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Abstract. In this paper, we will study the optimal control problem of a system containing a differential
integral (D-I) operator. We will deduce the necessary optimality conditions and apply it first to the
problem of minimum energy to find the lowest energy for an electrical circuit containing a resistor, a
coil and a capacitor (RLC circuit), and second to the problem of the minimum time to transfer electrical
current in RLC circuit from one state to another in the shortest possible time.
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1 Introduction

The classical differentiable optimal control problem: Determine the control signals that satisfy

minimize:
∫ t f

t0
g(t,x,u)dt,

subject to:
dx
dt

= f (t,x,u).

It has one major shortcoming despite its great success, it only deals with functionals containing deriva-
tives. Many phenomena in nature can be modeled more accurately using equations involving differential-
integral operator

L
dx
dt

+C
∫ t

t0
x(τ)dτ.

It finds its applications in many scientific fields, ranging from mathematics, physics and engineering to
biomedical and management sciences [2, 5, 12, 14, 15, 17].

Optimal control problems with differential-integral state constraint naturally arise in many engineer-
ing applications [3, 4, 6–8, 10, 13, 16]. The two most important problems of optimal control are the
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problem of minimum energy and the problem of minimum time [1, 11, 18]. In [13], an algorithm has
been constructed for computing the exact solutions for the quadratic optimal control problem with in-
tegral constraints and it has been used to find the optimal solution for single and coupled RC electrical
circuits. It is not worthwhile in applications to convert integrals into differentials, especially if there are
many integrals. In this paper, we generalize the result in [13] to find the necessary conditions for the
optimal control of differential- integral state as well as we apply the generalization problem to find the
minimum energy and the shortest time to transfer the electrical current from one state to another in an
RLC electrical circuit.

2 Necessary conditions of D-I-control problem

Consider the system described by the following nonlinear differential integral equations:

L
dx(t)

dt
+C

∫ t

t0
x(τ)dτ = f (t,x(t),v(t)), (1)

where L and C are n×n real matrices and x(t) an n-vector function is determined by v(t) an m-vector
function, with x ∈ Rn, v ∈ Rm.

Consider a performance index of the form

J(v) = Φ(x(t f ))+
∫ t f

t0
g(t,x(t),v(t))dt. (2)

The problem is to find the functions v(t), t ∈ [t0, t f ] that minimize (or maximize) ) J(v). It is assumed that
Φ(x), f (t,x,v), g(t,x,v) are continuous for all t ∈ [t0, t f ] and , x, v ∈Rn and have continuous derivative
up to the second order.

The necessary conditions of the constrained optimal control problem (1)-(2) are obtained by convert-
ing into an unconstrained optimal control problem using the Lagrange multiplier function λ (t) ∈ Rn :

J(v) = Φ(x(t f ))+
∫ t f

t0
g(t,x(t),v(t))dt

+
∫ t f

t0
λ

T (t)
[

f (t,x(t),v(t))−L
dx(t)

dt
−C

∫ t

t0
x(τ)dτ

]
dt.

Let us define the Hamiltonian function

H(t,x(t),λ (t),v(t)) : = g(t,x(t),v(t))+λ
T (t) f (t,x(t),v(t)).

Thus

J(u) =Φ(x(t f ))+
∫ t f

t0

{
[H(t,x(t),λ (t),v(t))−λ

T (t)
[

L
dx(t)

dt
+C

∫ t

t0
x(τ)dτ

]}
dt.

The necessary condition for optimality is that the variation δJ of the modified cost with respect to all
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feasible variations δx(t),δλ (t) and δv(t) should vanish.

δ J =
∂Φ

∂ x(t f )
δx(t f )+

∫ t f

t0

[
∂H

∂ x(t)
δx(t)+δλ

T (t)
∂H

∂ λ (t)
+

∂H
∂ v(t)

δv(t)
]

dt

−
∫ t f

t0

[
δλ

T (t)L
dx(t)

dt
+λ

T (t)Lδ

(
dx(t)

dt

)]
dt

−
∫ t f

t0

[(∫ t

t0
δλ

T (t)Cx(τ)dτ

)
+λ

T (t)Cδ

(∫ t

t0
x(τ)dτ

)]
dt.

Now

(i) δ

(
dx(t)

dt

)
=

dδx(t)
dt

and δ

(∫ t

t0
x(τ)dτ

)
=
∫ t

t0
δx(τ)dτ.

(ii) By changing the order of integration, we have∫ t f

t0
λ

T (t)C
(∫ t

t0
δx(τ)dτ

)
dt =

∫ t f

t0

(∫ t f

t
λ

T (τ)dτ

)
Cδx(t)dt.

(iii) By integration by parts, we have

∫ t f

t0
λ

T (t)L
dδx(t)

dt
dt = λ

T (t f )Lδx(t f )−
∫ t f

t0

dλ T (t)
dt

Lδx(t)dt.

From, (i), (ii) and (iii), we get

δ J =

[
∂Φ

∂ x(t f )
−λ

T (t f )L
]

δx(t f )+
∫ t f

t0

[
∂H

∂ x(t)
+

dλ T (t)
dt

L−
(∫ t f

t
λ

T (τ)dτ

)
C
]

δx(t)dt

+
∫ t f

t0
δλ

T (t)
[

∂H
∂ λ (t)

−L
dx(t)

dt
−C

∫ t

t0
x(τ)dτ

]
dt +

∫ t f

t0

∂H
∂ v(t)

δv(t)dt.

Setting the terms that multiply variations to be zero yield:

L
dx(t)

dt
+C

∫ t

t0
x(τ)dτ =

∂H
∂ λ (t)

= f (t,x(t),v(t)),

−LT dλ (t)
dt

+CT
∫ t f

t
λ (τ)dτ =

(
∂H

∂ x(t)

)T

,

0 =
∂H

∂ v(t)
,

λ (t f ) = L−1T
(

∂Φ

∂ x(t f )

)T

.

Thus, we obtained the following theorem.
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Theorem 1. A necessary conditions for the pair (v∗,x∗) to satisfy (1)-(2) are
State equations L

dx∗(t)
dt

+C
∫ t

t0
x∗(τ)dτ = f (t,x∗(t),v∗(t)),

x∗(t f ) = x0.

Adjoint equations−LT dλ (t)
dt

+CT
∫ t f

t
λ (τ)dτ =

(
∂g

∂ x∗(t)

)T

+

(
∂ f

∂ x∗(t)

)T

λ (t),

λ (t f ) = L−1T
(

∂Φ

∂ x∗(t f )

)T
.

Minimum principle
∂g

∂ v∗(t)
+λ

T (t)
∂ f

∂ v∗(t)
= 0.

3 Minimum energy problem

Consider the quadratic optimal control problem:

J(u(·)) =1
2

xT (t f ).x(t f )+
1
2

∫ t f

t0
vT (t).v(t)dt→min, (3)

under the constraint

L
dx(t)

dt
+C

∫ t

t0
x(τ)dτ = Ax(t)+Bv(t), t ∈ [t0, t f ], (4)

where L,C and A are n×n matrices, L is invertible and B is n×m matrix.
By applying the necessary conditions of the general optimal control given in the above sections to

(3)-(4), we have the following result.

Theorem 2. The optimal control of problem (3)-(4) is characterized by:

v∗(t) =−BT
λ2(t),

where λ (t) and x∗(t) satisfy the following equations:
State equations L

dx∗(t)
dt

+C
∫ t

t0
x∗(τ)dτ = Ax∗(t)−BBT

λ (t),

x∗(t0) = x0.
(5)

Adjoint equations −LT dλ (t)
dt

+CT
∫ t f

t
λ (τ)dτ = AT

λ (t),

λ (t f ) = L−1T
x∗(t f ).

(6)
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Remark 1. Equations (5) and (6) provide the solution for the problem(if it exists). They constitute
2n second order differential-integral equations whose solution contains 4n constants of integration. To
evaluate these, we have n-equation x∗(t0) = x0, n-equation λ (t f ) = LT x∗(t f ), n -equation

∫ t
t0 x∗(τ)dτ =

0 at t = t0 and n-equation
∫ t f

t λ (τ)dτ = 0 at t = t f . So, we can solve this problem by sweeps method
as follows.

Step 1. First we solve the adjoint equation (6). Let

λ1(t) =
∫ t f

t
λ (τ)dτ, λ2(t) =

dλ1(t)
dt

=−λ (t),

then (6) can be written in the following matrix form[
λ1(t)
λ2(t)

]′
=

[
0 I

−
(
LT
)−1 CT −

(
LT
)−1 AT

][
λ1(t)
λ2(t)

]
,

with final conditions: [
λ1(t f )
λ2(t f )

]
=

[
0

−LT x∗(t f )

]
,

which has the solution [
λ1(t)
λ2(t)

]
= eMλ (t−t f )

[
0

−LT x∗(t f )

]
, (7)

with unknown x∗(t f ), where Mλ =

[
0 I

−
(
LT
)−1 CT −

(
LT
)−1 AT

]
.

Step 2. We solve the state equation (5). Let

x1(t) =
∫ t

0
x∗(τ)dτ, x∗2(t) =

dx1(t)
dt

= x∗(t),

then (5) can be written in the following nonhomogeneous matrix form[
x1(t)
x∗2(t)

]′
=

[
0 I

−L−1C L−1 A

] [
x1(t)
x∗2(t)

]
+

[
0

BBT

]
λ2(t),

with initial conditions: [
x1(t0)
x∗2(t0)

]
=

[
0
x0

]
,

which has the solution [
x1(t)
x∗2(t)

]
= eMx t

[
0
x0

]
+
∫ t

t0
eMx(t−τ)

[
0

BBT

]
λ2(τ)dτ, (8)

with unknown x∗(t f ), where Mx =

[
0 I

−L−1C L−1 A

]
.

Step 3. Substitute t = t f into x∗(t) = x∗2(t) that we obtained in Step 2, and then solve the algebraic
equations with respect to x∗(t f ) to obtain the value of x∗(t f ).
Step 4. Substitute again the value of x∗(t f ) that is obtained in Step 3 in the state and adjoint equations
that are obtained in Step 1 and Step 2 to find the exact solution of v∗(t) = BT λ (t), and x∗(t).
Step 5. Substitute the exact solution of v∗(t) and x∗(t) that are obtained in Step 4 in (3) to calculate
the minimum energy.
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Example 1. (Minimum energy of RLC series circuit) In this example, we want to find the unknown

Figure 1: RLC circuit.

supplied voltage v(t) for the RLC circuit in Figure 1, which minimizes the cost functional given by

J =
1
2

i2(1)+
1
2

∫ 10

0
v2(t)dt, (9)

with i(0) = 1.
By applying the Kirchhoff’s voltage law, we get

di
dt

+
5
2

∫ t

0
i(τ)dτ =−i(t)+ v(t). (10)

In this case, we apply Theorem 2 to the problem (9)-(10), with t0 = 0, t f = 10, x0 = 1, L = 1,
C = 5

2 , A =−1, and B = 1. Then the optimal control given by

v∗(t) =−λ (t),

where λ (t) and i∗(t) satisfy the following equations:
di∗(t)

dt
+

5
2

∫ t

0
i∗(τ)dτ =−i∗(t)−λ (t),

i(0) = 1.
(11)


dλ (t)

dt
− 5

2

∫ 1

t
λ (τ)dτ = λ (t),

λ (1) = i∗(1).
(12)

Step 1. By using formula (7), we get the solution of (12) as follows

λ (t) = i∗(1)e
1
2 t−5

[
cos
(

3
2

t−15
)
+

1
3

sin
(

3
2

t−15
)]

. (13)

Step 2. By using formula (8), we get the solution of (11) as below

i∗(t) = e−
1
2 t
[

cos
3
2

t− 1
3

sin
3
2

t
]

+
1
18

x∗(1)e−
1
2 t−5

[
cos
(

3
2

t +15
)
−10cos

(
3
2

t−15
)
+3sin

(
3
2

t +15
)]

+
1
6

x∗(1)e
1
2 t−5

[
3cos

(
3
2

t−15
)

sin
(

3
2

t−15
)]

.

(14)
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Step 3. Substitute t = 10 into i∗(t) that we obtained in Step 2, and then solve the algebraic equations
with respect to i∗(1). We get

i∗(10) =
6e5 (−3cos15+ sin15)

cos30+3sin30−9e10−10
.

Step 4. Substitute again the value of i∗(10) that is obtained in Step 3 in (13) and (14) to find the exact
solution of v∗(t) =−λ (t) and i∗(t) in Figure 2 and Figure 3.

Figure 2: Optimal voltage for minimum energy problem.

Step 5. Substitute the exact solution of v∗(t) and i∗(t) that are obtained in Step 4 to calculate the
minimum energy from (9): minJ = 0.0001731248996.

4 Time-optimal control problem

Let us consider the following minimum time optimization problem
min
v∈W

∫ t f

t0
1dt = min

v∈W
(t f − t0),

L
dx(t)

dt
+C

∫ t

t0
x(τ)dτ = Ax(t)+Bv(t),

x(t0) = x0, x(t f ) ∈ K,

(15)

where the admissible class W consists of control functions v = [v1,v2, ...,vm]
T with vi measurable on

[t0,∞) and |vi| ≤ 1 almost everywhere, i = 1, ...,m and K is a closed, convex subset of Rn.
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Figure 3: Optimal electrical current for minimum energy problem.

In order to consider a nontrivial problem, we will always assume that the state vector x can be
brought from the initial position x0 to the target set K in a finite amount of time using a certain control
function from W.

The optimization problem (15) can be replaced by another equivalent one with a fixed time t f , to
show that we need tow auxiliary lemmas.

Lemma 1. Let t∗f be the optimal time for problem (15). If int K 6= Φ then x(t∗f ) ∈ ∂ K(boundary of K )
for any state x satisfying (15).

Proof. Any solution of (15) is continuous with respect to t. If x(t∗f ) ∈ ∂K is not true, then there exists
an admissible state x such that the observation x(t∗f ) ∈ int K. Thus a t f < t∗f exists so that x(t f ) ∈ ∂ K.
This contradicts the optimality of t∗f .

Lemma 2. Let t∗f be the optimal time for problem (15). Let v∗ and x∗ be an optimal control and
corresponding state, respectively. Then there exists a nontrivial vector η ∈ Rn so that the pair (v∗,x∗)
is optimal for the following control problem with the fixed time

J̄(u) = ηT x(t∗)→min,

L
dx(t)

dt
+C

∫ t

t0
x(τ)dτ = Ax(t)+Bv(t),

x(t0) = x0.

(16)

Proof. The linearity of equations (15) implies that the endpoints x(t∗) of all admissible states x(t∗) form
a convex set Xt∗ . From Lemma 1, we have Xt∗∩ int K =Φ and x(t∗)∈ ∂ K. Since int K =Φ, there exists
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a closed hyperplane separating Xt∗ and K containing x(t∗), i.e. there is a nonzero vector η ∈ Rn such
that [9]

sup
x∈Xt∗

η
T x(t∗)≤ η

T x∗(t∗)≤ inf
x∈K

η
T x(t∗).

This completes the proof.

Now, we can apply the general theorem(Theorem 1) to the equivalent problem (16) to get the follow-
ing result.

Theorem 3. Let t∗f be the optimal time for problem (15). Let v∗ and x∗ be an optimal control and
corresponding state, respectively. Then there exist a nontrivial vector η ∈ Rn so that the pair (v∗,x∗)
satisfy the following equations
State equations L

dx∗(t)
dt

+C
∫ t

t0
x∗(τ)dτ = Ax∗(t)+B(t)v∗(t),

x∗(t0) = x0.

Adjoint equations −LT dλ (t)
dt

+CT
∫ t f

t
λ (τ)dτ = AT

λ (t),

λ (t f ) = L−1T
η .

Minimum principle
v∗(t∗) =−sgn

(
BT

λ (t)
)
.

Remark 2. If the set K has a special form K = {x ∈ Rn : |xi− xd | ≤ ε} where ε and xd ∈ℜ are given,
then ηi is known explicitly and is expressed by ηi = xi(t f )− xd .

Example 2. In this example, we want to find the unknown supplied voltage v(t) for the RLC circuit in
Figure 1, which minimizes the cost functional given by∫ t f

0
dt, (17)

with
i(0) = 1, i(t f ) ∈ K, (18)

where K =
{

x = [x1, ...,xn]
T ∈ Rn : |xi +0.5| ≤ 0.001

}
.

In this case, we apply Theorem 3 to problem (17)-(18) and (10), with t0 = 0, x0 = 1, L = 1,C =
5
2 , A =−1, and B = 1, then the optimal control is given by

v∗(t) =−sgn(λ (t)) , (19)

where λ (t) and i∗(t) satisfy the following equations:
di∗(t)

dt
+

5
2

∫ t

0
i∗(τ)dτ =−i∗(t)+ v∗(t),

i∗(0) = 1.
(20)
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dλ (t)

dt
− 5

2

∫ t∗f

t
λ (τ)dτ = λ (t),

λ (t∗f ) =
(

i∗(t∗f )+0.5
)
.

(21)

Here, we can do steps as in Example 1.
Step 1. By using formula (7), we get the solution of (21):

λ (t) =
(
i∗(t∗f )+0.5

)
e

1
2 (t−t∗f )

[
cos

3
2
(t− t∗f )+

1
3

sin
3
2
(t− t∗f )

]
. (22)

Step 2. v∗(t) =−sgn(λ (t)) =


−1, if t∗f − 2

3 tan−1(3)< t ≤ t∗f ,

0, if t = t∗− 2
3 tan−1(3),

1, if 0≤ t < t∗f − 2
3 tan−1(3).

Step 3. By using formula (8), we get

i∗(t) =

e−
1
2 t
[
cos 3

2 t− sin 3
2 t
]
, if if t∗f − 2

3 tan−1(3)≤ t ≤ t∗f ,

e−
1
2 t
[
cos 3

2 t + 1
3 sin 3

2 t
]
, if 0≤ t < t∗f − 2

3 tan−1(3).

Step 4. Calculate t∗f :

t∗f = min
{

t f :
∣∣i∗(t f )+0.5

∣∣= 0.001
}

= min
{

t f :
∣∣∣∣e− 1

2 t f

[
cos

3
2

t f − sin
3
2

t f

]
+0.5

∣∣∣∣= 0.001
}

≈ 0.9187091680.

Step 5. Substitute t∗f again in Step 2 and Step 3 to get v∗(t) and i∗(t) (Figure 4)

v∗(t) =

−1, if 0.0860119866≤ t ≤ 0.9187091680,

1, if 0≤ t < 0.0860119866.

i∗(t) =

e−
1
2 t
[
cos 3

2 t− sin 3
2 t
]
, if 0.0860119866≤ t ≤ 0.9187091680,

e−
1
2 t
[
cos 3

2 t + 1
3 sin 3

2 t
]
, if 0≤ t < 0.0860119866.

5 Conclusion

In this paper, we have extracted the necessary conditions for the optimal control of differential integral
systems, and derived two algorithms, one to find the minimum energy in electrical circuit containing a
resistance, a coil, and a capacitor (RLC circuit) and the second to find the shortest time for transferring
RLC electrical current from one state to another. In the future, one may develop these problems and
algorithms to include more general cases.
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Figure 4: Optimal electrical current for minimum time problem.
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