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Abstract. A uniformly convergent numerical scheme is developed for solving a singularly perturbed
parabolic turning point problem. The properties of continuous solutions and the bounds of the derivatives
are discussed. Due to the presence of a small parameter as a multiple of the diffusion coefficient, it
causes computational difficulty when applying classical numerical methods. As a result, the scheme is
formulated using the Crank-Nicolson method in the temporal discretization and an exponentially fitted
finite difference method in the space on a uniform mesh. The existence of a unique discrete solution
is guaranteed by the comparison principle. The stability and convergence analysis of the method are
investigated. Two numerical examples are considered to validate the applicability of the scheme. The
numerical results are displayed in tables and graphs to support the theoretical findings. The scheme
converges uniformly with order one in space and two in time.

Keywords: Turning point problem, fitting factor, finite difference method, uniform convergence.
AMS Subject Classification 2010: 65M06, 65M12, 65M15.

1 Introduction

We consider a degenerate convection-diffusion problem of the form
L z(s, t)≡ εzss(s, t)+a(s)zs(s, t)−b(s, t)zt(s, t)− e(s, t)z(s, t) = g(s, t),
(s, t) ∈ D = (0,1)× (0,T ],
z(s, t) = ψb(s, t), (s, t) ∈ ηb := [0,1]×{0},
z(0, t) = ψl(t), (s, t) ∈ ηl := {0}× [0,T ],
z(1, t) = ψr(t), (s, t) ∈ ηr := {1}× [0,T ],

(1)
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where a(s) = a0(s)sp, a0(s)≥ α > 0, s ∈ [0,1], p≥ 1, and the perturbation parameter ε ∈ (0,1].
The functions a(s),b(s, t),e(s, t),g(s, t) on D̄, and ψb(s, t),ψl(t),ψr(t) on η = ηb∪ηl ∪ηr = D̄−D

are assumed to be sufficiently smooth and bounded that carry out the assumptions 0 ≤ a(s), 0 < β ≤
b(s, t), 0 < γ ≤ e(s, t), (s, t) ∈ D̄ = [0,1]× [0,T ] for some fixed T > 0. The coefficient of convection
term a(s) of (1) vanishes at s = 0, i.e., a(0) = 0. Such a problem is known as a turning point problem.
When the convection coefficient equals zero, the problem presents either a boundary or an interior turning
point. A boundary turning point arises when the convection coefficient equals zero at the boundary, while
an interior turning point occurs when it equals zero within the domain [7]. For p = 1, problem (1) is a
simple turning point problem, whereas for p> 1, it becomes a multiple turning point problem [4,10]. The
problem of simple turning point finds extensive applications in modeling heat flow and mass transport
near an oceanic rise, owing to a linear velocity distribution [6]. On the other hand, the multiple turning
point problem pertains to thermal boundary layers in laminar flow for high-velocity distribution [19].
Generally, the solution of the problem described in (1) exhibits a parabolic boundary layer of width
O(
√

ε), in the vicinity of the left boundary layer as ε approaches zero.
It has been observed that the presence of a particular boundary layer can hinder the effectiveness of

traditional numerical methods. To overcome this computational difficulty, developing suitable numerical
methods has received remarkable attention from researchers. Several works have been done to solve
problem (1). For instance, Dunne et al. [3] proposed an upwind scheme using a piecewise uniform mesh
in space and the backward Euler scheme in time, which is almost first-order accurate in space and first-
order accurate in time. Gupta et al. [5] developed a B-spline collocation method on a piecewise uniform
mesh in space, along with an implicit Euler method in time. They have achieved an order of accuracy
almost second-order in space and first-order in time. In [11], Sahoo and Gupta applied a numerical
scheme that combined the implicit Euler and a simple upwind scheme on a piecewise uniform mesh.
Using the Richardson extrapolation technique in both space and time directions, they enhanced the order
of accuracy to almost second-order in space and second-order in time.

In [12], a classical finite difference scheme on a Shishkin mesh and backward Euler was suggested,
and by applying the Richardson extrapolation technique, the order of accuracy was enhanced to almost
second-order in space and second-order in time. In [13], a hybrid method combining the central differ-
ence method and the midpoint upwind scheme on a piecewise uniform Shishkin mesh was applied and
obtained almost second-order accuracy in space and first-order in time. In [10], an upwind scheme was
employed on a layer adaptive non-uniform mesh in the spatial variable and the implicit Euler scheme in
the time, and obtained first-order accuracy in both space and time.

Singh et al. [17] suggested a quadratic spline collocation method on an exponentially graded mesh
in the space and the Crank-Nicolson method in time, and second-order accuracy in both space and time
was achieved. In [22], a hybrid scheme was developed for an interior layer problem by combining
the central difference method and midpoint upwind scheme on a piecewise uniform Shishkin mesh in
space and backward Euler in time and improved the time accuracy to second-order by using Richardson
extrapolation. In [1, 2], numerical methods for dealing with discontinuous source terms of singularly
perturbed degenerate convection-diffusion problems were discussed. In [21], a singularly perturbed
parabolic turning point with an interior layer was used. Additionally, problem (1) with a Robin boundary
condition having a boundary turning point was addressed in [4, 8, 15].

Taking inspiration from the above works, we have designed a scheme which uses a uniform mesh
to solve problem (1). The scheme involves the Crank-Nicolson scheme for time and a fitted operator
FDM for space discretization. The objective of this work is to develop a numerical scheme that is more
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accurate, stable, and uniformly convergent in solving problem (1).
Notations: Throughout this paper, the generic constant C > 0 is not depends on ∆s, ∆t and ε; the
maximum norm ‖.‖ is denoted by ‖g‖D = max(s,t)∈D |g(s, t)|.

2 A priori estimates

Taking ε = 0 in (1), we get the reduced problem
a(s)z0

s (s, t)−b(s, t)z0
t (s, t)− e(s, t)z0(s, t) = g(s, t), (s, t) ∈ D,

z0(1, t) = ψr(t), t ∈ (0,T ],
z0(s, t) = ψb(s, t), (s, t) ∈ ηb,

(2)

which is a first-order hyperbolic PDE. For a(0) = 0 and e(0, t)> 0 the boundary s = 0 is a characteristic
curve of (2), and the solution of (1) has a parabolic boundary layer closes to s = 0.

The next lemma will help us in determining the bound of z(s, t) and its derivatives. The solution of
(1) fulfils the next lemma.

Lemma 1. (Minimum principle) Assume that z(s, t) ∈C2(D)∩C0(D̄), satisfying z(s, t)≥ 0, (s, t) ∈ η . If
L z(s, t)≤ 0, (s, t) ∈ D, then z(s, t)≥ 0,(s, t) ∈ D̄.

Proof. Let ∃(s∗, t∗) ∈ D̄ such that z(s∗, t∗) = min(s,t)∈D̄ z(s, t) < 0. From the supposition, we have
(s∗, t∗) /∈ {0,1}×{0,T} implies that (s∗, t∗) in (0,1)×(0,T ). Since z(s∗, t∗) = min(s,t)∈D̄ z(s, t)< 0, then
we have zs(s∗, t∗) = 0, zt(s∗, t∗) = 0 and zss(s∗, t∗)≥ 0. So that, L z(s∗, t∗) = zss(s∗, t∗)+a(s)zs(s∗, t∗)−
b(s, t)zt(s∗, t∗)− e(s, t)z(s∗, t∗)> 0, which is a contradiction. Therefore, z(s, t)≥ 0, ∀(s, t) ∈ D̄.

Lemma 2. [3] (Stability estimate) The solution of (1) fulfills the estimate

‖z‖D̄ ≤ ‖z‖η +
T
β
‖g‖D̄, (3)

where 0 < β ≤ b(s, t).

Lemma 3. [13, 14] Let the solution of (1) be z(s, t), then the derivative of z(s, t) satisfies the estimate∥∥∥∥∥ ∂ l+ jz
∂ s j∂ t l

∥∥∥∥∥
D̄

≤C(1+ ε
− j/2 exp(−s

√
γ/ε)), (s, t) ∈ D̄, 1≤ j+2l ≤ 4, (4)

where 0 < γ ≤ e(s, t).

3 The proposed method

3.1 The time semi-discretization

We use the Crank-Nicolson scheme to discretize problem (1) in the temporal direction on a uniform
mesh. We define a uniform partition of [0,T ] with step length ∆t as D̄M

t = {t0 = 0, tk = t0 + k∆t, k =
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1(1)M−1, tM = T, ∆t = T/M} which has M mesh points. Then the semi-discrete result of problem (1)
yields {

(∆t
2 L ∆t −1)Zk+1(s) =−(1+ ∆t

2 L ∆t)Zk(s)+ ∆t
2 (g(s, tk)+g(s, tk+1))

Zk+1(0) = ψl(tk+1), Zk+1(1) = ψr(tk+1),
(5)

where L ∆tZk+1(s) = ε
d2Zk+1(s)

ds2 +a(s)dZk+1(s)
ds − e(s, tk+1)Zk+1(s).

The approximation of Z(s, tk+1) is denoted by Zk+1(s) at the (k + 1)th time level. The operator
(∆t

2 L ∆t −1)Zk+1(s) satisfies the next minimum principle.

Lemma 4. (Semi-discrete minimum principle) Let Zk+1(s) ∈C2(D̄) such that Zk+1(0)≥ 0,Zk+1(1)≥ 0,
and (∆t

2 L ∆t −1)Zk+1(s)≤ 0 on D. Then Zk+1(s)≥ 0 on D̄.

Proof. Assume ∃s∗ ∈ D̄ such that Zk+1(s∗) = mins∈D̄ Zk+1(s) < 0. From the assumption, we have s∗ /∈
{0,1} implies that s∗ ∈ (0,1). Since Zk+1(s∗) = mins∈D̄ Zk+1(s) < 0, then we have d

ds Zk+1(s∗) = 0 and
d2

ds2 Zk+1(s∗) ≥ 0. So, the operator gives that (∆t
2 L ∆t − 1)Zk+1(s∗) ≥ 0, which is a contradiction to the

assumption. Therefore, Zk+1(s)≥ 0,∀s ∈ D̄.

At each time step, the local truncation error for time discretization is calculated as follows: ek+1(s) :=
z(s, tk+1)−Zk+1(s), k = 0(1)M. Here, Zk+1(s) represents the solution obtained after one step of the semi-
discrete scheme by using the exact value z(x, tk) as the starting value instead of zk(s).

Lemma 5. If
∣∣ ∂ lz(s,t)

∂ t l

∣∣≤C, (s, t) ∈ D̄ and 0≤ l ≤ 2, then the temporal direction local truncation error
is bounded by

‖ek+1‖ ≤C1(∆t)3. (6)

The global error at tk+1 satisfies the bound

‖Ek+1‖ ≤C(∆t)2, k = 1(1)M−1. (7)

Proof. One can refer to [14] for the proof of the local truncation error bound. By using (6) up to the
(k+1)th time step, we can obtain the global error bound at the (k+1)th time level:

‖Ek+1‖=
∥∥∥∥ k+1

∑
l=1

el

∥∥∥∥≤ k+1

∑
l=1
‖el‖

≤ C1T (∆t)2, since (k+1)∆t ≤ T

= C(∆t)2, where C1T =C,

where C is not depends on ε and ∆t [14].

Lemma 6. [13, 14] For k = 0(1)M−1, the derivatives of the solution (5) satisfies the estimate∣∣∣∣d jZk+1(s)
ds j

∣∣∣∣≤C(1+ ε
− j/2 exp(−s

√
γ/ε)), s ∈ D̄, 0≤ j ≤ 4. (8)
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Proof. To bound the derivatives of the solution (5) with respect to the spatial variable, we consider the
cases for j = 0,1,2,3,4. For j = 0, it implies |Zk+1(s)| < C. For j = 1, by using the argument of [19],
construct a neighborhood of I = (0,

√
ε), ∀s ∈ I. For some s∗ ∈ I by the mean value theorem, it becomes

Zk+1
s (s∗) =

Zk+1(
√

ε)−Zk+1(0)√
ε

. (9)

From (9), we have

|Zk+1
s (s∗)|=

∣∣∣∣Zk+1(
√

ε)−Zk+1(0)√
ε

∣∣∣∣= ε
−1/2|Zk+1(

√
ε)−Zk+1(0)| ≤Cε

−1/2‖Z‖. (10)

For s ∈ Ī,

|Zk+1
s (s)|= |Zk+1

s (s∗)+Zk+1
s (s)−Zk+1

s (s∗)|

= |Zk+1
s (s∗)+

∫ s

s∗
Zk+1

ss (x)dx|

≤ |Zk+1
s (s∗)|+ |ε−1

∫ s

s∗
(g(x, tk+1)−a(x)Zk+1

s (x)+ e(s, tk+1)Zk+1(x))dx|,

≤ |Zk+1
s (s∗)|+Cε

−1
∫ s

s∗
(‖Z‖+‖g‖)dx = |Zk+1

s (s∗)|+Cε
−1(‖Z‖+‖g‖)ε1/2.

(11)

Inserting (10) into (11), we get

|Zk+1
s (s)| ≤Cε

−1/2 ≤C(1+ ε
−1/2 exp(−s/

√
γ/ε)).

For j = 1, the process is done. For j > 1, the higher order derivatives up to the fourth order can be
obtained through induction and repeated differentiation.

3.2 The spatial discretization

We have divided the space domain [0,1] into N equal points, denoted by si = ih, where 0 ≤ i ≤ N. The
mesh spacing, which is the distance between two adjacent points, is given by h = si+1− si. The set of all
these points is represented by D̄N

s = {0 = s0,s1, ...,sN = 1, si = ih}. Furthermore, the divided differences
operator can be expressed as follows:

δ
+
s Zk

i =
Zk

i+1−Zk
i

h
, δ
−
s Zk

i =
Zk

i −Zk
i−1

h
, δ

0
s Zk

i =
Zk

i+1−Zk
i−1

2h
,

δ
2
s Zk

i =
Zk

i−1−2Zk
i +Zk

i+1

h2 .

(12)

Applying the central finite difference scheme in (5), for i = 1(1)N−1, we get{
(∆t

2 L ∆t,h−1)Zk+1
i =−(1+ ∆t

2 L ∆t,h)Zk
i +

∆t
2 (g(si, tk)+g(si, tk+1)),

Zk+1(0) = ψl(tk+1), Zk+1(1) = ψr(tk+1),
(13)
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where L ∆t,hZk+1
i = εδ 2

s Zk+1
i + a(si)δ

0
s Zk+1

i − e(si, tk+1)Zk+1
i . We use an exponential fitting factor to

handle the impact of ε on spatial discretization. According to the theory of singular perturbation outlined
in [16], the zero-order asymptotic solution to problem (5) at si can be expressed as:

Zk+1(si) = Zk+1(ih) = Zk+1
0 (ih)+(Zk+1(0)−Zk+1

0 (0))exp
(
− a(si)

ε
ih
)
, (14)

where Zk+1
0 is the reduced problem solution. To manage the influence of ε , the exponentially fitting

factor σ(ρ) is introduced as

L ∆t,h
σ Zk+1

i = εσ(ρ)δ 2
s Zk+1

i +a(si)δ
0
s Zk+1

i − e(si, tk+1)Zk+1
i . (15)

Putting ρ = h
ε

and multiplying both side by h and taking the limit as h approaches zero, we get

lim
h→0

σ(ρ)

ρ
(Zk+1

i−1 −2Zk+1
i +Zk+1

i+1 )+a(si)
Zk+1

i+1 −Zk+1
i−1

2
= 0, (16)

which gives the variable fitting factor

σ(ρ) =
ρa(si)

2
coth

(
ρa(si)

2

)
. (17)

3.2.1 The discrete difference scheme

Applying the central finite difference method and the fitting factor σ(ρ), for i = 1(1)N − 1, and k =
0(1)M−1, we have the following fully discrete scheme

{
(∆t

2 L ∆t,h
σ −1)Zk+1

i =−(1+ ∆t
2 L ∆t,h

σ )Zk
i +

∆t
2 (g(si, tk)+g(si, tk+1)),

Zk+1(0) = ψl(tk+1), Zk+1(1) = ψr(tk+1),
(18)

where L ∆t,h
σ Zk+1

i = εσ(ρ)δ 2
s Zk+1

i +a(si)δ
0
s Zk+1

i − e(si, tk+1)Zk+1
i . We rewrite in an explicit form as

Q−i Zk+1
i−1 +Q0

i Zk+1
i +Q+

i Zk+1
i+1 = R−i Zk

i−1 +R0
i Zk

i +R+
i Zk

i+1 +∆tg(si, tk+ 1
2
), (19)

where

Q−i =
∆t
2

(
εσ(ρ)

h2 − a(si)

2h

)
,

Q0
i =−

∆tεσ(ρ)

h2 −
(

∆t
2

e(si, tk+1)+1
)
,

Q+
i =

∆t
2

(
εσ(ρ)

h2 +
a(si)

2h

)
,

(20)
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and

R−i =− ∆t
2

(
εσ(ρ)

h2 − a(si)

2h

)
,

R0
i =

∆tεσ(ρ)

h2 +

(
∆t
2

e(si, tk)−1
)
,

R+
i =− ∆t

2

(
εσ(ρ)

h2 − a(si)

2h

)
,

Hi =
∆t
2

(
g(si, tk)+g(si, tk+1)

)
.

(21)

4 Error analysis

In this part, we study the stability and uniform convergence for the developed scheme of (18).

Lemma 7. (Comparison principle) Assume a comparison function ν
k+1
i such that (∆t

2 L ∆t,h
σ −1)Zk+1

i ≤
(∆t

2 L ∆t,h
σ − 1)νk+1

i for 1 ≤ i ≤ N − 1 and if Zk+1
0 ≤ ν

k+1
0 and Zk+1

N ≤ ν
k+1
N . Then Zk+1

i ≤ ν
k+1
i for

0≤ i≤ N.

Proof. The operator L ∆t,h
σ Zk+1

i with the size of matrix (N+1)×(N+1) for the entries i = 1,2, ...,N−1
are Q−i , Q0

i , and Q+
i . We observe that |Q−i | > 0, |Q0

i | > 0, |Q+
i | > 0 and |Q0

i | ≥ |Q
−
i |+ |Q

+
i |, implying

that it is diagonally dominant. Then, it fulfils the criteria of the M-matrix. Thus, the inverse matrix exists
and is non-negative. So, it ensures the existence of a unique discrete solution [9, 18, 20].

Lemma 8. (Discrete minimum principle) Assume a function Z(si, tk+1) defined on the discretized do-
main D̄N,M = D̄N

s × D̄M
t . If Z(si, tk+1)≥ 0, (si, tk+1) ∈ ηN,M = D̄N,M ∩η and (∆t

2 L ∆t,h
σ −1)Z(si, tk+1)≤

0, (si, tk+1) ∈ DN,M, then Z(si, tk+1)≥ 0, (si, tk+1) ∈ D̄N,M.

Proof. Assume ∃(s∗i , t∗k+1)∈ D̄N,M such that Z(s∗i , t
∗
k+1) = min(si,tk+1)∈D̄ Z(si, tk+1)< 0. From the assump-

tion, (s∗i , t
∗
k+1) /∈ηN,M implies that (s∗i , t

∗
k+1)∈ (0,1)×(0,T ). Since Z(s∗i , t

∗
k+1)=min(si,tk+1)∈D̄ Z(si, tk+1)<

0, then we have Zs(s∗i , t
∗
k+1) = 0, Zt(s∗i , t

∗
k+1) = 0 and Zss(s∗i , t

∗
k+1)≥ 0. So that, (∆t

2 L ∆t,h
σ −1)Z(si, tk+1)>

0, which is a contradiction. Therefore, Z(si, tk+1)≥ 0, (si, tk+1) ∈ D̄N,M.

Lemma 9. (Stability result) Let Zk+1
i be the solution of (18), then we have

∣∣Zk+1
i

∣∣≤ ‖L ∆t,h
σ Zk+1

i ‖
γ

+max{|ψl(tk+1)|, |ψr(tk+1)|},

where e(s, t)≥ γ > 0.

Proof. Let P =
‖ L ∆t,h

σ Zk+1
i ‖

γ
+max{|ψl(tk+1)|, |ψr(tk+1)|} and set the barrier functions θ

±
i,k+1 by P±Zk+1

i .
On the boundaries, we obtain

θ
±
0,k+1 = P±Zk+1

0 =
‖L ∆t,h

σ Zk+1
i ‖

γ
+max{|ψl(tk+1)|, |ψr(tk+1)|}±ψl(tk+1)≥ 0,

ϑ
±
N,k+1 = P±Zk+1

N =
‖L ∆t,h

σ Zk+1
i ‖

γ
+max{|ψl(tk+1)|, |ψr(tk+1)|}±ψr(tk+1)≥ 0.



508 S.K. Tesfaye, G.F. Duressa, M.M. Woldaregay, T.G. Dinka

For the discretized domain si, i = 1(1)N−1, then(
∆t
2

L ∆t,h
σ −1

)
θ
±
i,k+1 =

∆t
2

L ∆t,h
σ θ

±
i,k+1−θ

±
i,k+1

=
∆t
2

εσ(ρ)

(
P±Zk+1

i−1 −2(P±Zk+1
i )+P±Zk+1

i+1

h2

)
+

∆t
2

a(si)

(
P±Zk+1

i+1 − (P±Zk+1
i−1 )

2h

)
− ∆t

2
e(si, tk+1)

(
P±Zk+1

i

)
−
(

P±Zk+1
i

)
=± ∆t

2
εσ(ρ)

(
Zk+1

i−1 −2Zk+1
i +Zk+1

i+1

h2

)
± ∆t

2
a(si)

(
Zk+1

i+1 −Zk+1
i−1

2h

)
±
(
− ∆t

2
e(si, tk+1)−1

)
Zk+1

i −
(

∆t
2

e(si, tk+1)+1
)

P

=±
(

∆t
2

L ∆t,h
σ −1

)
Zk+1

i −
(

∆t
2

e(si, tk+1)+1
)

P

=±∆tg(si, tk+ 1
2
)−
(

∆t
2

e(si, tk+1)+1
)
‖L ∆t,h

σ Zk+1
i ‖

γ
+max{|ψl(tk+1)|, |ψr(tk+1)|} ≤ 0.

By applying the discrete minimum principle, we can conclude that θ
±
i,k+1 ≥ 0 for i = 0(1)N. Therefore,

we have obtained the desired bounds.

Next, we determine the truncation error in the spatial direction in considering the sem-discrete
scheme of (5) and the fully discrete scheme of (18).

Theorem 1. Let the coefficient functions a(s) and e(s, tk+1) of (5) be sufficiently smooth so that Zk+1(s)∈
C4[0,1]. Then, the solution Zk+1

i of (18) fulfills the following truncation error estimate

|L ∆t,h
σ (Zk+1(si)−Zk+1

i )| ≤ Ch2

h+ ε

(
1+ ε

−3/2 exp(−si
√

γ/ε)

)
. (22)

Proof. The estimate in the space direction is expressed as∣∣∣∣L ∆t,h
σ (Zk+1(si)−Zk+1

i )

∣∣∣∣= ∣∣∣∣ε( d2

ds2 −σ(ρ)δ 2
s )Z

k+1(si)+a(si)(
d
ds
−δ

0
s )Z

k+1(si)

∣∣∣∣
≤
∣∣ε(a(si)

ρ

2
coth(a(si)

ρ

2
)−1)δ 2

s Zk+1(si)
∣∣+ ∣∣ε( d2

ds2 −δ
2
s )Z

k+1(si)
∣∣

+
∣∣a(si)(

d
ds
−δ

0
s )Z

k+1(si)
∣∣,

(23)

where σ(ρ) = a(si)
ρ

2 coth(a(si)
ρ

2 ) and ρ = h
ε
.

Given C1 and C2 are constants, then |ρ coth(ρ)− 1| ≤C1ρ2, for ρ = h/ε ≤ 1. For h/ε → ∞, since
lim

h/ε→∞

coth(h/ε) = 1 which gives |h/ε coth(h/ε)−1| ≤C1h/ε . Generally, ∀ρ > 0 we express as

C1
ρ2

ρ +1
≤ ρ coth(ρ)−1≤C2

ρ2

ρ +1
, (24)
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thus, we get

ε
(
a(si)

ρ

2
coth(a(si)

ρ

2
)−1

)
≤ ε

(h/ε)2

h/ε +1
=

h2

h+ ε
. (25)

From Taylor’s series expansion, we get the bound∣∣∣∣δ 2
s Zk+1(si)

∣∣∣∣≤C
∥∥∥∥ d2

ds2 Zk+1(si)

∥∥∥∥,∣∣∣∣( d
ds
−δ

0
s )Z

k+1(si)

∣∣∣∣≤Ch2
∥∥∥∥ d3

ds3 Zk+1(si)

∥∥∥∥,∣∣∣∣( d2

ds2 −δ
2
s )Z

k+1(si)

∣∣∣∣≤Ch2
∥∥∥∥ d4

ds4 Zk+1(si)

∥∥∥∥.
(26)

Substituting equations (25) and (26) into (23), we get∣∣∣∣L ∆t,h
σ (Zk+1(si)−Zk+1

i )

∣∣∣∣≤ Ch2

h+ ε

∥∥∥∥ d2

ds2 Zk+1(si)

∥∥∥∥+Ch2
(∥∥∥∥ d3

ds3 Zk+1(si)

∥∥∥∥+ ε

∥∥∥∥ d4

ds4 Zk+1(si)

∥∥∥∥). (27)

Using (8), we have the bound for the derivatives

|L ∆t,h
σ (Zk+1(si)−Zk+1

i )| ≤ Ch2

h+ ε

(
1+ ε

−1 exp(−si
√

γ/ε)

)
+Ch2

(
(1+ ε

−3/2 exp(−si
√

γ/ε))+(ε + ε
−1 exp(−si

√
γ/ε))

)
.

(28)

Evidently, ε−3/2 ≥ ε−1, so

|L ∆t,h
σ (Zk+1(si)−Zk+1

i )| ≤ Ch2

h+ ε

(
1+ ε

−3/2 exp(−si
√

γ/ε)

)
, (29)

thus, we get the wanted bounds.

Lemma 10. [15] For a fixed N mesh numbers and as ε → 0, we obtain

lim
ε→0

max
i

exp(−si
√

γ/ε)

ε j/2 = 0, j = 1,2,3, . . . , (30)

where si = ih, i = 1(1)N−1.

Theorem 2. Let the solution of (18) be Zk+1
i , then the uniform error is estimated by

sup
ε∈(0,1]

max
i
|Zk+1(si)−Zk+1

i | ≤Ch, (31)

where i = 0(1)N.



510 S.K. Tesfaye, G.F. Duressa, M.M. Woldaregay, T.G. Dinka

Proof. Plugging (30) into (22), we get

|L ∆t,h
σ (Zk+1(si)−Zk+1

i )| ≤ Ch2

h+ ε
. (32)

Hence, the result leads to |Zk+1(si)−Zk+1
i | ≤ Ch2

h+ε
. Using the sup overall ε ∈ (0,1], we get

sup
ε∈(0,1]

max
i
|Zk+1(si)−Zk+1

i | ≤Ch. (33)

When the step size is less than ε , the method provides second-order convergence. For step sizes
much larger than ε , the method provides first-order convergence.

Theorem 3. Let z and Z be the solutions of (1) and (18), respectively. Then, the uniform error estimate
for the fully discrete scheme is given by

sup
ε∈(0,1]

|z−Z| ≤C(h+(∆t)2). (34)

Proof. The proof follows by combining (31) and (7).

5 Numerical experiments

We applied the proposed scheme to two examples to support our theoretical findings. Since we do not
have exact solutions for these examples, we used the double mesh principle to calculate the maximum ab-
solute error. The computation of the maximum absolute error is given by EN,M

ε = maxi,k |ZN,M
i,k −Z2N,2M

i,k |.
The ε-uniform error is estimated by finding the maximum of all the maximum absolute errors and is
given by EN,M = maxi,k(E

N,M
ε ). We estimate the order of convergence by rN,M

ε = log2(E
N,M
ε /E2N,2M

ε ).
The ε-uniform order of convergence is estimated by rN,M = log2(E

N,M/E2N,2M).

Example 1. Consider  ε
∂ 2z
∂ s2 + sp ∂ z

∂ s − z− ∂ z
∂ t = s2−1, (s, t) ∈ (0,1)× (0,1],

z(s,0) = (1− s)2, s ∈ D̄,
z(0, t) = 1+ t2, z(1, t) = 0, t ∈ (0,1].

Example 2. Consider ε
∂ 2z
∂ s2 + sp ∂ z

∂ s − (s+ p)z− ∂ z
∂ t = p(s2−1)exp(−t), (s, t) ∈ (0,1)× (0,1],

z(s,0) = (1− s)2, s ∈ D̄,
z(0, t) = 1+ t2, z(1, t) = 0, t ∈ (0,1].

We computed EN,M
ε , EN,M and rN,M for each example using the developed scheme (18). The obtained

results for the model Examples 1 and 2 for distinct values of ε and N are displayed in Tables 1 and 3,
respectively. These results show that for every value of ε , the maximum absolute error decreases as
the step sizes decrease. Also we observed that the maximum absolute error becomes constant as ε gets
smaller, which indicates ε-uniform convergence of the proposed scheme, regardless of ε . The results in
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Table 1: EN,M
ε ,EN,M and rN,M of Example 1 for p = 1.

Number of intervals N = M
ε ↓ 32 64 128 256

10−6 8.0607e-03 4.4718e-03 2.4120e-03 1.2744e-03
10−8 8.0607e-03 4.4718e-03 2.4120e-03 1.2744e-03
10−10 8.0607e-03 4.4718e-03 2.4120e-03 1.2744e-03
10−12 8.0607e-03 4.4718e-03 2.4120e-03 1.2744e-03
10−16 8.0607e-03 4.4718e-03 2.4120e-03 1.2744e-03
10−18 8.0607e-03 4.4718e-03 2.4120e-03 1.2744e-03
10−20 8.0607e-03 4.4718e-03 2.4120e-03 1.2744e-03
EN,M 8.0607e-03 4.4718e-03 2.4120e-03 1.2744e-03
rN,M 0.8501 0.8906 0.9204 -

Table 2: Comparison of EN,M and rN,M for Example 1 and results in [10] for p = 1.

Number of intervals N = M
Schemes ↓ 32 64 128 256

Proposed scheme EN,M 8.0607e-03 4.4718e-03 2.4120e-03 1.2744e-03
rN,M 0.8501 0.8906 0.9204 -

Results in [10] EN,M 3.0430e-02 1.1938e-02 6.1610e-03 3.2113e-03
rN,M 1.3499 0.9543 0.9400 0.9599

Table 3: EN,M
ε ,EN,M and rN,M of Example 2 for p = 1.

Number of intervals N = M
ε ↓ 32 64 128 256

10−6 5.8935e-03 3.1304e-03 1.6083e-03 8.1279e-04
10−8 5.8935e-03 3.1304e-03 1.6083e-03 8.1279e-04
10−10 5.8935e-03 3.1304e-03 1.6083e-03 8.1279e-04
10−12 5.8935e-03 3.1304e-03 1.6083e-03 8.1279e-04
10−16 5.8935e-03 3.1304e-03 1.6083e-03 8.1279e-04
10−18 5.8935e-03 3.1304e-03 1.6083e-03 8.1279e-04
10−20 5.8935e-03 3.1304e-03 1.6083e-03 8.1279e-04
EN,M 5.8935e-03 3.1304e-03 1.6083e-03 8.1279e-04
rN,M 0.9128 0.9608 0.9846 -
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Table 4: Comparison of EN,M
ε and rN,M

ε for Example 2 and results in [12] for p = 1.

Number of intervals N = M
ε ↓ 32 64 128 256 512

Present method
2−10 5.7949e-03 3.2560e-03 2.5153e-03 1.5669e-03 8.7472e-04

0.8317 0.3724 0.6828 0.8410 -
2−15 5.8935e-03 3.1304e-03 3.8325e-03 1.7184e-03 7.1006e-04

0.9128 -0.2919 1.1572 1.2751 -
2−20 5.8935e-03 3.1304e-03 1.6083e-03 8.1279e-04 4.6537e-04

0.9128 0.9608 0.9846 0.8045 -
2−25 5.8935e-03 3.1304e-03 1.6083e-03 8.1279e-04 4.0825e-04

0.9128 0.9608 0.9846 0.9934 -
2−30 5.8935e-03 3.1304e-03 1.6083e-03 8.1279e-04 4.0825e-04

0.9128 0.9608 0.9846 0.9934 -
Results in [12]

2−10 1.7481e-02 1.0302e-02 5.9462e-03 3.3853e-03 1.9118e-03
0.7629 0.7929 0.8127 0.8244 -

2−15 1.6983e-02 1.0060e-02 5.8145e-03 3.3187e-03 1.8729e-03
0.7554 0.7901 0.8090 0.8254 -

2−20 1.6951e-02 1.0051e-02 5.8101e-03 3.3167e-03 1.8717e-03
0.7540 0.7907 0.8088 0.8254 -

2−25 1.6948e-02 1.0050e-02 5.8101e-03 3.3167e-03 1.8717e-03
0.7538 0.7906 0.8088 0.8254 -

2−30 1.6947e-02 1.0050e-02 5.8101e-03 3.3167e-03 1.8717e-03
0.7538 0.7906 0.8088 0.8254 -

Table 5: EN,M
ε and rN,M

ε for ε = 10−10.

p ↓ Example 1 Example 2
N = 32 64 128 32 64 128
M = 32 64 128 32 64 128

1 8.0607e-03 4.4718e-03 2.4120e-03 5.8935e-03 3.1304e-03 1.6083e-03
0.8501 0.8906 - 0.9128 0.9608 -

2 6.5919e-03 3.9087e-03 2.2569e-03 3.4578e-03 1.8498e-03 9.5601e-04
0.75401 0.7924 - 0.9025 0.9523 -

3 5.6792e-03 3.4719e-03 2.0786e-03 5.0147e-03 2.7300e-03 1.4226e-03
0.7100 0.7401 - 0.8773 0.9404 -

4 4.9951e-03 3.1524e-03 1.9183e-03 6.4596e-03 3.5805e-03 1.8817e-03
0.6641 0.7166 - 0.8513 0.9281 -
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Table 6: EN,M
ε and rN,M

ε

ε ↓ Example 1 Example 2
N = 16 64 256 16 64 256
M = 16 32 64 16 32 64

10−6 1.3867e-02 4.4018e-03 1.2511e-03 1.0405e-02 3.0735e-03 7.9741e-04
1.6555 1.8149 - 1.7593 1.9465 -

10−8 1.3867e-02 4.4018e-03 1.2511e-03 1.0405e-02 3.0735e-03 7.9741e-04
1.6555 1.8149 - 1.7593 1.9465 -

10−10 1.3867e-02 4.4018e-03 1.2511e-03 1.0405e-02 3.0735e-03 7.9741e-04
1.6555 1.8149 - 1.7593 1.9465 -

10−12 1.3867e-02 4.4018e-03 1.2511e-03 1.0405e-02 3.0735e-03 7.9741e-04
1.6555 1.8149 - 1.7593 1.9465 -
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Figure 1: Numerical result surface plot with N = M = 64, p = 1, and ε = 10−20.
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Figure 2: Computed solution with N = M = 64 and p = 1.

the last two rows of each table show that the calculated values of EN,M and the corresponding rN,M, which
confirms that the theoretical finding of the developed scheme is order one in space. Further, in Table 5,
we provided ε-uniform pointwise error and the corresponding ε-uniform convergence for distinct values
of p≥ 1 for the two examples. From the results, we observed that the error estimate does not depend on
the values of p. Additionally, we used 4N and 2M to confirm that our scheme has order two in time and
the results are delineated in Table 6. We also compared the presented scheme with some of the existing
published works, as seen in Tables 2 and 4, and found that it has better accuracy.

Based on the model examples and the derivative bounds, the problem has a boundary layer near s= 0.
Figure 1 shows the surface plot solutions of Example 1 and Example 2 for ε = 10−20, N = M = 64, and
p = 1. On the other hand, Figure 2 visualizes the numerical solution of Examples 1 and Example 2. The
figures reveal a parabolic boundary layer of width O(

√
ε) around s = 0 as ε → 0.

6 Conclusions

A uniformly convergent numerical scheme is constructed to solve the class of singularly perturbed
parabolic turning point problem. The scheme used the Crank-Nicolson method for time and an ex-
ponentially fitted central finite difference method for space derivative. Comparison principles ensured
the stability of the scheme and are used to analyze the scheme for uniform convergence. The results are
demonstrated numerically by computing maximum absolute error, ε-uniform error, and ε-uniform order
of convergence in tables. The experimental results agreed with the theoretical findings. The proposed
method is stable, ε-uniformly convergent, with first-order in space and second-order in time. The surface
plots of the numerical solution and the left boundary layer of the solution are revealed graphically.
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