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Abstract. The Schrdinger equation with variable-order fractional operator is a challenging problem
to be solved numerically. In this study, an implicit fully discrete continuous Galerkin finite element
method is developed to tackle this equation while the fractional operator is expressed with a nonsingular
Mittag-Leffler kernel. To begin with, the finite difference scheme known as the L1 formula is employed
to discretize the temporal term. Next, the continuous Galerkin method is used for spatial discretization.
This combination ensures accuracy and stability of the numerical approximation. Our next step is to
conduct a stability and error analysis of the proposed scheme. Finally, some numerical results are carried
out to validate the theoretical analysis.
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1 Introduction

The Schrödinger equations (SEs) have applications in quantum mechanics, optics, and fluid dynamics [8]
and describe the optical soliton in fiber [3, 23, 53, 59]. The fractional SEs depict fractal phenomena in
quantum mechanics [40]. Laskin [34, 35] developed SEs into space fractional (SFSEs) by extending the
Brownian path integral to the Lévy flights. The applications of SFSEs in optics can be found in [39].
Naber [50] showed the equivalence of the standard SE with the time-dependent Hamiltonian and the
fractional SEs.
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This paper is concerned with the following time-fractional SE

iHH
0 Dα(t)

Ψ+∆Ψ+Ψ = 0, in Ω× (0,T ], (1)

subject to initial condition Ψ(x,y,0) = Ψ0(x,y) and homogeneous Dirichlet boundary conditions, where
HH

0 Dα(t) is the nonsingular variable-order (VO) of order α(t) defined in [30] by Heydari and Hosseininia
(from now on we call it HH derivative), Ω is a bounded domain in R2, with piecewise smooth boundary
∂Ω and the final time T is a fixed and positive real number.

In the past decades, many numerical methods such as finite difference methods [19,20,55], continu-
ous [1,9,10,13] and discontinuous Galerkin finite element methods [4,18,42,43,58], meshless methods
[54], spectral methods [21, 22], kernel-based methods [45–47], cardinal approach [29] and operational
matrix [5, 32, 52] constructed for solving the fractional ordinary differential equations (FODEs) [41],
fractional partial differential equations [14], integro-differential equations [11,44] and fractional optimal
problems [27]. Particularly, the results of the numerical study of the standard and fractional SEs have
been presented by many authors [2, 15, 16]. The main aim of [49] is to use the compact boundary value
method for the solution of SEs. The authors of [12] proposed the MLPG method for solving n-coupled
nonlinear SEs. Karamali and Mohammadi [31] utilized a combination of the Laplace transform and
compact finite difference scheme with matrix transformation technique for the solution of time-space
fractional linear SEs. Heydari and Atagana [25] utilized a cardinal approach for the solution of VO-SE
with the Atangana-Baleanu-Caputo operator. Heydari in [24] proposed an efficient method for solving
Klein–Gordon–SEs with distributed-order fractional operator. Bhrawy and Zaky employed a collocation
method for multi-dimensional space-time VO-SEs in [6]. Wei et al. [56, 57] developed discontinuous
Galerkin FE methods for time-fractional Schrödinger and coupled SEs. Mohebbi et al. [48] utilized a
meshless technique for the solution of the time-fractional SEs arising in quantum mechanics. Heydari et
al. numerically investigated a fractal-fractional coupled Schrödinger-Boussinesq (CSB) system in [28].
Well-posedness, conservation, and convergence properties of Galerkin FE methods for the fractional SEs
with the Riesz-space fractional derivative are presented by Li et al. in [37, 38]. Li et al. established
linearized and mass-energy preserving FE methods for the coupled fractional SEs in [36, 60]. Finite ele-
ment method has a significant advantage over finite difference and spectral methods as it can be applied
to complex computational domains. Also, due to the presence of various generalizations, it is possible
to enhance its computational accuracy. In this paper, a combination of temporal discretization using the
finite difference scheme and spatial discretization using the Galerkin FE method is used for solving Eq.
(1).

The paper is organized as follows: Section 2 includes some definitions and lemmas. In Section 3
we construct an implicit fully discrete FE method (L1-FEM) for solving Eq. (1). In Section 4, some
theoretical results such as the unconditional stability and error estimate are proven. Some test problems
are presented to validate the analytical results in Section 5 and finally, we conclude this paper in Section
6.

2 Preliminaries

This section provides some basic definitions and lemmas that are used in the rest of the paper.
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Definition 1. The two-parameter Mittag-Leffler function is defined by [51]

Eϑ1,ϑ2 (t) =
∞

∑
j=0

t j

Γ(ϑ1 j+ϑ2)
, ϑ1,ϑ2 > 0, ϑ1,ϑ2 ∈ R, t ∈ C. (2)

A special case of this function with important roles in fractional calculus is the one-parameter Mittag-
Leffler (M-L) function Eϑ (t) = Eϑ ,1 (t).

In this study, we consider the VO fractional derivative with the nonsingular kernel as the HH frac-
tional derivative [30] which is expressed below.

Definition 2. For a differentiable function Ψ(t) on R and a continuous function α(t) : [0,∞)→ (0,1),
the HH VO fractional derivative of order α(t) for function Ψ(t) is defined by

HH
0 Dα(t)

Ψ(t) =
1

1−α(t)

∫ t

0
E1

(
−α(t)(t− s)

1−α(t)

)
dΨ(s)

ds
ds, t > 0. (3)

Denote tn = n∆t, where ∆t is the temporal step length. We use the L1 approximation of the fractional
derivative of order α(t) (0 < α(t)< 1) for function Ψ(t) presented in [17, 26]:

D̃α(t)
n+1Ψ(t) = ρ

(n+1)
0 Ψ

n+1−
n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)
Ψ

j−ρ
(n+1)
n Ψ

0, (4)

such that Ψ
n+1 = Ψ(tn+1) and

ρ
(n+1)
j =

1
1−αn+1

[
( j+1)E1,2

(
−( j+1)∆tαn+1

1−αn+1

)
− jE1,2

(
− j∆tαn+1

1−αn+1

)]
, 0≤ j ≤ n. (5)

Lemma 1. The coefficients ρ
(n+1)
j , j ≥ 0 are strictly monotonically decreasing with respect to j.

Proof. Since

dρ
(n+1)
j

d j
=

1
1−αn+1 E1 (−c( j+1))− 1

1−αn+1 E1 (−c j)≥ 0, (6)

for any 0 < α(t)< 1, the coefficients ρ
(n+1)
j , j ≥ 0 are strictly monotonically decreasing with respect to

j.

Lemma 2. ( [17]) Let us assume that HH
0 Dα(t)

Ψ(t) is approximated by D̃α(t)
n+1Ψ(t) and Ψ ∈C2[0, tn+1],

then we have

HH
0 Dα(t)

Ψ(t)
∣∣
tn+1
− D̃α(t)

n+1Ψ(t) =

∆t2
n

∑
i=0

Ψ
′′
(ξ i+1)

2
(
2
[
(n− i+1)2E1,3

(
−αn+1(n− i+1)∆t

1−αn+1

)
− (n− i)2E1,3

(
−αn+1(n− i)∆t

1−αn+1

)]

−
[
(n− i+1)E1,2

(
−αn+1(n− i+1)∆t

1−αn+1

)
+(n− i)E1,2

(
−αn+1(n− i)∆t

1−αn+1

)])
.

(7)
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3 The FEM for the VOF-SE with M-L kernel

This section focuses on constructing the fully-discrete finite element method for Eq. (1). We give the
scheme for a coupled system of equations, instead of a complex equation. Decomposing the complex
functions Ψ(x,y, t) into their real and imaginary parts and defining Ψ(x,y, t) = P(x,y, t)+ iQ(x,y, t) in
Eq. (1), give the following coupled system of equations:

HH
0 Dα(t)P+∆Q+ Q = 0, (8a)

HH
0 Dα(t)Q−∆P−P = 0. (8b)

In the following parts, we aim to present the numerical scheme for the solution of system (8).

3.1 Temporal discretization method

First, utilizing scheme (4), we obtain the time-discrete system as follows

D̃α(t)
n+1P+∆Qn+1 + Qn+1 = 0, (9a)

D̃α(t)
n+1Q−∆Pn+1− Pn+1 = 0. (9b)

Note that using (4) in combination with the FE method leads to an implicit method that is accurate to
second-order in both space and time.

3.2 Spatial discretization method

Let Ωh be a family of triangulation of Ω indexed by the maximum diameter of the elements, h. We define
the L2 inner product and corresponding induced norm as

(v,w) =
∫

Ω

vwdx , ‖v‖2 = (v,v) . (10)

The variational formulations of system (9) is given as: Find Pn+1 and Qn+1 ∈ H1
0 (Ω), satisfying

ρ
(n+1)
0

(
Pn+1,v

)
−
(
∇Qn+1,∇v

)
+
(
Qn+1,v

)
=

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
P j,v

)
+ρ

(n+1)
n

(
P0,v

)
,

ρ
(n+1)
0

(
Qn+1,w

)
+
(
∇Pn+1,∇w

)
−
(
Pn+1,w

)
=

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
Q j,w

)
+ρ

(n+1)
n

(
Q0,w

)
,

for all v and w ∈ H1
0 (Ω). We introduce the FE space, a subspace of H1

0 (Ω), as

Vh :=
{

v ∈V :=C(Ω̄)∩H1
0 (Ω) : v

∣∣∣∣
E
∈ Pk(E), ∀E ∈Ωh

}
, (11)

where Pk(E) denotes the set of polynomials whose degrees are no more than k. Here, we use the space
of continuous piecewise linear functions vanishing on ∂Ω.
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Now, suppose that
(
Pn+1

h ,Qn+1
h

)
∈Vh×Vh is the approximations of (P(·, tn+1),Q(·, tn+1))∈H1

0 (Ω)×
H1

0 (Ω), respectively. Then, the implicit fully discrete finite element method is defined as: Find
(
Pn+1

h ,Qn+1
h

)
∈

Vh×Vh, such that

ρ
(n+1)
0

(
Pn+1

h ,vh
)
−
(
∇Qn+1

h ,∇vh
)
+
(
Qn+1

h ,vh
)

=
n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
P j

h ,vh

)
+ρ

(n+1)
n

(
P0

h ,vh
)
,

ρ
(n+1)
0

(
Qn+1

h ,wh
)
+
(
∇Pn+1

h ,∇wh
)
−
(
Pn+1

h ,wh
)

=
n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
Q j

h,wh

)
+ρ

(n+1)
n

(
Q0

h,wh
)
,

(12)

for all vh and wh ∈Vh×Vh.

4 Theoretical analysis

This section focuses on the stability analysis and error estimate of the proposed scheme.

4.1 Stability analysis

Here, we derive the unconditional stability results of the L1-FEM.

Theorem 1. Let (Pn+1
h ,Qn+1

h ) ∈ Vh×Vh be the approximate solution of system (8). Then for boundary
conditions considered in (1), the fully discrete finite element scheme (12) is unconditionally stable, and
the numerical solution (Pn+1

h ,Qn+1
h ) ∈Vh×Vh satisfies

‖Pm
h ‖2 +‖Qm

h ‖2 ≤ ‖P0
h ‖2 +‖Q0

h‖2, m = 1,2, . . . ,N. (13)

Proof. Setting v = Pn+1
h and w = Qn+1

h in Eq. (12) and summing up the equations, one obtains

ρ
(n+1)
0

(
‖Pn+1

h ‖2 +‖Qn+1
h ‖2)= n

∑
i=1

(
ρ
(n+1)
n−i −ρ

(n+1)
n+1−i

)(
Pi

h,P
n+1
h

)
+ρ

(n+1)
n

(
P0

h ,P
n+1
h

)
+

n

∑
i=1

(
ρ
(n+1)
n−i −ρ

(n+1)
n+1−i

)(
Qi

h,Q
n+1
h

)
+ρ

(n+1)
n

(
Q0

h,Q
n+1
h

)
.

(14)

If n = 0, then

ρ
(1)
0

(
‖P1

h ‖2 +‖Q1
h‖2)= ρ

(1)
0

(
P0

h ,P
1
h
)
+ρ

(1)
0

(
Q0

h,Q
n+1
h

)
, (15)

and Youngs inequalities gives
‖P1

h ‖2 +‖Q1
h‖2 ≤ ‖P0

h ‖2 +‖Q0
h‖2.

Now, suppose that for m = 0,1, . . . ,K,

‖Pm
h ‖2 +‖Qm

h ‖2 ≤ ‖P0
h ‖2 +‖Q0

h‖2. (16)
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If in (14), we take n = K, we arrive at

ρ
(K+1)
0

(
‖PK+1

h ‖2 +‖QK+1
h ‖2)≤ 1

2

K

∑
i=1

(
ρ
(K+1)
K−i −ρ

(K+1)
K+1−i

)(
‖Pi

h‖2+‖PK+1
h ‖2 +‖Qi

h‖2+‖QK+1
h ‖2)

+
1
2

ρ
(K+1)
K

(
‖P0

h ‖2+‖PK+1
h ‖2 +‖Q0

h‖2 +‖QK+1
h ‖2) . (17)

Using Eq. (16) in Eq. (17) yields

ρ
(K+1)
0

(
‖PK+1

h ‖2 +‖QK+1
h ‖2)≤ 1

2

[
K

∑
i=1

(
ρ
(K+1)
K−i −ρ

(K+1)
K+1−i

)
+ρ

(K+1)
K

](
‖PK+1

h ‖2 +‖QK+1
h ‖2)

+
1
2

[
K

∑
i=1

(
ρ
(K+1)
K−i −ρ

(K+1)
K+1−i

)
+ρ

(K+1)
K

](
‖P0

h ‖2 +‖Q0
h‖2)

=
1
2

ρ
(K+1)
0

(
‖PK+1

h ‖2 +‖QK+1
h ‖2)+ 1

2
ρ
(K+1)
0

(
‖P0

h ‖2 +‖Q0
h‖2) ,

(18)

which concludes the desired result ‖PK+1
h ‖2 +‖QK+1

h ‖2 ≤ ‖P0
h ‖2 +‖Q0

h‖2.

4.2 Error estimate

Here, we consider Eq. (1) with the variational formulations that is given as: Find Pn+1 and Qn+1 ∈
H1

0 (Ω), satisfying

ρ
(n+1)
0

(
Pn+1,v

)
−
(
∇Qn+1,∇v

)
+
(
Qn+1,v

)
=

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
P j,v

)
+ρ

(n+1)
n

(
P0,v

)
+(R1,v) ,

ρ
(n+1)
0

(
Qn+1,w

)
+
(
∇Pn+1,∇w

)
−
(
Pn+1,w

)
=

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
Q j,w

)
+ρ

(n+1)
n

(
Q0,w

)
+(R2,w) ,

(19)

for all v and w ∈ H1
0 (Ω) where R j = O

(
∆tδ

)
results from (7) for j = 1,2. On the other hand, the FEM

for solving (19) will be in the following way

ρ
(n+1)
0

(
Pn+1

h ,v
)
−
(
∇Qn+1

h ,∇v
)
+
(
Qn+1

h ,v
)

=
n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
P j

h ,v
)
+ρ

(n+1)
n

(
P0

h ,v
)
,

ρ
(n+1)
0

(
Qn+1

h ,w
)
+
(
∇Pn+1

h ,∇w
)
−
(
Pn+1

h ,w
)

=
n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
Q j

h,w
)
+ρ

(n+1)
n

(
Q0

h,w
)
,

(20)

with P0
h = RhP0 and Q0

h = RhQ0, where Rh : H1
0 →Vh is the Ritz projection introduced by

(∇(U−RhU) ,∇vh) = 0, ∀vh ∈Vh, (21)
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which satisfies the following property

‖U−RhU‖+h‖∇(U−RhU)‖ ≤Ch2, ∀U ∈ H1
0 ∩H2. (22)

More details can be found in [7, 33].

Theorem 2. Suppose Ψ(·, ·, tn) = P(·, ·, tn)+ iQ(·, ·, tn) be the solution of (8) and Pn+1
h and Qn+1

h be the
approximations of P(·, ·, tn) and Q(·, ·, tn) by the L1-FEM (20), respectively. Then, we have the following
error estimate

‖P(·, ·, tn)−Pn+1
h ‖+‖Q(·, ·, tn)−Qn+1

h ‖ ≤C
(

h2 +∆tδ

)
, (23)

where C is a positive constant and independent of h.

Proof. We denote

eP = P−Ph = (RhP−Ph)− (RhP−P) := ηP−ξP, (24a)

eQ = Q−Qh = (RhQ−Qh)− (RhQ−Q) := ηQ−ξQ. (24b)

and subtract (20) from the variational formulation of (19) to get the following error equations

ρ
(n+1)
0

(
en+1

P ,v
)
−
(

∇en+1
Q ,∇v

)
+
(

en+1
Q ,v

)
=

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
e j

P,v
)
+ρ

(n+1)
n

(
e0

P,v
)
+R1, (25a)

ρ
(n+1)
0

(
en+1

Q ,w
)
+
(
∇en+1

P ,∇w
)
−
(
en+1

P ,w
)

=
n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
e j

Q,w
)
+ρ

(n+1)
n

(
e0

Q,w
)
+R2. (25b)

Substituting (24) in Eqs. (25) and summing up the equations, we have

ρ
(n+1)
0

(
η

n+1
P ,v

)
−
(

∇η
n+1
Q ,∇v

)
+
(

η
n+1
Q ,v

)
+ρ

(n+1)
0

(
η

n+1
Q ,w

)
+
(
∇η

n+1
P ,∇w

)
−
(
η

n+1
P ,w

)
=

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
η

j
P,v
)
+ρ

(n+1)
n

(
η

0
P,v
)

+
n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
η

j
Q,w

)
+ρ

(n+1)
n

(
η

0
Q,w

)
+ρ

(n+1)
0

(
ξ

n+1
P ,v

)
−

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
ξ

j
P,v
)
−ρ

(n+1)
n

(
ξ

0
P ,v
)

+ρ
(n+1)
0

(
ξ

n+1
Q ,w

)
−

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
ξ

j
Q,w

)
−ρ

(n+1)
n

(
ξ

0
Q,w

)
−
(

∇ξ
n+1
Q ,∇v

)
+
(

ξ
n+1
Q ,v

)
+
(
∇ξ

n+1
P ,∇w

)
−
(
ξ

n+1
P ,w

)
+(R1,v)+(R2,w) .

(26)
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Taking the test functions v = η
n+1
P and w = η

n+1
Q in (26) and using the properties (21), one gets

ρ
(n+1)
0 ‖ηn+1

P ‖2 +ρ
(n+1)
0 ‖ηn+1

Q ‖2 =
n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
η

j
P,η

n+1
P

)
+ρ

(n+1)
n

(
η

0
P,η

n+1
P

)

+
n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
η

j
Q,η

n+1
Q

)
+ρ

(n+1)
n

(
η

0
Q,η

n+1
Q

)

+ρ
(n+1)
0

(
ξ

n+1
P ,ηn+1

P

)
+ρ

(n+1)
0

(
ξ

n+1
Q ,ηn+1

Q

)
−

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
ξ

j
P,η

n+1
P

)
−ρ

(n+1)
n

(
ξ

0
P ,η

n+1
P

)
−

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
ξ

j
Q,η

n+1
Q

)
−ρ

(n+1)
n

(
ξ

0
Q,η

n+1
Q

)
+
(

ξ
n+1
Q ,ηn+1

P

)
−
(

ξ
n+1
P ,ηn+1

Q

)
+
(
R1,η

n+1
P

)
+
(
R2,η

n+1
Q

)
.

(27)

Since, the coefficients ρ
(n+1)
j , j≥ 0 are strictly monotonically decreasing with respect to j, we can apply

the Cauchy-Schwarz inequality in (27) to obtain the following result:

‖ηn+1
P ‖2 +‖ηn+1

Q ‖2

≤
[

ρ
(n+1)
n

ρ
(n+1)
0

(
‖η0

P‖+‖ξ 0
P‖
)
+

1

ρ
(n+1)
0

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
‖η j

P‖+‖ξ
j

P‖
)
+‖ξ n+1

P ‖+O(∆tδ )

]
‖ηn+1

P ‖

+

[
ρ
(n+1)
n

ρ
(n+1)
0

(
‖η0

Q‖+‖ξ 0
Q‖
)
+

1

ρ
(n+1)
0

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
‖η j

Q‖+‖ξ
j

Q‖
)
+‖ξ n+1

Q ‖+O(∆tδ )

]
‖ηn+1

Q ‖.

(28)

Young’s inequality ab≤ εa2 +
1

4ε
b2, together with Holder’s inequality give

‖ηn+1
P ‖2 +‖ηn+1

Q ‖2

≤ 1
4ε

[
ρ
(n+1)
n

ρ
(n+1)
0

(
‖η0

P‖+‖ξ 0
P‖
)
+

1

ρ
(n+1)
0

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
‖η j

P‖+‖ξ
j

P‖
)
+‖ξ n+1

P ‖+O(∆tδ )

]2

+
1

4ε

[
ρ
(n+1)
n

ρ
(n+1)
0

(
‖η0

Q‖+‖ξ 0
Q‖
)
+

1

ρ
(n+1)
0

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)(
‖η j

Q‖+‖ξ
j

Q‖
)
+‖ξ n+1

Q ‖+O(∆tδ )

]2

+ ε‖ηn+1
P ‖2 + ε‖ηn+1

Q ‖2.

(29)

When n = 0, for a small value of ε , we have

‖η1
P‖2 +‖η1

Q‖2 ≤C
[
‖η0

P‖+‖ξ 0
P‖+‖ξ 1

P‖+O(∆tδ )

]2

+C
[
‖η0

Q‖+‖ξ 0
Q‖+‖ξ 1

Q‖+O(∆tδ )

]2

. (30)
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Thus, (30) and the property (22) yield

‖η1
P‖2 +‖η1

Q‖2 ≤C1

[
h2 +O(∆tδ )

]2

.

Now, assume that for m = 0,1, . . . ,K the following inequality holds:

‖ηm
P ‖2 +‖ηm

Q‖2 ≤Cm

[
h2 +O(∆tδ )

]2

.

Notice the fact that ρ
(n+1)
n +

n

∑
j=1

(
ρ
(n+1)
n− j −ρ

(n+1)
n+1− j

)
= ρ

(n+1)
0 , then

‖ηK+1
P ‖2 +‖ηK+1

Q ‖2 ≤CK+1

[
h2 +O(∆tδ )

]2

,

which gives the following outcome

‖ηK+1
P ‖+‖ηK+1

Q ‖ ≤C
[

h2 +O(∆tδ )

]
.

The triangle inequality and (22) conclude Theorem 2.

5 Numerical experiments

In this section, we present some experimental results demonstrating the applicability and accuracy of the
proposed scheme. We employ the L1-FEM to solve time-fractional SEs. In this process, we consider the
following variable-order functions [17]

α1(t) =
2+ sin(t)

4
, α2(t) = 0.85−0.25e−t , α3(t) = 0.65+0.25t3 cos(t).

The following cases are called under zero initial and boundary conditions. We also use the time step size
∆t = h in the proposed method. In our examples, we present the L2 norm and convergence rate of errors
that is introduced as below

‖eh‖2 =
∫

Ω

(v− vh)
2 dx , rate =

ln
(‖eh1‖
‖eh2‖

)
ln
(

h1
h2

) , (31)

where v and vh are the exact and numerical solutions of the problem.

Example 1. This example demonstrates the accuracy of the proposed L1-FEM for the linear HH time-
fractional SE

iHH
0 Dα(t)

Ψ+∆Ψ = g(x,y, t) , in Ω× (0,T ], (32)



542 G. Karamali, H. Mohammadi-Firouzjaei

where Ω = [0,1]× [0,1] and

g(x,y, t) =−
[

m!
1−α(t)

tmE1,m+1

(
− tα(t)

1−α(t)

)
sin(2πx)sin(πy)+5π

2tm sin(πx)sin(2πy)
]

+i
[

m!
1−α(t)

tmE1,m+1

(
− tα(t)

1−α(t)

)
sin(πx)sin(2πy)−5π

2tm sin(2πx)sin(πy)
]
.

(33)

In this case, g belongs to L2(Ω) and the exact solution is

Ψ(x,y, t) = tm (sin(πx)sin(2πy)+ isin(2πx)sin(πy)) . (34)

The final time is taken T = 1 and m = 3.

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

(a) using ∆t =
1

100
and various h.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
-2

10
-1

(b) using h =
1

100
and various ∆t.

Figure 1: Convergence plots of the scheme for variable-order functions α1(t).

The L2 errors and its convergence rate for various variable-order functions α(t) when ∆t = h are pre-
sented in Table 1. One can see that the order of convergence using linear piecewise continuous polyno-
mials for real and imaginary parts gives the second order of accuracy in the L2 norm. The corresponding
CPU time is depicted in Figure 2.

Example 2. Let us consider the SE

iHH
0 Dα(t)

Ψ+∆Ψ+Ψ = g(x,y, t) , in Ω× (0,T ], (35)

such that the exact solution is Ψ(x,y, t) = tm (sin(2πx)sin(πy)+ isin(πx)sin(2πy)) . Table 2 shows the
errors and its convergence rate of the L1-FEM with m = 3. The results demonstrate that the scheme’s
accuracy is second order in space.

Example 3. In the third example, we consider Eq. (35) subject to zero initial and BCs on a L-shaped
region of Figure 3. The source terms are taken such that the exact solution be

Ψ(x,y, t) = t3 (x2(x2−1)y(y2−1)+ ix(x2−1)y2(y2−1)
)
. (36)

The triangulation used for partitioning the computational domain is illustrated in Figure 4. Results
presented in Table 3 show the second order of accuracy in space.
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Table 1: Errors and convergence rate of the L1-FEM for Example 1.

α1(t) α2(t) α3(t)

∆t = h ‖eh‖ rate ‖eh‖ rate ‖eh‖ rate

p
1
4

5.9207×10−2 – 5.9208×10−2 – 5.9204×10−2 –

1
8

1.8487×10−2 1.6793 1.8487×10−2 1.6793 1.8485×10−2 1.6793

1
16

4.4305×10−3 2.0609 4.4301×10−3 2.0611 4.4292×10−3 2.0613

1
32

1.1872×10−3 1.8999 1.1872×10−3 1.8998 1.1870×10−3 1.8997

1
64

2.9021×10−4 2.0324 2.9022×10−4 2.0324 2.9018×10−4 2.0323

q
1
4

5.9215×10−2 – 5.9216×10−2 – 5.9211×10−2 –

1
8

1.8415×10−2 1.6851 1.8415×10−2 1.6851 1.8412×10−2 1.6852

1
16

4.4375×10−3 2.0530 4.4381×10−3 2.0528 4.4379×10−3 2.0527

1
32

1.1792×10−3 1.9119 1.1793×10−3 1.9121 1.1792×10−3 1.9121

1
64

2.9285×10−4 2.0096 2.9286×10−4 2.0096 2.9282×10−4 2.0097
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6 Conclusion

In the current study, we developed an implicit fully discrete continuous Galerkin finite element method
for the solution of VO time-fractional 2D Schrödinger equation with a nonsingular Mittag-Leffler kernel.
We used a finite difference scheme known as the L1 formula and finite element method for the temporal
and spatial discretizations, respectively. Stability analysis confirms the unconditional stability of the
resulting scheme. Additionally, we provided an error estimate. The conducted numerical experiments
show the applicability and accuracy of the proposed scheme. Our ongoing work focuses on extending
the scheme to higher-order schemes.
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