predetermined. If you want to know whether a particular network structure is appropriate
for your application, you can only do it by trial and error. The learning strategies that include structure
choice techniques have been presented by researchers in the following works [22, 30]. Nature-inspired
metaheuristics have been deployed in different manners for training RBFNNs. Some have been applied
to find one network parameter such as centers [20], others have optimized all parameters [35], while still
others have sought to optimize all parameters as well as the RBFNN structure. The algorithms applied to
the training of RBFNNs are the following: Genetic Algorithms (GA) [4], Particle Swarm Optimization
(PSO) [13], Ant Colony Optimization (ACO) [6], Differential Evolution (DE) [42]. Selecting the opti-
mal number of hidden layer in RBFNN is a critical aspect of designing its architecture. This decision
influences the network’s ability to learn and generalize from the data. Indeed, this problem not only has
an extensive effect on convergence, it also influences the accuracy of the results received [15]. This work
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contributes to solving the architectural selection problem by using MO. In this paper, we present a novel
multi-objective model for the optimization and training of RBFNNs. This model contributes to hyper-
parameter optimization in machine learning and establishes a theoretical foundation for the selection of
RBFNN architecture and its training process. The model seeks to determine the maximum architecture
initially and subsequently eliminates unnecessary neurons in the hidden layer. Traditional methods of
experimentally choosing the architecture often consume more time and may lead to overfitting or under-
fitting issues. Our proposed model addresses this challenge by formulating a non-linear MO optimization
problem with mixed variables. We employ an approach based on multiple objective simulated annealing
to determine optimal weights and an effective architecture.

This paper is structured as follows: In Section 2, preliminaire and related work are summarized.
In Section 3, a new modeling of multi-objective optimization of RBFNN training is presented. In Sec-
tion 4, solving the obtained model using a new approach based on simulated annealing is presented.
Experimental study and discussion of the results are presented in Section 5.

2 Preliminaire and related work

2.1 Radial basis function neural networks

The RBFNN, depicted in Fig 1, operates as a feedforward network [9]. Each neuron in the hidden layer
adopts an RBF φ(x) as its activation function with φk(x) = φ (‖x−ck‖), where ck denotes the center of
the kth neuron. The network’s output is a linear combination of the hidden layer’s output. Given an input
x, the RBFNN’s output is defined by the equation:

ŷi(x) =
N

∑
j=1

w jiφ
(∥∥x−c j

∥∥) i = 1, . . . ,m, (1)

where

• N: The total number of neurons present in the hidden layer.

• m: The total number of neurons in the output layer.

• ŷi(x): is the output of neuron i in the RBFNN output layer.

• w ji: is the connection weight of jth neurons in the hidden layer to ith neurons in the output layer.

• ‖ · ‖: Euclidean norm.

2.1.1 Learning RBFNN

The objective of the learning process is to discover a method for adapting the parameters of the network
when presenting examples from the training set. The parameter matrix of an RBFNN is denoted as P =
[C,σ ,W ], encompassing centers, radii, and linear parameters. These parameters are typically adjusted to
minimize the cost function for a set of n pairs of patterns, denoted as X =

{
(xp,yp)1≤p≤n

}
:

J(P) =
1
n

∥∥Y− f̂RBF(X,C,σ ,W )
∥∥2

. (2)
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Figure 1: Architecture of RBF neural networks.

In the literature, two approaches to find RBFNN parameters have been proposed. The first strategy relies
on supervised or direct methods that employ computationally expensive algorithms such as the gradient
algorithm [16]. The second approach adopts a hybrid training algorithm for RBF networks [9].

2.1.2 Hybrid algorithms

Unsupervised party: The parameters of the hidden layer C = (c1, . . . ,cN) and σ = (σ1, . . . ,σN) are
obtained in this part of the algorithm. A competitive neural network is a single layer of N neurons.
Their weights are c1, . . . ,cN ∈ Rd . We divide the entry space into N partitions. E1, . . . ,EN , in which
∀ j = 1, . . . ,N we have

E j =

{
x ∈ Rd |

∥∥x− c j
∥∥= min

i=1,...,N
‖x− ci‖

}
. (3)

Each weight c j represents a prototype vector which is representative of the E j region. Several methods
are proposed to adapt the centers and the scaling parameters, such as the K–means clustering [36] and
the self–organizing feature map [21].

Supervised party: In this segment of the algorithm, we fine–tune the linear parameters, denoted as
W , of the output layer. Given a set of n pattern pairs X =

{
(xp,yp)1≤p≤n

}
, the weights matrix W is

determined through the minimization of the error function

J(P) =
1
n

∥∥Y− f̂RBF(X,C,σ ,W )
∥∥2

2 . (4)

The explicit solution is derived as follows

Ŵ =
[
ΦΦ

t]−1
ΦY. (5)

The key components are

• W = [w1, . . . ,wm] is an N×m weight matrix, where wi = (w1i, . . . ,wNi)
T is the weight vector for

neuron i in the output layer.
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• Φ = [φ1, . . . ,φN ] is an N×d matrix, where φp = (φp,1, . . . ,φp,N)
T represents the output of the hid-

den layer for the pth sample, and φp,k = φ (‖xp− ck‖).

• Y = [y1,y2, . . . ,yd ] is an m× d matrix, and yp = (yp,1, . . . ,yp,m)
T is the desired output for the pth

sample in the training database.

• f̂RBF(X,C,σ ,W ) = ΦtW represents the output of the RBFNN.

2.2 Multiple objective simulated annealing (MOSA)

2.2.1 Simulated annealing (SA)

This method is used to determine the global minimum of a given cost function that may have several
minima initially. It was developed by IBM scientists and is inspired by the physical process used in
metallurgy. In the Algorithm 1, we first randomly choose a starting point x, and calculate a neighborhood
of this point y using the operator Neighbor(x). We evaluate this neighboring point and compute the
difference with the original point, ∆F = F(y)−F(x); if the difference is negative, we take y as the new
starting point. If the difference is positive, we may choose y as the new starting point, but only with
probability e−

∆F
T . During the execution of this algorithm, the temperature T is reduced. We repeat these

steps until our system is stabilized.

Algorithm 1 : Simulated Annealing
Require: T , x, ItrMax, ∆T

1: x∗← x
2: while T ≥ ∆T do
3: for k = 1 to ItrMax do
4: y← Neighbor(x)
5: ∆F ← F(y)−F(x)
6: if ∆F < 0 or rand(0,1)< exp(−∆F

T ) then
7: x← y
8: end if
9: if F(x)< F(x∗) then

10: x∗← x
11: end if
12: end for
13: T ← α(T )
14: end while
15: return x∗

We are now going to present the MOSA.

2.2.2 Multiple objective simulated annealing

This method is an extension of SA designed to address MO problems, aiming to identify the compromise
surface. The technique is introduced in [37]. Initially, we define a set of functions that determine the
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probability of accepting a suboptimal solution for each objective function:

πk =

{
exp
(
−∆ fk

Tn

)
, if ∆ fk > 0,

1, if ∆ fk ≤ 0,
(6)

where Tn represents the temperature at iteration n, fk denotes the kth objective function, xn is the solution
obtained at iteration n, y stands for the actual solution at iteration n, and ∆ fk calculates the difference
between the kth objective function values of y and xn.

Subsequently, after calculating all these individual probabilities, we combine them to obtain the over-
all probability of acceptance using the formula p=∏

N
k=1 π

λk
k , where λk represents a weighting coefficient

associated with the kth objective function and N is the number of objective functions.
Finally, the selection of a new solution is made according to the following rule

• if ∆ feq ≤ 0, then: xn+1 = y.

• if ∆ feq > 0, then: xn+1 =

{
y, with probability p,
xn, with probability 1− p,

where feq(x) = ∑
N
i=1 λi fi(x) and ∆ feq = feq (xn+1)− feq (xn) .

3 A new modeling of neural architecture optimization and training

3.1 Notations

• n: Number of observations in the database.

• d: Number of neurons present in the input layer.

• N: Number of neurons in the hidden layer.

• m: Number of neurons in the output layer.

• X : Input data of the neural network.

• φ : Activation function.

• ci: The center of the ith neuron in the hidden layer.

• σi: The radius of the ith neuron in the hidden layer.

• W : Network weights for output layer.

• Ŷ : Computed output by the neural network.

• Y : Desired output, where Y k =
(
yk

1, . . . ,y
k
m
)

for k = 1, . . . ,n.

• X =
{

x1, . . . ,xn
}

: Input data of training base where xk =
(
xk

1, . . . ,x
k
d

)
for k = 1, . . . ,n.

• ui, j: The binary variable for i = 1, . . . ,n and j = 1, . . . ,N, ui, j = 1 if the ith example is assigned to
jth neuron, and ui, j = 0 else.

• v j: The binary variable for j = 1, . . . ,N,v j takes 0 if the jth neuron is deleted, otherwise v j = 1 if
jth neuron is used.



Multi–objective model for architecture optimization and training... 609

3.1.1 Output of the neural network

The RBFNN output for the example xk is calculated by this expression

Ŷ k =



Ŷ k
1
...

Ŷ k
j
...

Ŷ k
m

=



N

∑
i=1

viwi1φ

(∥∥∥∥∑
n
h=1 uhixh

∑
n
h=1 uhi

− xk
∥∥∥∥ ,σi

)
...

N

∑
i=1

viwi jφ

(∥∥∥∥∑
n
h=1 uhixh

∑
n
h=1 uhi

− xk
∥∥∥∥ ,σi

)
...

N

∑
i=1

viwimφ

(∥∥∥∥∑
n
h=1 uhixh

∑
n
h=1 uhi

− xk
∥∥∥∥ ,σi

)


, (7)

where φ (x,σ) = e
−x2

2σ2 .

3.2 Objectives functions

In our model, we need to consider three objective functions. The first one involves calculating the sum
of the differences between the input vector and the corresponding centers of the utilized neurons

F1(u,v) =
1
2

n

∑
i=1

N

∑
j=1

v jui, j

∥∥∥∥xi− ∑
n
h=1 uh jxh

∑
n
h=1 uh j

∥∥∥∥ . (8)

The second objective is to minimize the overall error of the RBFNN, which is defined as the difference
between the output computed by the network and the intended output. This error is typically presented
as the discrepancy between the predicted output and the actual output for a given set of input data

F2(u,v,x,σ ,W ) =
1
n

n

∑
i=1

∥∥Ŷ i(u,v,σ ,W )−Y i
∥∥ . (9)

The third objective is the complexity of RBFNN, defined as the number of neurons in the hidden layer
normalized by the maximum number of neurons in the hidden layer and multiplied by the database size.
This is presented as follows

F3(v) =
1

n×m

N

∑
j=1

v j. (10)

3.3 Constraints

Assignment constraints The following constraints ensure that each example is assigned to one neuron:

N

∑
j=1

ui, j = 1, for i = 1, . . . ,n. (11)

This is a fundamental requirement for most clustering tasks, ensuring that every data point is accounted
for in the model.
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Equilibrium constraint The following constraints ensure that if a neuron is not used, no example is
assigned to it

(1− v j)
n

∑
1=1

ui, j = 0, for j = 1, . . . ,N. (12)

This makes sense because if a neuron is not active, it should not influence the assignment of any exam-
ples. It effectively enforces a kind of ”if–then” relationship between the activation of a neuron and the
assignment of examples to it.

Use of neurons The below constraints ensure that if assignment for each neuron is used, then there is
at least one example that is affected

N

∑
j=1

v j×
n

∏
i=1

(1−ui, j) = 0. (13)

This is important for ensuring that activated neurons actually contribute to the model’s ability in cluster-
ing data to calculate the center of RBF in this neuron. If a neuron is ’on,’ it should have some examples
associated with it; otherwise, it would be redundant or unnecessary.

Set of feasible solutions We denote by S the set of feasible solutions defined by S = {(v,u,σ ,W ) :
g1i(u) = 0 ∀i ∈ {1, . . . ,n},g2(v,u) = 0, g3 j(u,v) = 0 ∀ j ∈ {1, . . . ,N},v ∈ {0,1}N , u ∈ {0,1}N×{0,1}n,
σ ∈RN

∗ ,W ∈Rm×RN}, where g1i(u) = 1−∑
N
j=1 ui, j, g2(u,v) = ∑

N
j=1 v j×∏

n
i=1 (1−ui, j) and g3 j(u,v) =

(1− v j)∑
n
1=1 ui, j.

3.4 Optimization model

The architecture optimization and training model of RBFNN can be formulated as follows:

(P)



min 1
n ∑

n
i=1 ∑

N
j=1 v jui, j

∥∥∥∥∥∥∥∥∥xi− ∑
n
h=1 uh jxh

n

∑
h=1

uh j

∥∥∥∥∥∥∥∥∥ ,
min 1

n ∑
n
i=1

∥∥Ŷ i(u,v,σ ,W )−Y i
∥∥ ,

min 1
m×n ∑

N
j=1 v j,

Subject to

∑
N
j=1 v j×∏

n
i=1 (1−ui, j) = 0,

∑
N
j=1 ui, j = 1, ∀i = 1, . . . ,n,

(1− v j)∑
n
i=1 ui, j = 0, ∀ j = 1, . . . ,N,

ui, j ∈ {0,1}, ∀i = 1, . . . ,n, ∀ j = 1, . . . ,N,

v j ∈ {0,1}, ∀ j = 1, . . . ,N,

σ j ∈ R∗+, ∀ j = 1, . . . ,N,

Wk ∈ RN , ∀k = 1, . . . ,m.
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4 Solving the model by simulated annealing

4.1 Definitions and notations

Hamming distance Let x,y ∈ {0,1}N , the Hamming distance d(x,y) between x and y is by definition
the number of positions for which x and y differ:

d(x,y) =
N

∑
i=1
|xi− yi|. (14)

Neighborhood A neighborhood system on set S is a set collection N = {N(s)}s∈S consisting of subsets
of S, where for any s ∈ S

• s ∈ N(s),

• t ∈ N(s)⇒ s ∈ N(t),

where t ∈ N(s) is called neighbor of s, and the neighboring pairs are denoted by 〈s, t〉.

Neighborhood of order q: Nq(x) =
{

y ∈ {0,1}N |d(x,y)≤ q
}

.

4.2 Proposed algorithm

The algorithm begins by setting the parameters for a RBFNN with maximum size i.e. N = Nmax. The
starting point for our Algorithm 3 is initialized as follows:

• ∀i ∈ {1, . . . ,Nmax} v0
i = 1.

• u0 determine by some iterations in k–means.

• c0
i =

∑
n
h=1 u0

hix
h

∑
n
h=1 u0

hi
∀i ∈ {1, . . . ,Nmax}.

• σ0
j = min

{∥∥∥c0
i − c0

j

∥∥∥ : c0
i 6= c0

j , i = 1, . . . ,N
}
, ∀ j ∈ {1, . . . ,Nmax}.

• (W 0)T = [ΦΦt ]−1
ΦY.

Iteration: The Algorithm 3 proceeds iteratively through the following steps:

• We choose v
′

a neighborhood with order 1 of v randomly follows the uniform distribution by the
following steps:

1. v
′
= v.

2. t = rand (1,Nmax).

3. v
′
t =

{
1, if vt = 0,
0, if vt = 1.
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Algorithm 2 : u Selection method

Require: t, v
′
, u

1: u
′
= u.

2: if v
′
t = 0 then

3: for j ∈ {1, . . . ,n} do
4: if ut j = 1 then
5: u

′
jt = 0,

6: k = argmini∈{1,...,Nmax}
∥∥ci− x j

∥∥,
7: u

′
kt = 1.

8: end if
9: end for

10: else
11: u

′
:= rand({x ∈ E(v

′
)/d(x,u) = 2}).

12: end if
13: return u

′
.

• We choose u
′
if v

′
t = 0 as the orthogonal projection of (v

′
,u,σ ,W ) on S the set of feasible solutions.

If not, we make a random change with the uniform law on u to return (v
′
,u
′
,σ ,W ) a feasible

solution, by the following formula:

u
′
:=

{
argminx∈E(v′ )d(u,x), if v

′
t = 0,

rand({x ∈ E(v
′
)/d(x,u) = 2}), if v

′
t = 1,

where E(v
′
) = {u′ ∈ {0,1}n×Nmax : g1(u

′
,v
′
) = 0, g2i(u

′
) = 0 , ∀i ∈ {1, . . . ,n} and g3 j(u

′
,v
′
) =

0 , ∀ j ∈ {1, . . . ,Nmax}}. Algorithm 2 explains more about the selection method where

ci =
∑

n
h=1 uhixh

∑
n
h=1 uhi

.

• We calculate the variance σ with the following expression

σ
′
j = min

{∥∥∥c
′
i− c

′
j

∥∥∥ : c
′
i 6= c

′
j, i = 1, . . . ,N

}
, ∀ j ∈ {1, . . . ,Nmax},

where c
′
i =

∑
n
h=1 u

′
hix

h

∑
n
h=1 u′hi

, ∀i ∈ {1, . . . ,Nmax}.

• The output layer weights are calculated with the following expression: (W ′)T = [ΦΦt ]−1
ΦY.

This overarching algorithm optimizes the system parameters (u,v,σ ,W ) to minimize the objective func-
tion Feq, while considering certain constraints and objectives. It operates as follows:

1. Iterative optimization: MOSA iterates until convergence, adjusting the temperature parameter
T dynamically. This temperature parameter controls the acceptance probability of unfavorable
solutions, allowing the algorithm to escape local optima. At each iteration of the algorithm:
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Algorithm 3 : Multiple objective simulated annealing
Require: λ1,λ2,λ3, T , (u ,v ,σ ,W ), ∆T , X , Y , MaxItr.

1: (u∗,v∗,σ∗,W ∗) = (u ,v ,σ ,W )
2: while not( end) do
3: k = 1
4: while k < MaxItr do
5: v

′
= Neighbor(v)

6: Compute σ , u and Φ

7: (W ′)T = [ΦΦt ]−1
ΦY

8: Compute π1, π2 and π3
9: Compute p and ∆Feq

10: if ∆Feq < 0 then
11: (u ,v ,σ ,W ) = (u

′
,v
′
,σ

′
,W

′
)

12: else
13: α = rand(0,1)
14: if α < p then
15: (u ,v ,σ ,W ) = (u

′
,v
′
,σ

′
,W

′
)

16: else
17: (u ,v ,σ ,W ) = (u ,v ,σ ,W )
18: end if
19: end if
20: if Feq(u ,v ,σ ,W )< Feq(u∗,v∗,σ∗,W ∗) then
21: (u∗,v∗,σ∗,W ∗) = (u ,v ,σ ,W )
22: end if
23: k=k+1
24: end while
25: T = α(T )
26: if T < ∆T then
27: end (while)
28: end if
29: end while
30: return (u∗,v∗,σ∗,W ∗).

• A neighborhood v′ is randomly chosen from a set of neighbors of v.

• u′ is updated based on v′.

• σ ′ is calculated based on u′.

• Output layer weights (W ′)T are recalculated.

• Various objectives (π1, π2, π3) are computed.

• Changes are accepted or rejected based on the change in objective functions and a probability
criterion.

• If the new solution is better, it is accepted; otherwise, it might be accepted probabilistically
based on the Metropolis criterion.
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• The algorithm iterates until a stopping criterion is met, such as reaching a maximum number
of iterations.

2. Objective function evaluation: At each iteration, the objective function Feq is evaluated. This
function represents the system’s performance, incorporating both the accuracy of the RBFNN and
adherence to constraints.

3. State transition: Proposed changes to the system parameters are evaluated based on whether
they improve Feq. If accepted, they become the new state. Otherwise, acceptance is probabilistic,
depending on the change’s impact and the current temperature T .

This algorithm utilizes SA, a probabilistic optimization technique, to optimize the parameters of a
RBFNN based on multiple objectives. It iteratively explores the solution space, permitting occasional
moves to escape local optima, and gradually diminishes the exploration range over time until conver-
gence or a predefined stopping criterion is satisfied.

5 Implementations and numerical simulation

5.1 Data set experiments

To highlight the benefits of our model and the suggested approach for obtaining an approximate solution,
we conducted tests on clustering problems using three datasets sourced from the UCI machine learning
repository [25]. These datasets were chosen to provide diverse computing experiences and included Iris,
Seeds, Wine, and Pima Indians Diabetes, each representing distinct natures of data. In Table 1, the dataset
details are presented, including the number of examples, number of attributes, and class information.

Table 1: Characteristic of the data set used.
Database Examples Attributes Class

Iris 150 4 3
Seed 210 7 3
Wine 178 13 3

Pima Indians Diabetes 768 8 2

The algorithm parameters are also provided in the Table 2:

Table 2: Algorithm parameter setting.
MaxItr λ1 λ2 λ3 T ∆(T ) α

20 0.4 0.4 0.2 2 0.25 0.5

In this study, the division of all datasets into training and testing sets was done with a ratio of 50%
for training and 50% for testing. We computed the percentage of misclassification for the training and
testing sets using the following formulas:

A.MT (%) =
MT×100

Size of training set
, A.MTS (%) =

MTS×100
Size of testing set

. (15)
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where MT represents the number of misclassified patterns in the training set, and MT S represents the
number of misclassified patterns in the testing set. Also, we determine the percentage of classification
errors for both the trained and tested sets using the following formulas:

A.T (%) =
correct classified×100

Size of training set
, A.TS (%) =

correct classified×100
Size of Testing set

. (16)

5.2 Classification results

Table 3 provides a comprehensive summary of the classification accuracy rate and convergence iterations
used from the proposed method on four datasets: Iris, Wine, Seeds, and Pima Indians Diabetes. By ana-
lyzing these results, it is clear that higher accuracies were achieved on all datasets with fewer iterations
needed for each. Overall, it shows that the proposed method is quite efficient and exhibits successful
performance on all datasets.

Table 3: Classification results.

Data set It M.T M.TS A.MT A.MTS
Iris 80 1 2 1.33 2.66

Seeds 80 2 2 1.90 1.90
Wine 80 1 2 1.12 2.24

Pima Indians Diabetes 80 0 1 0 0.26

The ROC curve is a graph that shows how well a binary classifier distinguishes between positive and
negative cases as its discrimination threshold varies. The Area Under the Curve (AUC) summarizes the
ROC curve into a single value, ranging from 0 to 1. An AUC of 1 represents a perfect classifier, while
0.5 indicates random guessing. A higher AUC suggests better classifier performance, making it a useful
metric for comparing models in binary classification tasks. In Figure 2, the ROC curve and AUC metric
are presented for all datasets, providing a comprehensive evaluation of the model’s performance across
various data samples. The ROC curve illustrates the trade–off between true positive rate and false positive
rate, while the AUC metric quantifies the model’s discriminative ability. This analysis offers valuable
insights into the classifier’s efficacy in distinguishing between different classes within the datasets.

As shown in Table 4, all initializations yield nearly similar optimal numbers for each dataset. For
example, for the ”Iris” data, our model returns 12 neurons for Nmax = 30, 10 neurons for Nmax ∈
{40,50,60}, and 11 neurons for Nmax ∈ {20,25}. This result is confirmed by Fig 3, where the num-
ber of neurons in the hidden layer reduces with increasing number of iterations until stabilization in the
suitable architecture. The results for the ”Iris” dataset are shown in Table 3 demonstrate the power of our
model and approach. Furthermore, the results for the other three datasets ”Wine”, ”Seeds”, and ”Pima
Indians Diabetes”, demonstrate the efficiency of our algorithm, as the number of neurons decreases and
stabilizes in some iterations.

As shown in Figure 4, the comparison results of classification rates for training data and test data
indicate that our method is a good model for solving the generalization problem. We observe that, across
all datasets, the two rates are very close to each other. This demonstrates that our method performs well
when it comes to addressing issues related to generalized learning.
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Figure 2: ROC curves and AUC metrics for all datasets.

5.3 Comparison results

5.3.1 Compared to other neural network training algorithms

In this section, we present a comparative analysis of outcomes achieved by various methods on Iris
databases, focusing on existing neural network training algorithms documented in the literature. These
include Multilayer Perceptron (MLP) trained with Error Backpropagation (EBP), RBFNN trained with
EBP, RBFNN trained with hybrid algorithms, and Support Vector Machine (SVM).

By comparing the average classification accuracy rate presented in Table 5, it can be seen that the
proposed method outperforms other existing neural network training algorithms in the literature. This
can be attributed to the use of specific training algorithms and RBFNN hyperparameter optimization
techniques for each given dataset. This advantage is also evidenced by the results of our experiments,
which showed better generalization performance compared to other neural network training algorithms.
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Figure 3: Optimal architecture for the Iris dataset with different initial numbers of neurons.

Table 4: Optimal topological maps sizes of Dataset.

Data set 20 25 30 40 50 60
Iris 11 11 12 10 10 10

Seeds 14 14 15 16 15 16
Wine 7 10 12 11 11 12

Pima Indians Diabetes 2 2 2 2 2 2

5.3.2 Compared to other similar optimization methods

Hyperparameter optimization is a crucial part of machine learning, and there are many methods to ac-
complish it. We will describe some of them and compare them with our proposed method in this section.

• Grid Search (GR) is an optimization method that allows us to test a series of parameters and
compare performance to deduce the best setting.

• Random Search is a stochastic search approach that randomly samples from the parameter space
and evaluates the performance of each sample, and then trains such models until the specified
resource is exhausted [3].

• Successive Halving (SH) serves as an optimization algorithm that involves randomly selecting a
group of hyperparameter configurations, assessing the performance of all configurations, discard-
ing the lower–performing half, and then repeating this process iteratively until only one configura-
tion remains [17].

• Hyperband is an enhancement built upon successive halving algorithms, as put forth by Lisha Li
and colleagues in their work [23].

Table 6 reveals that employing default hyperparameter settings in our experiment yields suboptimal
model performance, emphasizing the significance of employing hyperparameter optimization methods.
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Figure 4: Comparison between classification rates of training and testing data.

Table 5: Comparison results.

Method N M.T M.TS A.T A.TS
RBFNN PB 16 2 3 97.30 96.00

RBFNN Hybrid 16 2 3 97.30 96.00
MLPNN EPB 16 2 3 97.30 96.00

SVM – 3 5 96.00 93.33
P.Method – 1 2 97.33 98.66

The computational time for GS and RS tends to be notably higher than other HPO methods, despite
achieving satisfactory accuracy. Hyperband achieves results more swiftly but at the expense of lower
accuracy compared to alternative methods. Our approach not only delivers optimal model performance
but also does so efficiently in terms of time. This ensures the identification of optimal hyperparameters
and parameters for our models.

6 Conclusion

In this paper, we introduced a novel model for optimizing the architecture and learning process of
RBFNN. This model is specifically designed to identify the optimal number of neurons in the hidden
layer. Our innovative approach, leveraging multi–objective simulated annealing, enables the determina-
tion of optimal parameters and hyperparameters for neural networks. This ensures the development of a
well–balanced neural network capable of solving problems without succumbing to overfitting or under-
fitting, thereby enhancing the generalization capacity of RBFNN. Furthermore, the proposed algorithm
for approximating the solution demonstrates efficacy, as evidenced by the obtained results. This suggests
that our model can yield robust solutions. Additionally, we plan to explore the application of other opti-
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Table 6: Compared to other optimization methods for Iris.

Method Accuracy(%) TC(s)
Default HPs 93.33 2.31
Grid Search 96.00 30.00

Random Search 94.66 27.12
Successive halving 96.00 13.51

Hyperband 96.00 14.21
Genetic Algorithm 96.00 15.01

P.Method 97.33 9.71

mization algorithms to solve our model and extend our technique to address real–world problems using
diverse databases.
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