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Abstract. A concurrent learning (CL) adaptive control is proposed for a class of nonlinear systems in
the presence of dead-zone input nonlinearity to guarantee the exponential convergence of the tracking
and the parameter estimation errors. The proposed method enriches and encompasses the conventional
filtering-based CL by proposing robust and optimal terms. The optimal term is designed by solving a
suitable quadratic programming optimization problem based on control Lyapunov function theory which
also meets the need for prescribed control bounds. A suitable robust term is proposed to tackle the
presence of the dead-zone input nonlinearity. Recent methods of adaptive CL tune the control param-
eters using trial and error, which is a tedious task. In this paper, by some analysis and proposing two
nonlinear optimization problems, the values of the control parameters are derived. The nonlinear op-
timization problems are solved using the time-varying iteration particle swarm optimization algorithm.
The simulation results indicate the effectiveness of the proposed method.

Keywords: Concurrent learning, robust adaptive control, dead-zone nonlinearity, quadratic programming, control
Lyapunov function, particle swarm optimization.
AMS Subject Classification 2010: 93A30, 93C40, 93D05.

1 Introduction

Lyapunov method has been used effectively for the analysis and synthesis of affine nonlinear control
systems. In the beginning, it has been used for nonlinear stability analysis through defining a suitable
Lyapunov function. Later by proposing control Lyapunov function (CLF), control signal is derived in
a way to make the time derivative of a candidate Lyapunov function negative pointwise [10]. Since for
nonlinear affine systems the time derivative of a CLF is also affine in control signal, the control design
can be formulated as a quadratic programming (QP) [1]. The QP formulation is beneficial since it can

∗Corresponding author
Received: 18 August 2023 / Revised: 21 November 2023 / Accepted: 30 December 2023
DOI: 10.22124/jmm.2023.25300.2246

c© 2024 University of Guilan http://jmm.guilan.ac.ir

http://jmm.guilan.ac.ir


372 R. Shahnazi

design the control signal in an optimal fashion at the same time it is able to add other control constraints
such as prescribed control bounds [27].

The problem with QP-CLF method is that either there should be no uncertainty in the model or all the
uncertainties should be bounded with known bounds. However, uncertainties are unavoidable in practical
applications. Furthermore, assuming that all uncertainties are bounded is also has no practical interest.
Even if we consider this assumption plausible, it does not guarantee the convergence of CLF to zero and
may result in a high control effort [3].

One of the methods for handling uncertainties is adaptive control. In adaptive control uncertainties
are modeled as unknown parameters with known basis functions. The key issue with the conventional
adaptive methods such as model reference adaptive control (MRAC) [13], tracking-error-besed (TEB)
[24], and composite adaptive method [25] is that despite ensuring that the tracking error approaches zero
in the long run, the convergence of the estimated parameters to their actual values cannot be guaranteed.
Ensuring the convergence of estimated parameters to their true values has some advantages such as the
exponential closed-loop stability and the availability of a learned model which can be used for monitoring
and planning. However, to guarantee this convergence a condition called persistent excitation (PE) of the
states is required, which is energy consuming and causes excessive stress on the system [6,8,25]. The root
of this issue comes from the fact that conventional adaptive control methods use only the instantaneous
data in their adaptive laws. To cope with this problem, Chowdhary et al. in [8] proposed a new method
called concurrent learning (CL) adaptive control method. The CL method records highly informative
previous data and brings them in the adaptive laws. It is mathematically proved that if the quality of the
recorded data is high enough, the simultaneous exponential convergence of the tracking and estimation
errors to zero will be guaranteed.

To tackle uncertainties based on adaptive control and at the same time solve a QP-CLF to derive
adaptive control signal, recently some valuable methods have been proposed. For instance, in [27] using
QP-CLF and adding the safety constraints, an adaptive mechanism is considered to estimate uncertain
term in the model. However, uncertainty should be bounded and modeled as an additive term. In [4] with
the combination of CL and QP-CLF an adaptive control method is designed for a second-order canon-
ical system with known basis functions. In the same direction in [5], considering a single layer hidden
neural network as universal approximator with the combination of CL and QP-CLF with adding safety
constraints and control bounds an adaptive control method is proposed in the presence of unstructured
uncertainties. Both methods proposed in [4] and [5] only prove that the tracking and estimation errors
exponentially converge to compact sets and remain there after, i.e., all the closed-loop signals are uni-
formly ultimately bounded (UUB). Furthermore, the above methods require the derivative of the second
state for recording data which is handled via fixed-point smoothing method that may lose accuracy and
cause numerical instability. To resolve the above issues, Azimi et al. in [3] proposed filtering-based CL
and QP-CLF adaptive control method for the nth order canonical system. The suggested method in [3]
can tackle system parameters and control coefficient at the same time and proves the exponential conver-
gence of the tracking and estimation errors to zero. Furthermore, safety constraints and control bounds
have also been met while the need for nth order derivative of the state has been relaxed.

The above methods are just applied to affine nonlinear systems. However, in practice the input
nonlinearities are inevitable and they can be seen in many mechanical and electrical devices [20]. Dealing
with input nonlinearities are of utmost importance, since they seriously threaten the performance of the
system and ultimately jeopardize the closed-loop stability [9]. The input nonlinearities can come from
two main sources; it may happen due to the nonlinear behavior of the actuators, such as saturation, dead-
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zone and hysteresis or the model may inherently be nonlinear in control input [11, 12]. From the above
two sources of input nonlinearities the former is more common. The input nonlinearity in this paper is
due to the dead-zone actuator. The dead-zone actuator which is a non-smooth input nonlinearity can be
seen in servomotors, pneumatic and hydraulic valves, and electrical circuits [19,23]. It can also severely
damage the performance of the closed-loop system and even may lead the system to become unstable.

In this paper, an nth-order controllable canonical system preceded by dead-zone actuator is consid-
ered. The unknown parameters of the system and the control coefficient are estimated using the modified
filtering-based CL method. In the proposed controller two terms are considered; an optimal term and
a robust term. The optimal term is derived by defining a suitable QP-CLF problem which also consid-
ers the control bounds. The robust term is defined to deal with nonlinearities caused by the dead-zone
actuator. In the recent methods such as [3–5] choosing the values of the control parameters has been
done by trial and error. However, since there exist many control parameters and the values of param-
eters play an important role in closed-loop performance, this method is tedious and non-effective. In
this paper, through some analysis and proposing two optimization problems, the values of the control
parameters are derived. The proposed optimization problems are highly nonlinear and cannot be solved
utilizing conventional methods. Therefore, a metaheuristic method based on time-varying iteration par-
ticle swarm optimization (TVIPSO) [17, 21] which is a recent variant of PSO is used. The result is the
suboptimal values of the control parameters leading to reach to an effective performance with suitable
control effort. Eventually, the proposed method is applied to a jerk chaotic system. Simulation results
validate the efficiency and applicability of the proposed method. The contributions of this manuscript
can be summarized as follows:

1. The recent methods on the combination of CL and QP-CLF such as [3–5] have focused on affine
nonlinear systems. Here, the non-affine nonlinear systems are considered. The input nonlinearity
is due to dead-zone which is a commonplace nonlinearity in actuators [12, 19]. The proposed
method utilizes a robust structure to cope with the nonlinearity imposed by the dead-zone.

2. Since the number of control parameters is large and choosing their values is not a straightforward
task, in this manuscript, a novel method is proposed to choose their values. By theoretical analysis
and proposing two optimization problems and solving them using the TVIPSO [17,21], the values
of the control parameters are derived to achieve a desirable performance.

The rest of this manuscript is organized as follows: Section 2 describes the mathematical formulation
of the problem. The proposed method in the presence of the dead-zone actuator and stability analysis
are described in Section 3. Section 4 proposes an optimization method to derive the control parameter
values. Finally, to study the capability and applicability, in Section 5 the proposed method is applied to
a jerk chaotic system.

2 Problem formulation

The following non-affine nonlinear system is considered

x(n) = aT
ϕ(X)+bρ(X)ψ(u), (1)

where a = [a1, . . . ,am]
T ∈Rm is an unknown vector and b with 0 6= |b| ≤ bmax is an unknown real number

with known sign and bound. The state vector is defined as X = [x, ẋ, . . . ,x(n−1)]T ∈Rn, the vector function
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ϕ(X) = [ϕ1(X), . . . ,ϕm(X)]T ∈Rm and the function ρ(X) 6= 0 are known. ψ(u) represents the dead-zone
input nonlinearity as

ψ(u) =


κ(u−ωr),

0,
κ(u+ωl),

u≥ ωr,

−ωl < u < ωr,

u≤−ωl.

(2)

where u is the control signal and κ, ωr and ωl are known positive constants.
The control objective is to design an adaptive control law to guarantee the exponential convergence

of the tracking error e = x− xd to zero and the unknown parameters to their true values in the presence
of dead-zone input nonlinearity, where xd is the desired signal which is known, smooth and bounded.

3 Proposed adaptive control and stability analysis

3.1 Proposed adaptive control law in the presence of dead-zone

System (1) can be expressed as
η

T
ξ (x(n),ϕ(X)) = ρ(X)ψ(u), (3)

where η = 1
b [1,a

T ]T and ξ (x(n),ϕ(X)) = [x(n),−ϕT (X)]T .
From (2), we have ψ(u) = κu+F (u), where

F (u) =


−κωr,

−κu,
κωl,

u≥ ωr,

−ωl < u < ωr,

u≤−ωl.

(4)

It can be immediately obtained that F (u) is bounded. Thus, system (3) can be written as

1
b

e(n)− 1
b

zopt +η
T

ξ (x(n)d + zopt ,ϕ(X)) = κρ(X)u+
1
b

dF (u,X), (5)

where dF (u,X) = bρ(X)F (u) and |dF (u,X)| ≤ ∆, with ∆ = bmax |ρ(X)|max(κωr,κωl).
zopt = αopt + αr, where αopt is an optimal signal derived via solving the quadratic programming in
(16) and αr is the robust structure defined as in (9). Defining the control law as

u =
1

κρ(X)
η̂

T
ξ (x(n)d + zopt ,ϕ(X)), (6)

where η̂ is an estimate of η . The nonlinear system (5) can be expressed as

e(n) = αopt +αr +bη̃
T

ξ (x(n)d + zopt ,ϕ(X))+dF (u,X), (7)

where η̃ = η̂−η . Also, by defining E = [e, ė, . . . ,e(n−1)]T , (7) yields

Ė = A E +B(αopt +αr +dF (u,X)+H (η̃)), (8)

where A =

[
0 I
0 0

]
∈Rn×n, B =

[
0
1

]
∈Rn, H (η̃) = bη̃T ξ (x(n)d +zopt ,ϕ(X)). The robust structure



Robust exponential concurrent learning adaptive ... 375

αr =−(∆+υ)sgn(E T PB), (9)

is considered, where υ is a small positive constant and sgn(·) is the sign function.
In the beginning, let us consider H (η̃) = 0. Thus, system (8) becomes

Ė = A E +B(αopt − (∆+υ)sgn(E T PB)+dF (u,X)). (10)

Definition 1. For the dynamics (10) a continuously differentiable function V (E ) :Rn→R is an exponen-
tial control Lyapunov function (ECLF) if there exist positive constants β1, β2 and β3 and a set of controls
U such that [3]

β1 ‖E ‖2 ≤V (E )≤ β2 ‖E ‖2 ,

inf
αopt∈U

V̇ (E ,αopt)≤−β3V (E ), (11)

where V̇ (E ,αopt) is the time derivative of V (E ) considering (10).

The following Lyapunov function candidate is considered for the purpose of formulating an ECLF-
based controller when H (η̃) = 0

V (E ) = E T PE , (12)

where P = PT � 0 is the solution of the following algebraic Riccati equation

A T P+PA −PBBT P+Q = 0, (13)

with Q = QT � 0.
Using (10) the time derivative of (12) becomes

V̇ (E ,αopt) = E T (A T P+PA )E +2E T PBαopt −2(∆+υ)
∣∣E T PB

∣∣+2E T PBdF (u,X)

≤ E T (A T P+PA )E +2E T PBαopt −2(∆+υ)
∣∣E T PB

∣∣+2
∣∣E T PB

∣∣∆
≤ E T (A T P+PA )E +2E T PBαopt . (14)

Based on Definition 1, in order to guarantee V (E ) to be an ECLF, a family of controllers αopt should be
searched to satisfy the following constraint:

ϒ0(E )+ϒ1(E )αopt ≤ 0, (15)

where ϒ0(E ) = E T (A T P+PA )E +µV (E ) and ϒ1(E ) = 2E T PB with µ is a chosen positive constant.
It should be noted that constraint (15) yields V̇ (E ,αopt) ≤ −µV (E ) and in turn guarantees V (E ) to be
exponentially convergent. In order to find the αopt , the following QP can be considered:

αopt =argmin
α∈R

1
2

α
2,

s.t. ϒ0(E )+ϒ1(E )α ≤ 0. (16)
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Based on the discussions above and [3], V (E ) is a valid ECLF in the absence of H (η̃). Obviously,
in the presence of H (η̃) we have

V̇ (E ,αopt)≤−µV (E )+2E T PBbη̃
T

ξ (x(n)d + zopt ,ϕ(X))

≤−µV (E )+ν(‖η̃‖), (17)

where ν(·) ∈K∞. Evidently if η̃ does not converge to zero, the exponential convergence of V (E ) is
no longer guaranteed. Therefore, a suitable adaptive law should be used to guarantee the exponential
convergence of η̃ to zero. Based on the same discussion as in [3], in order to handle the unavailability of
x(n), by filtering both sides of (3) with stable filter H(s) = ς

s+ς
, we have∫ t

0
h(t− τ)ηT

ξ (x(n),ϕ(X))dτ =
∫ t

0
h(t− τ)ρ(X)ψ(u)dτ,

⇒
∫ t

0
h(t− τ)[

1
b

x(n)− aT

b
ϕ(X)]dτ =

∫ t

0
h(t− τ)ρ(X)ψ(u)dτ, (18)

where h(t) = ςe−ςt with ς > 0. Using partial integration, we have

1
b

∫ t

0
h(t− τ)x(n)dτ =

1
b

[
h(0)x(n−1)(t)−h(t)x(n−1)(0)−

∫ t

0

d
dτ

(h(t− τ))x(n−1)(τ)dτ

]
. (19)

Thus, ∫ t

0
h(t− τ)ηT

ξ (x(n),ϕ(X))dτ = η
T

ξ f (X), (20)

where

ξ f (X) =

[
h(0)x(n−1)(t)−h(t)x(n−1)(0)−

∫ t
0

d
dτ
(h(t− τ))x(n−1)(τ)dτ

−
∫ t

0 h(t− τ)ϕ(X(τ))dτ

]
. (21)

Therefore, using (18) we have

η
T

ξ f (X) =
∫ t

0
h(t− τ)ρ(X)ψ(u)dτ. (22)

The adaptive law is proposed as follows

˙̂η =−Γ

(
ξ (x(n)d + zopt ,ϕ(X))E T PBsgn(b)+

r

∑
i=1

ξ f (Xi)ε
T
i

)
, (23)

where Γ � 0 ∈ R(m+1)×(m+1) is the adaption gain matrix, Xi is the ith recorded state vector and
ε = η̂T ξ f (X)−ηT ξ f (X) = η̃T ξ f (X), where εi is calculated for the ith recorded state vector. It should be
noted that to realize ε , ηT ξ f (X) is not needed and it is obtained through the integral in the right hand side
of (22). Furthermore, the stored data should be chosen to make the matrix Θ = [ξ f (X1), . . . ,ξ f (Xr)] ∈
R(m+1)×r highly informative and ΘΘT � 0. For implementation, this can be done by choosing the vector
which is sufficiently far away from the previous recorded vector, i.e., mathematically if∥∥ξ f (X)−ξ f p

∥∥2∥∥ξ f (X)
∥∥ ≥ δ ,

then ξ f (X) is recorded, where ξ f p is the previously recorded vector and δ is a design positive constant. It
is noteworthy that r, which is the number of recorded data, should satisfy r ≥ m+1. Using the adaptive
law in (23), in Subsection 3.2 it will be proved that η̃ converges to zero exponentially.
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Remark 1. After Θ is completed, i.e., the number of columns becomes rmax, where rmax is the maximum
value of r chosen by the designer, the new data ξ f (X) will be chosen if it increases the σmin(Θ), i.e, the
minimum singular value of Θ. To this end, Algorithm 1 in [7, 8] is utilized. The algorithm successively
replaces each column of Θ with the current data point ξ f (X) and stores each obtained minimum singular
value in a variable. Then the maximum of these values is found, and if the resulting configuration
increases the current minimum singular value, the algorithm will replace the corresponding data point
with the new data point ξ f (X).

Remark 2. In practice usually the control signal u should be bounded by prescribed known lower and
upper bounds, i.e., for given positive constants umax and umin we should have −umin ≤ u≤ umax. There-
fore, to avoid having aggressive control signal and at the same time to have a numerically robust problem,
the QP in (16) is modified as

αopt =argmin
(α,θ)∈R2

1
2

α
2 +ϑθ

2,

s.t. ϒ0(E )+ϒ1(E )α ≤ θ ,

1
b̂κρ(X)

α ≤ umax−
1

κρ(X)
η̂

T
ξ (x(n)d +αr,ϕ(X)),

− 1
b̂κρ(X)

α ≤ umin +
1

κρ(X)
η̂

T
ξ (x(n)d +αr,ϕ(X)), (24)

where θ is the slack variable to prioritize bounded control and smooth control signal over tracking. It
should be noted that based on the same discussion in [26], if the QP is feasible, the weight ϑ can be
chosen large enough to make the slack variable θopt ≈ 0.

3.2 Stability analysis

To prove the exponential stability of the closed-loop system the following theorem is expressed.

Theorem 1. Consider system (1) preceded by the dead-zone input nonlinearity in (2). Suppose the
control law in (6), the robust term in (9), the QP in (16) and the adaptive law in (23). If xd is able to
derive informative data i.e., for r≥m+1, Θ is full rank and thus ΘΘT is positive-definite, then E and η̃

will exponentially tend to zero for any E (0) and for unknown parameters η ∈ Rm+1.

Proof. Consider the following candidate for the Lyapunov function

VT (E , η̃) =V (E )+ η̃
T

Γ
−1 |b| η̃ . (25)

The time derivative of VT (E , η̃) using (12)-(17) yields

V̇T (E , η̃)≤−µE T PE +2η̃
T |b|Γ−1

(
ΓE T PBξ (x(n)d + zopt ,ϕ(X))sgn(b)+ ˙̂η

)
.

Using the adaptive law (23) we have

V̇T (E , η̃)≤−µE T PE −2 |b| η̃T
ΘΘ

T
η̃ ,

where ΘΘT � 0. Thus,
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V̇T (E , η̃)≤−µλmin(P)‖E ‖2−2 |b|λmin(ΘΘ
T )‖η̃‖2

≤−ϖVT (E , η̃), (26)

where ϖ = min{µ λmin(P)
λmax(P)

,2 λmin(ΘΘT )
λmax(Γ−1)

} > 0 with λmin(·) and λmax(·) are minimum and maximum eigen-
values of a square matrix. Thus, based on the same discussion as in [8, 16], VT (E , η̃) tends to zero
exponentially as t → ∞, consequently (E , η̃) exponentially tends to zero as t → ∞. Since VT (E , η̃) is
radially unbounded, the stability proof is global.

4 The parameter values of the proposed adaptive control

To apply the proposed method, the values of the positive parameters µ, ς , δ , and r, and the positive-
definite matrices Q and Γ should be appropriately chosen. In order to decrease burden of computation, Q
and Γ are considered diagonal. Given (26) to have a desirable exponential convergence and at the same
time to improve the performance of the parameter estimations, we need to increase µ

λmin(P)
λmax(P)

and λmin(ΘΘT )
λmax(Γ−1)

.

One may propose to increase µ and λmin(Γ) =
1

λmax(Γ−1)
, simultaneously without considering P and ΘΘT .

However, increasing λmin(Γ) means increasing adaptation gain which can stimulate unmodeled dynamics
and in practice can make the closed-loop system unstable. Moreover, the differential equation of the
adaptive law becomes stiff, and numerically unstable. On the other hand, increasing µ will increase the
control effort which is also undesirable in practical use. Usually µ = 1 and Γ = I ∈ R(m+1)×(m+1) are
suitable choices. Based on the discussion in Subsection 3.1 for r, the number of recorded data, we should
have m+1≤ r ≤ rmax. rmax is limited due to memory usage and processing capability. In this paper, to
make ΘΘT highly informative, we choose r = rmax. In order to choose the matrix Q which for decreasing
the burden of computation is considered diagonal i.e., Q = diag[q1, . . . ,qn], the following optimization
problem is proposed

max
q1,...,qn

λmin(P)
λmax(P)

.

s.t. (13). (27)

Based on the discussion in Section 3, to have a desirable parameter estimation we need to choose
the recording data such that λmin(ΘΘT ) = σ2

min(Θ) is maximized where σmin(·) is the minimum singular
value of a matrix. Algorithm 1 proposed in [7,8] and described in Remark 1, enlarges σmin(Θ), however,
the values of the parameters ς and δ should be chosen in advance. In this paper, we optimize Algorithm
1 in [7, 8] by defining the following optimization problem

max
ς ,δ

σmin(Θ). (28)

Solving the proposed optimization problems in (27) and (28) not only gives us the values of the
control parameters but also dramatically enriches the performance. However, (27) and (28) are nonlinear
optimization problems that cannot be solved using conventional methods. In order to find a suboptimal
solution, we can utilize metaheuristic search algorithms [14].
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There are several metaheuristic methods, the most effective ones are population-based algorithms.
For instance, genetic algorithm (GA), ant colony optimization (ACO), and particle swarm optimization
(PSO) are the three most commonly used population-based metaheuristic methods. In this manuscript,
PSO is considered, which was introduced by Kennedy and Eberhart in [15]. The idea and formulation of
the PSO algorithm were inspired by observing the social behavior of groups of birds and fish.

It has been observed that the primary PSO suffers from insufficient performance and sluggish con-
vergence, especially for problems with multiple local optima [2]. In order to enrich the performance
of the primary PSO several variants have been proposed. One of the simple yet effective variants is
iteration PSO (IPSO), which by adding a new term enhances the performance of the PSO and de-
creases the convergence time [17, 21, 22]. Suppose that the solution space is nd-dimensional, then in
the beginning IPSO generates np number of random particles i.e., potential solutions. Each particle i
at iteration k has a position vector and a velocity vector as Pk

i = [pk
i1, . . . , pk

ind
] and V k

i = [vk
i1, . . . ,v

k
ind
],

respectively. Consider the best position found by ith particle until the current iteration is denoted by
Pk

besti = [pk
besti1 , . . . , pk

bestind
] and the best position among all Pk

besti is denoted by Gk
best = [Gk

best1 , . . . ,G
k
bestnd

].

Besides, rk
best = [rk

best1 , . . . ,r
k
bestnd

] is the best position achieved by any particle at iteration k. The update
laws are as follows [17]

vk+1
i j = ωvk

i j + c1r1(pk
besti j
− pk

i j)+ c2r2(Gk
best j
− pk

i j)+ c3r3(rk
best j
− pk

i j),

pk+1
i j = pk

i j + vk+1
i j ,

where ω is the inertia weight, c1, c2, and c3 are acceleration coefficients, r1, r2, and r3 are three random
numbers generated uniformly from [0,1].

However, the parameters of IPSO (c1, c2, ω , and c3) should still be chosen in advance. In order to
achieve both adaptive updating of the parameters and maintain the quality of the IPSO, in [21] a time-
varying IPSO (TVIPSO) is proposed to derive the parameter values of IPSO in each iteration using the
following equations

c1 = c10 +
c1 f − c10

kmax
k, c2 = c20 +

c2 f − c20

kmax
k,

c3 = c1(1− e−c2k), ω = ω0 +
ω f −ω0

kmax
k,

where c10, c20, ω0 are the initial values and c1 f , c2 f , ω f are the final values, furthermore, kmax is the
maximum number of iterations. Also, in [21], the initial and final values c10 = 1.75, c1 f = 0.5, c20 = 0.5,
c2 f = 2, ω0 = 0.9 and ω f = 0.4 are suggested.

5 Simulation example

To verify the efficiency and applicability of the proposed method, a third-order chaotic system is consid-
ered [18]

ẋ1 = x2, ẋ2 = x3, ẋ3 = a1x1 +a2x2 +a3x3 +a4x2
3 +a5x1x2 +ψ(u), (29)

where a1 = −2, a2 = −1, a3 = −1.1, a4 = −0.3 and a5 = 1. Comparing (29) with (1), it can be seen
that n = 3, m = 5, a = [−2,−1,−1.1,−0.3,1]T , ϕ(X) = [x1,x2,x3,x2

3,x1x2]
T , b = 1, ρ(X) = 1 and
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Figure 1: The chaotic attractor of system (29) without external force ψ(u) = 0 and X(0) =
[0.1,0.1,0.1]T .

X = [x1,x2,x3]
T . Furthermore, ψ(u) represents the dead-zone input nonlinearity where u is the control

input. Firstly, the external force ψ(u) = 0 is assumed. Figure 1 demonstrates chaotic attractor of the
system without any external force for the initial condition X(0) = [0.1,0.1,0.1]T . From this figure the
chaotic behavior of the system can be easily seen.

The control objective is to design an adaptive control law to make x1, x2 and x3 track xd = sin(t),
ẋd = cos(t) and ẍd = -sin(t), respectively, and to estimate the unknown parameters a1, a2, a3, a4, a5
and b. Meanwhile, the control signal should be kept in [−10,10]. To challenge the applicability of
the proposed method, κ = 1.2, ωr = 2 and ωl = 1 are considered which shows a significant dead-zone.
Without loss of generality bmax = 3 is considered, besides, υ = 0.1 is assumed. The proposed method is
applied considering the control law in (6), the robust term in (9), the QP in (24) with umin = umax = 10
and ϑ = 30 and the adaptive law in (23) with η̂(0) = [2,0,0,0,0,0]T . To avoid chattering phenomenon
in practice, the sgn(·) function in (9) is approximated by tanh( ·

ι
) with ι = 0.01. It should be noted that

the parameter ι is a trade off between accuracy and chattering. As stated in Section 4, µ = 1 and Γ = I6×6
are recommended, furthermore the number of recorded data r = 100 is considered. This number can be
decreased or increased considering the limitation on memory and processing capability, but in any case
it should be greater than 6. To choose the parameters qi, i = 1,2,3 and ς and δ we apply the proposed
optimization problems in (27) and (28). To this end, the intervals for the parameters qi ∈ [0.01,100],
i = 1,2,3, ς ∈ [1,30] and δ ∈ [0.01,1] are considered. To solve the optimization problem in (27) the
TVIPSO with kmax = 500 and np = 10 is used. Meanwhile, the optimization problem in (28) is solved
by TVIPSO with kmax = 20 and np = 3. The suboptimal parameters are obtained as in Table 1.

The simulation results using the suboptimal control parameters in Table 1 can be seen in Figures 2-5.
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Table 1: Suboptimal parameter values obtained using the proposed method in Section 4.

ς∗ δ ∗ q∗1 q∗2 q∗3
19.05923 0.02793 1 8.4186 8.4186
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Figure 2: (a) x1 and xd (b) x2 and ẋd (c) x3 and ẍd .
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â4

â5
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ã4

ã5
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Figure 3: (a) The estimated parameters and the true values (b) The estimation errors.

Figure 2 shows the states and desired signals. It can be seen that satisfactory tracking is achieved for all
three states. The estimation of the unknown parameters of the model is demonstrated in Figure 3. It can
be understood that after about 5 seconds all estimations converge to the true values exponentially. Figures
4 (a)-(c), respectively show control signal u, the term zopt , and the output of the dead-zone actuator ψ(u).
It can be seen that after the convergence of the states and parameters, u, zopt and ψ(u) are effectively
reached their steady states. Figure 5 shows the evolution of the minimum singular value of the matrix Θ

using the suboptimal values in Table 1.

6 Conclusion

A concurrent learning adaptive control for a class of nonlinear systems in the presence of dead-zone
input nonlinearity is proposed. A feedback control law is proposed which contains an optimal term
and a robust structure. The optimal term is derived by proposing a suitable quadratic programming
(QP) based on control Lyapunov function (CLF). The proposed QP-CLF can also handle the prescribed
control bounds. The robust term is designed to tackle the input nonlinearity caused by the dead-zone.
The exponential convergence of the tracking and parameter estimation errors is analyzed using Lyapunov
approach. The recent scholars usually tune the control parameters by trial and error, however, when the
number of control parameters is large this becomes a tedious task. In this paper, to derive the values of
the control parameters, with some theoretical analysis, two optimization problems have been proposed
and solved using time-varying iterative particle swarm optimization. A jerk chaotic system is simulated
to demonstrate the efficiency and applicability of the proposed method. In this work, the dead-zone
as a non-smooth input nonlinearity with known parameters is considered. In future work, the unknown
parameters case and other types of non-smooth nonlinearities such as backlash, saturation, and hysteresis
can be studied.
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Figure 4: Control signals (a) u (b) zopt (c) ψ(u).
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Figure 5: Evolution of σmin(Θ).
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