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Abstract. This paper concerns the dynamics of a stochastic Holling-type II predator-prey system with
Markovian switching and Levy noise. First, the existence and uniqueness of global positive solution to
the system with the given initial value is proved. Then, sufficient conditions for extinction and stochastic
permanence of the system are obtained. Finally, an example and its numerical simulations are given to
support the theoretical results.
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1 Introduction

Recently, stochastic population systems driven by white noise have been received great attention [2, 5,
7–9, 11, 13, 16, 17, 19, 24, 27]. The stochastic Holling-type II predator-prey system can be expressed as
follows: dx(t) = x(t)

(
r1−a11x(t)− a12y(t)

1+x(t)

)
dt +σ1x(t)dB(t),

dy(t) = y(t)
(

r2 +
a21x(t)
1+x(t) −a22y(t)

)
dt +σ2y(t)dB(t),

(1)

where ri and ai j are positive constants (i, j = 1,2). B(t) is a standard Wiener process defined on a
complete probability space (Ω,F ,P) with a filtration {Ft}t≥0 satisfying the usual conditions. Lv et
al. [18] studied stochastic boundedness, stochastic permanence and persistence in mean of system (1).

However, on the one hand, in the real world population systems often suffer sudden environmental
perturbations which cannot be described by white noise: earthquakes, hurricanes, planting, harvesting
[12,14,15,25,29]. Bao et al. [3,4] pointed out that introducing Levy jumps into the underlying population
system may be a reasonable way to describe these phenomena.
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On the other hand, parameters in some population systems may suffer abrupt changes, for instance,
some authors [17, 27] claimed that the growth rates of some species in summer will be much different
from those in winter, and one can use a continuous-time Markov chain with a finite state space to describe
these abrupt changes [14, 15, 28]. Especially, Takeuchi et al. [23] studied a predator-prey Lotka-Volterra
system with regime switching and revealed the significant effect of environmental noise on the popula-
tion system: both its subsystems develop periodically but switching between them makes them become
neither permanent nor dissipative [10, 22, 23].

So, in this paper we study the dynamics of the following stochastic Holling type II predator-prey
system with Markovian switching and Levy noise:

dx(t) = x(t−)
[(

r1(ρ(t))−a11(ρ(t))x(t−)− a12(ρ(t))y(t−)
1+x(t−)

)
dt

+σ1(ρ(t))dB(t)+
∫
Z γ1(µ,ρ(t))Ñ(dt,dµ)

]
,

dy(t) = y(t−)
[(

r2(ρ(t))+
a21(ρ(t))x(t−)

1+x(t−) −a22(ρ(t))y(t−)
)

dt

+σ2(ρ(t))dB(t)+
∫
Z γ2(µ,ρ(t))Ñ(dt,dµ)

]
,

(2)

where x(t−) and y(t−) are the left limits of x(t) and y(t), respectively. The ρ(t) is a right-continuous
Markov chain with a finite state space S= {1, ...,S}, N is a Poisson counting measure with characteristic
measure λ on a subset Z of [0,+∞) with λ (Z)<+∞, and Ñ(dt,dµ) = N(dt,dµ)−λ (dµ)dt. γi(µ)>−1
(µ ∈ Z) are bounded functions (i = 1,2). System (2) is operated as follows: If ρ(0) = i0, then system
(2) obeysdx(t) = x(t−)

[(
r1(i)−a11(i)x(t−)− a12(i)y(t−)

1+x(t−)

)
dt +σ1(i)dB(t)+

∫
Z γ1(µ, i)Ñ(dt,dµ)

]
,

dy(t) = y(t−)
[(

r2(i)+
a21(i)x(t−)

1+x(t−) −a22(i)y(t−)
)

dt +σ2(i)dB(t)+
∫
Z γ2(µ, i)Ñ(dt,dµ)

]
,

(3)

with i = i0 until τ1 when ρ(t) jumps to i1 from i0; system (2) will then obey system (3) with i = i1 from
τ1 until τ2 when ρ(t) jumps to i2 from i1. System (2) will go on switching as long as ρ(t) jumps. Hence,
system (2) can be regarded as system (3) switching from one to another in accordance with the law of
Markov chain. The different systems (3) (i ∈ S) are therefore referred to as the subsystems of system (2).
If the switching between environmental regimes disappears, namely, ρ(t) has only one state, then system
(2) degenerates into system (3).

2 Existence and uniqueness of global positive solution

Throughout this paper, the generator Γ = (γi j)S×S of ρ(t) is given by

P{ρ(t + ς) = j |ρ(t) = i}=

{
γi jς +o(ς), i 6= j,
1+ γi jς +o(ς), i = j,

(1)

where ς > 0. γi j is the transition rate from i to j and γi j ≥ 0 if i 6= j, while γii = −∑ j 6=i γi j. Assume
that ρ(t), B(t) and N are mutually independent and that ρ(t) is irreducible. Hence, system (2) can
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switch from any regime to any other regime and ρ(t) has a unique stationary probability distribution
π = (π1, ...,πS) ∈ R1×S determined by solving πΓ = 0, subject to

S

∑
i=1

πi = 1 and πi > 0, ∀i ∈ S. (2)

In this paper, we impose the following assumptions:

(H1) For each i ∈ S, r j(i)> 0, a jk(i)> 0, there exist γ
∗
j (i)≥ γ j∗(i)>−1

such that γ j∗(i)≤ γ j(µ, i)≤ γ
∗
j (i)(µ ∈ Z), j,k = 1,2.

(H2) For some j ∈ S, γi j > 0, ∀i 6= j.

(H3) For some i ∈ S, r j(i)> 0, a jk(i)> 0, there exist γ
∗
j (i)≥ γ j∗(i)>−1

such that γ j∗(i)≤ γ j(µ, i)≤ γ
∗
j (i)(µ ∈ Z), j,k = 1,2.

Also, for simplicity, denote

X(t) = (x(t),y(t))T, |X(t)|=
√

x2(t)+ y2(t),
〈ν(t)〉= t−1 ∫ t

0 ν(s)ds, 〈ν(t)〉∗ = limsupt→+∞〈ν(t)〉, 〈ν(t)〉∗ = liminft→+∞〈ν(t)〉,

B j(i) = r j(i)−
σ2

j (i)
2 −

∫
Z [γ j(µ, i)− ln(1+ γ j(µ, i))]λ (dµ),

B(i) = min j=1,2
{

B j(i)
}
, B = ∑

S
i=1 πiB(i), B j = ∑

S
i=1 πiB j(i),

r j = maxi∈S
{

r j(i)
}
, r j = mini∈S

{
r j(i)

}
, r = max j=1,2

{
r j
}
,

a jk = maxi∈S
{

a jk(i)
}
, a jk = mini∈S

{
a jk(i)

}
, σ = max j=1,2 maxi∈S

{∣∣σ j(i)
∣∣} ( j,k = 1,2).

Theorem 1. Under (H1), for any X(0) ∈ R2
+, system (2) has a unique global solution X(t) ∈ R2

+ on
t ≥ 0 a.s.

Proof. Consider the following stochastic differential equation:

du(t) =
(

B1(ρ(t))−a11(ρ(t))eu(t)− a12(ρ(t))ev(t)

1+eu(t)

)
dt +σ1(ρ(t))dB(t)

+
∫
Z ln [1+ γ1(µ,ρ(t))] Ñ(dt,dµ),

dv(t) =
(

B2(ρ(t))+
a21(ρ(t))eu(t)

1+eu(t) −a22(ρ(t))ev(t)
)

dt +σ2(ρ(t))dB(t)

+
∫
Z ln [1+ γ2(µ,ρ(t))] Ñ(dt,dµ),

u(0) = lnx(0), v(0) = lny(0).

(3)

Since the coefficients of system (3) are locally Lipschitz continuous, from [21] and [1], system (3) admits
a unique local solution (u(t),v(t))T on t ∈ [0,τe) a.s., where τe is the explosion time. By Itô’s formula,
X(t) = (eu(t),ev(t))T is the unique local solution to system (2) with X(0) ∈ R2

+. The proof of its global
solution is almost identical to that for systems with Markovian switching driven by white noise (see
e.g. [16, 26, 28], and hence it is omitted.
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3 Extinction

Theorem 2. Under (H1), let X(t) be the solution to system (2) with X(0) ∈ R2
+.

(1) If B1 < 0, then lim
t→+∞

x(t) = 0 a.s.

Moreover, if B2 < 0, then lim
t→+∞

y(t) = 0 a.s.; if B2 > 0, then

B2

a22
≤〈y(t)〉∗ ≤ 〈y(t)〉∗ ≤

B2

a22
a.s. (1)

(2) If B2 < −∑
S
i=1 πia21(i), then lim

t→+∞
y(t) = 0 a.s. Moreover, if B1 < 0, then limt→+∞ x(t) = 0 a.s.; if

B1 > 0, then
B1

a11
≤〈x(t)〉∗ ≤ 〈x(t)〉∗ ≤

B1

a11
a.s. (2)

Proof. We only prove (1), the proof of (2) is analogous. From system (3), we have
ln
(

x(t)
x(0)

)
=
∫ t

0
B1(ρ(s))ds−

∫ t

0
a11(ρ(s))x(s)ds−

∫ t

0

a12(ρ(s))y(s)
1+ x(s)

ds+
2

∑
j=1

M1 j(t),

ln
(

y(t)
y(0)

)
=
∫ t

0
B2(ρ(s))ds+

∫ t

0

a21(ρ(s))x(s)
1+ x(s)

ds−
∫ t

0
a22(ρ(s))y(s)ds+

2

∑
j=1

M2 j(t),
(3)

where, for j = 1,2,
M j1(t) =

∫ t

0
σ j(ρ(s))dB(s), 〈M j1〉(t)≤ σ

2t,

M j2(t) =
∫ t

0

∫
Z

ln [1+ γ j(µ,ρ(s))] Ñ(ds,dµ),

〈M j2〉(t)≤ max
j=1,2

max
i∈S

{
[ln(1+ γ j∗(i))]

2 ,
[
ln
(
1+ γ

∗
j (i)
)]2}

λ (Z)t.

(4)

By Lemma 3.1 in [3], we obtain

lim
t→+∞

t−1Mi j(t) = 0 a.s. (i, j = 1,2). (5)

Combining (3) with (5) yields
limsup

t→+∞

t−1 lnx(t)≤ 〈B1(ρ(t))〉∗ = B1,

limsup
t→+∞

t−1 lny(t)≤ 〈B2(ρ(t))+a21(ρ(t))〉∗ ≤B2 +
S

∑
i=1

πia21(i).
(6)

In view of (6), if B1 < 0, then limt→+∞〈x(t)〉= 0 a.s. Hence, ∀ε ∈ (0,1) and sufficiently large t,
lny(t)≤ (B2 + ε) t−a22

∫ t

0
y(s)ds a.s.,

lny(t)≥ (B2− ε) t−a22

∫ t

0
y(s)ds a.s.

(7)

The desired assertion follows from Lemma 2 in [15] and the arbitrariness of ε .
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Corollary 1. Under (H3), the solutions to system (3) satisfy:
(1) If B1(i)< 0, B2(i)< 0, then lim

t→+∞
X(t) = 0 a.s.

(2) If B1(i)< 0, B2(i)> 0, then lim
t→+∞

x(t) = 0, lim
t→+∞

〈y(t)〉= B2(i)
a22(i)

a.s.

(3) If B1(i)> 0, B2(i)<−a21(i), then lim
t→+∞

〈x(t)〉= B1(i)
a11(i)

, lim
t→+∞

y(t) = 0 a.s.

4 Stochastic permanence

Definition 1 (see e.g. [3, 10]). System (2) is stochastically permanent, if for any ε ∈ (0,1), there exist
δ∗ = δ∗(ε)> 0 and δ ∗ = δ ∗(ε)> 0 such that

liminf
t→+∞

P{|X(t)| ≥ δ∗} ≥ 1− ε, liminf
t→+∞

P{|X(t)| ≤ δ
∗} ≥ 1− ε. (1)

Lemma 1. Under (H1), let X(t) be the solution to system (2) with X(0) ∈ R2
+. Then for any θ1 > 0,

θ2 > 0, there exists K(θ1,θ2)> 0 such that

limsup
t→+∞

E
[
xθ1(t)+ yθ2(t)

]
≤ K(θ1,θ2). (2)

Proof. Define W (x,y) = xθ1 + yθ2 . By Itô’s formula, we have

L [W (x,y)] = θ1xθ1
[
r1(ρ(t))−a11(ρ(t))x− a12(ρ(t))y

1+x

]
+

θ1(θ1−1)σ2
1 (ρ(t))

2 xθ1

+ xθ1

∫
Z

{
[1+ γ1(µ,ρ(t))]

θ1−1−θ1γ1(µ,ρ(t))
}

λ (dµ)

+θ2yθ2
[
r2(ρ(t))+

a21(ρ(t))x
1+x −a22(ρ(t))y

]
+

θ2(θ2−1)σ2
2 (ρ(t))

2 yθ2

+ yθ2

∫
Z

{
[1+ γ2(µ,ρ(t))]

θ2−1−θ2γ2(µ,ρ(t))
}

λ (dµ)

≤ θ1xθ1
[
r1−a11x

]
+θ2yθ2

[
r2 +a21−a22y

]
+ σ2

2

(
θ

2
1 xθ1 +θ

2
2 yθ2

)
+ xθ1

∫
Z

max
i∈S

{
[1+ γ

∗
1 (i)]

θ1−1−θ1γ1∗(i)
}

λ (dµ)

+ yθ2

∫
Z

max
i∈S

{
[1+ γ

∗
2 (i)]

θ2−1−θ2γ2∗(i)
}

λ (dµ).

(3)

From (3), there exists K(θ1,θ2)> 0 such that

L [W (x,y)]+W (x,y)≤ K(θ1,θ2). (4)

In view of Itô’s formula and (4), we derive

L [etW (x,y)]≤ etK(θ1,θ2). (5)

Based on (5), integrating d[etW (x(t),y(t))] from 0 to t and then taking the expectations of both sides
yield

etE
[
xθ1(t)+ yθ2(t)

]
≤ xθ1(0)+ yθ2(0)+K(θ1,θ2)

(
et −1

)
, (6)

which implies the required assertion (2).
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Let C be a vector or matrix and by C� 0 we mean all elements of C are positive. Also, let Y S×S ={
C = (ci j)S×S : ci j ≤ 0, i 6= j

}
.

Lemma 2 (Lemma 5.3 in [21]). If C = (ci j)S×S ∈Y S×S has all of its rows’ sum positive, that is, for each
i ∈ S, ∑

S
j=1 ci j > 0, then det(C)> 0.

Lemma 3 (Theorem 2.10 in [21]). If C = (ci j)S×S ∈Y S×S, then the following statements are equivalent:
(1) C is a nonsingular M-matrix;
(2) All principal minors of C are positive; that is∣∣∣∣∣∣∣∣∣

c11 c12 . . . c1k
c21 c22 . . . c2k
...

...
...

ck1 ck2 . . . ckk

∣∣∣∣∣∣∣∣∣> 0, f or every k = 1,2, ...,S. (7)

(3) C is semi-positive; that is, there exists x� 0 in RS×1 such that Cx� 0.

Lemma 4. Under (H2), if B > 0, then there is θ0 > 0 such that for any θ ∈ (0,θ0),

G(θ) = diag(ν1(θ), ...,νS(θ))−Γ (8)

is a nonsingular M-matrix, whereνi(θ) = B(i)θ − σ2

2 θ 2−
∫
Z
[
Γθ (i)−1−θ lnΓ(i)

]
λ (dµ),

lnΓ(i) = max
{∣∣∣∣ln(1+ min

j=1,2

{
γ j∗(i)

})∣∣∣∣ , ∣∣∣∣ln(1+ max
j=1,2

{
γ
∗
j (i)
})∣∣∣∣} .

(9)

Proof. Without loss of generality, let j = S, that is

γiS > 0, ∀ 1≤ i≤ S−1. (10)

From Appendix A in [20], B > 0 is equivalent to∣∣∣∣∣∣∣∣∣
B(1) −γ12 . . . −γ1S

B(2) −γ22 . . . −γ2S
...

...
...

B(S) −γS2 . . . −γSS

∣∣∣∣∣∣∣∣∣> 0. (11)

Compute

detG(θ) =

∣∣∣∣∣∣∣∣∣
ν1(θ) −γ12 . . . −γ1S

ν2(θ) ν2(θ)− γ22 . . . −γ2S
...

...
...

νS(θ) −γS2 . . . νS(θ)− γSS

∣∣∣∣∣∣∣∣∣=
S

∑
i=1

νi(θ)Mi(θ), (12)

where Mi(θ) is the corresponding minor of νi(θ) in the first column. By (9),

νi(0) = 0,
dνi(θ)

dθ
|θ=0 = B(i). (13)
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In view of (12) and (13), we obtain

d(detG(θ))

dθ
|θ=0 =

S

∑
i=1

B(i)Mi(0) =

∣∣∣∣∣∣∣∣∣
B(1) −γ12 . . . −γ1S

B(2) −γ22 . . . −γ2S
...

...
...

B(S) −γS2 . . . −γSS

∣∣∣∣∣∣∣∣∣ . (14)

Combining (11) with (14) yields
d(detG(θ))

dθ
|θ=0 > 0. (15)

Based on (12) and (13), detG(0) = 0. Thanks to (10), (13) and (15), there is θ0 ∈ (0,1) such that for any
θ ∈ (0,θ0), detG(θ)> 0 and

νi(θ)>−γiS, 1≤ i≤ S−1. (16)

For each k = 1,2, ...,S−1, consider the leading principal sub-matrix

Gk(θ) :=

∣∣∣∣∣∣∣∣∣
ν1(θ)− γ11 −γ12 . . . −γ1k
−γ21 ν2(θ)− γ22 . . . −γ2k

...
...

...
−γk1 −γk2 . . . νk(θ)− γkk

∣∣∣∣∣∣∣∣∣ , (17)

of G(θ). Clearly, Gk(θ) ∈ Y k×k. According to (16), we derive

νi(θ)−
k

∑
j=1

γi j = νi(θ)+
S

∑
j=k+1

γi j ≥ νi(θ)+ γiS > 0, i = 1,2, ...,k. (18)

By Lemma 2, detGk(θ)> 0. That is to say, all the leading principal minors of G(θ) are positive. Hence,
the required assertion follows from Lemma 3.

Lemma 5. Let X(t) be the solution to system (2) with X(0) ∈R2
+. If there exists θ > 0 such that G(θ) is

a nonsingular M-matrix, then there is H(θ)> 0 such that

limsup
t→+∞

E
[
(x(t)+ y(t))−θ

]
≤ H(θ). (19)

Proof. By part (3) of Lemma 3, there exists (p1, ..., pS)
T� 0 such that

νi(θ)pi−
S

∑
j=1

γi j p j > 0, 1≤ i≤ S. (20)

In view of (20), there exists a constant κ > 0 such that

νi(θ)pi−
S

∑
j=1

γi j p j−κ pi > 0, 1≤ i≤ S. (21)
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Define U =V−1 = (x+ y)−1 and Ũ = pi (1+U)θ . Compute

κŨ +L
[
Ũ
]
=κ pi (1+U)θ +

S

∑
j=1

γi j p j (1+U)θ − piθ (1+U)θ−1U r1(ρ(t))x+r2(ρ(t))y
V

+ piθ (1+U)θ−1 a11(ρ(t))x2+
(a12(ρ(t))−a21(ρ(t)))xy

1+x +a22(ρ(t))y2

V 2

+ piθ (1+U)θ−1U
(

σ1(ρ(t))x+σ2(ρ(t))y
V

)2

+ piθ (1+U)θ−1U
∫
Z

γ1(µ,ρ(t))x+γ2(µ,ρ(t))y
V λ (dµ)

+ pi
θ(θ−1)

2 (1+U)θ−2U2
(

σ1(ρ(t))x+σ2(ρ(t))y
V

)2

+ pi

∫
Z

[(
1+ 1

V+γ1(µ,ρ(t))x+γ2(µ,ρ(t))y

)θ

− (1+U)θ

]
λ (dµ)

=O
(

Uθ

)
Uθ +F (U) ,

(22)

where lim
U→+∞

F (U)

Uθ
= 0. By Jensen’s inequality, we have

O
(

Uθ

)
=κ pi +

S

∑
j=1

γi j p j− piθ
r1(ρ(t))x+r2(ρ(t))y

V + piθ

(
σ1(ρ(t))x+σ2(ρ(t))y

V

)2

+ piθ

∫
Z

γ1(µ,ρ(t))x+γ2(µ,ρ(t))y
V λ (dµ)+ pi

θ(θ−1)
2

(
σ1(ρ(t))x+σ2(ρ(t))y

V

)2

+ pi

∫
Z

[(
V

V+γ1(µ,ρ(t))x+γ2(µ,ρ(t))y

)θ

−1
]

λ (dµ)

≤κ pi +
S

∑
j=1

γi j p j− piθB1(ρ(t)) x
V − piθB2(ρ(t))

y
V

+ pi
θ 2σ2

2 + piθ

∫
Z

[ x
V ln(1+ γ1(µ,ρ(t)))+

y
V ln(1+ γ2(µ,ρ(t)))

]
λ (dµ)

+ pi

∫
Z

[(
1+ x

V γ1(µ,ρ(t))+
y
V γ2(µ,ρ(t))

)−θ −1
]

λ (dµ)

≤κ pi +
S

∑
j=1

γi j p j− piθ min
j=1,2

{
B j(ρ(t))

}
+ pi

θ 2σ2

2

+ pi

∫
Z

[(
1+ γ1(µ,ρ(t))x+γ2(µ,ρ(t))y

V

)−θ

−1 +θ ln
(

1+ γ1(µ,ρ(t))x+γ2(µ,ρ(t))y
V

)]
λ (dµ)

≤κ pi +
S

∑
j=1

γi j p j− piB(i)θ + pi
θ 2σ2

2 + pi

∫
Z

[
Γ

θ (i)−1−θ lnΓ(i)
]

λ (dµ)

=κ pi +
S

∑
j=1

γi j p j− piνi(θ).

(23)
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In view of (21), (22) and (23), there is H (θ)> 0 such that

L
[
eκtŨ

]
= eκt

{
κŨ +L

[
Ũ
]}
≤H (θ)eκt . (24)

Integrating d
[
eκtŨ(t)

]
from 0 to t and then taking expectations yield

E
[

pieκt (1+U(t))θ
]
− pi (1+U(0))θ ≤ H (θ)

κ

(
eκt −1

)
. (25)

Based on (25), we deduce

E
[
(1+U(t))θ

]
≤ H (θ)

κ mini∈S{pi} +
(

1+ 1
x(0)+y(0)

)θ

e−κt . (26)

Define H(θ) = H (θ)
κ mini∈S{pi} , from (26) we obtain the desired assertion (19).

Theorem 3. Under (H1) and (H2), if B > 0, then system (2) is stochastically permanent.

Proof. Noting that |X(t)|−θ ≤ 2
θ

2 Uθ (t), from Lemma 5, we deduce

limsup
t→+∞

E
[
|X(t)|−θ

]
≤ 2

θ

2 H(θ). (27)

By Chebyshev’s inequality, ∀ε ∈ (0,1), there is δ∗ =
√

2
2

(
ε

H(θ)

) 1
θ
> 0 such that

limsup
t→+∞

P{|X(t)|< δ∗} ≤ (δ∗)
θ limsup

t→+∞

E
[
|X(t)|−θ

]
≤ ε. (28)

In other words,
liminf
t→+∞

P{|X(t)| ≥ δ∗} ≥ 1− ε. (29)

The remaining part of (1) follows from combining Lemma 1 with Chebyshev’s inequality. Hence, system
(2) is stochastically permanent.

Corollary 2. Under (H3), if B(i)> 0, then system (3) is stochastically permanent.

5 Asymptotic properties

Theorem 4. Under (H1), the solution X(t) to system (2) with X(0) ∈ R2
+ satisfies

limsup
t→+∞

ln [x(t)+ y(t)]
ln t

≤ 1 a.s. (1)

Proof. For simplicity, denote

H0 = max
i∈S
{r1(i),r2(i)+a21(i)} , γ

? = max
j=1,2

max
i∈S

{
|γ j∗(i)|, |γ∗j (i)|

}
. (2)
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From system (2), for u > t, we obtain

V (u)−V (t)≤
∫ u

t
[r1(ρ(s))x(s)+ [r2(ρ(s))+a21(ρ(s))]y(s)]ds

+
∫ u

t
[σ1(ρ(s))x(s)+σ2(ρ(s))y(s)]dB(s)

+
∫ u

t

∫
Z
[γ1(µ,ρ(s))x(s)+ γ2(µ,ρ(s))y(s)] Ñ(ds,dµ).

(3)

Based on (3), we deduce

E
[

sup
t≤u≤t+1

V (u)
]
≤ E [V (t)]+H0

∫ t+1

t
E [V (s)]ds

+E
[

sup
t≤u≤t+1

∫ u

t
[σ1(ρ(s))x(s)+σ2(ρ(s))y(s)]dB(s)

]
+E

[
sup

t≤u≤t+1

∫ u

t

∫
Z
[γ1(µ,ρ(s))x(s)+ γ2(µ,ρ(s))y(s)] Ñ(ds,dµ)

]
.

(4)

By Burkholder-Davis-Gundy inequality and Young inequality, we derive

E
[

sup
t≤u≤t+1

∫ u

t
[σ1(ρ(s))x(s)+σ2(ρ(s))y(s)]dB(s)

]
≤ JE

(∫ t+1

t
[σ1(ρ(s))x(s)+σ2(ρ(s))y(s)]

2 ds
)0.5

≤ 1
2
E
(

sup
t≤u≤t+1

V (u)
)
+

σ2J2

2

∫ t+1

t
E [V (s)]ds.

(5)

And

E
[

sup
t≤u≤t+1

∫ u

t

∫
Z
[γ1(µ,ρ(s))x(s)+ γ2(µ,ρ(s))y(s)] Ñ(ds,dµ)

]
≤ JE

(∫ t+1

t

∫
Z
(γ1(µ,ρ(s))x(s)+ γ2(µ,ρ(s))y(s))

2 N(ds,dµ)

)0.5

≤ JE
(∫ t+1

t

∫
Z
[γ? (x(s)+ y(s))]2 N(ds,dµ)

)0.5

≤ J
(
E
∫ t+1

t

∫
Z
[γ? (x(s)+ y(s))]2 N(ds,dµ)

)0.5

= J
(∫

Z
[γ?]2 λ (dµ)

)0.5(
E
∫ t+1

t
[x(s)+ y(s)]2 ds

)0.5

.

(6)

Substituting (5) and (6) into (4) yields

E
(

sup
t≤u≤t+1

V (u)
)
≤ 2E [V (t)]+2H0

∫ t+1

t
E [V (s)]ds+σ

2J2
∫ t+1

t
E [V (s)]ds

+2J
(∫

Z
[γ?]2 λ (dµ)

)0.5(
2
∫ t+1

t
E
[
x2(s)+ y2(s)

]
ds
)0.5

.

(7)
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From Lemma 1, there is K∗(θ1,θ2) > 0 such that supt≥0E
[
xθ1(t)+ yθ2(t)

]
≤ K∗(θ1,θ2). According to

(7), we deduce

E
(

sup
t≤u≤t+1

V (u)
)
≤ 2K∗(1,1)+2H0K∗(1,1)+σ

2J2K∗(1,1)

+2J
(

2K∗(2,2)
∫
Z
[γ?]2 λ (dµ)

)0.5

=: K̃.

(8)

Thanks to (8), we obtain

E

(
sup

k≤u≤k+1
V (u)

)
≤ K̃, k = 1,2, ... (9)

From Chebyshev’s inequality and (9), ∀ε ∈ (0,1),

P

(
ω : sup

k≤t≤k+1
V (t)> k1+ε

)
≤ K̃

k1+ε , k = 1,2, ... (10)

By Borel-Cantelli’s lemma, there is Ωo ∈F with P(Ωo) = 1 and an integer-valued random variable ko

such that for any ω ∈Ωo, supk≤t≤k+1V (t)≤ k1+ε holds whenever k≥ ko(ω). Thus, for almost all ω ∈Ω,
if k ≥ ko and k ≤ t ≤ k+1,

lnV (t)
ln t

≤
ln
(
supk≤t≤k+1V (t)

)
ln t

≤ lnk1+ε

ln t
≤ 1+ ε. (11)

So the desired assertion (1) follows from letting ε → 0+ in (11).

6 An example and its numerical simulations

By the method in [6], an example and its numerical simulations are given to support the theoretical
results. System (2) may be regarded as the result of regime switching between the following two subsys-
tems: 

dx(t) = x(t−)
[(

1.5− x(t−)− 2y(t−)
1+x(t−)

)
dt +2dB(t)+

∫
Z

0.5Ñ(dt,dµ)

]
,

dy(t) = y(t−)
[(

0.5+ x(t−)
1+x(t−) −2y(t−)

)
dt +1.5dB(t)+

∫
Z

0.5Ñ(dt,dµ)

]
,

(1)


dx(t) = x(t−)

[(
1.75−2x(t−)− 3y(t−)

1+x(t−)

)
dt +0.5dB(t)+

∫
Z

0.5Ñ(dt,dµ)

]
,

dy(t) = y(t−)
[(

0.75+ x(t−)
1+x(t−) −3y(t−)

)
dt +0.5dB(t)+

∫
Z

0.5Ñ(dt,dµ)

]
.

(2)

Here, λ (Z) = 1 and
r1(1) = 1.5, r2(1) = 0.5, a11(1) = 1, a12(1) = 2, a21(1) = 1, a22(1) = 2,
r1(2) = 1.75, r2(2) = 0.75, a11(2) = 2, a12(2) = 3, a21(2) = 1, a22(2) = 3,
σ1(1) = 2, σ2(1) = 1.5, σ1(2) = 0.5, σ2(2) = 0.5,
γ1(µ,1) = 0.5, γ2(µ,1) = 0.5, γ1(µ,2) = 0.5, γ2(µ,2) = 0.5.

(3)
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Figure 1: The solutions to subsystems (1) and (2).
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Figure 2: The left and right subfigures are, respectively, the numerical simulations of the solutions to
system (2) for Case 1 and Case 2.

Based on (3), we compute{
B1(1) = −1+ ln 3

2 , B2(1) = −9
8 + ln 3

2 , B(1) =−9
8 + ln 3

2 ,

B1(2) = 9
8 + ln 3

2 , B2(2) = 1
8 + ln 3

2 , B(2) = 1
8 + ln 3

2 .
(4)

From Corollary 1, system (1) is extinctive. By Corollary 2, system (2) is stochastically permanent.

Case 1. Let Γ =

(
−5 5
1 −1

)
. Then π = (π1,π2) =

(1
6 ,

5
6

)
. Thus,

B =− 1
12 + ln 3

2 > 0. (5)

According to Theorem 3, system (2) is stochastically permanent.

Case 2. Let Γ =

(
−1 1
9 −9

)
. Then, π = (π1,π2) =

( 9
10 ,

1
10

)
. Hence,

B1 =−63
80 + ln 3

2 < 0, B2 =−1+ ln 3
2 < 0. (6)

Based on Theorem 2, system (2) is extinctive.
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