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Abstract. In this paper, we present primal-dual interior-point methods (IPMs) for convex quadratic
programming (CQP) based on a new twice parameterized kernel function (KF) with a hyperbolic barrier
term. To our knowledge, this is the first KF with a twice parameterized hyperbolic barrier term. By using
some conditions and simple analysis, we derive the currently best-known iteration bounds for large- and
small-update methods, namely, O

(√
n logn log n

ε

)
and O

(√
n log n

ε

)
, respectively, with special choices of

the parameters. Finally, some numerical results regarding the practical performance of the new proposed
KF are reported.

Keywords: Convex quadratic programming, kernel function, interior-point methods, large- and small-update meth-
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1 Introduction

In this paper, we deal with primal-dual IPMs for solving the standard CQP problem

min
{

cT x+
1
2

xT Qx : Ax = b, x≥ 0
}
, (P)

and its dual as

max
{

bT y− 1
2

xT Qx : AT y−Qx+ s = c, s≥ 0
}
, (D)
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where Q ∈ Sn
+, A ∈ Rm×n, rank(A) = m,b ∈ Rm, y ∈ Rm, and x,c,s ∈ Rn with m ≤ n. If Q = 0, we see

that our problem reduces to linear programming (LP), so, we can say that CQP is a generalization of LP.
Throughout the paper, we assume that the matrix A has full row rank, i.e., rank(A)= m≤ n and both

problems (P) and (D) satisfy the interior point condition (IPC), i.e., there exists a strictly feasible point,
namely, (x0,y0,s0) such that

Ax0 = b, x0 > 0, AT y0−Qx0 + s0 = c, s0 > 0.

CQP appears in many areas of applications, for example in optimal control, economics, finance,
agriculture, geometric problems and also as sub-problems in sequential quadratic programming. In the
last two decades, powerful mathematical approaches have been suggested for solving CQP problems.
IPMs are one of the effective tools for this purpose. The revolution of IPMs started with the seminal
work of Karmarkar [14], who proposed an efficient polynomial-time IPM for LP and invented his famous
algorithm for LP.

Then, the concept of primal-dual IPMs was first introduced by Kojima et al. [16] and Megiddo [18].
After that, Nestrov et al. [19] developed the IPMs from LP to convex programming problems such as
CQP, semidefinite programming (SDP) and second order cone programming (SOCP).

KFs play an important role in the analysis of IPMs and the determination of the search directions.
Peng et al. in [20,21] introduced and analyzed for the first time primal-dual IPMs for LP problems based
on the so-called self-regular (SR) KFs. They successively improved the theoretical complexity bound
from O

(
n log n

ε

)
to the currently best-known iteration bound, namely, O

(√
n logn log n

ε

)
for large-update

methods.
Since then, several KFs have been introduced, they differs from the types of their barrier term, poly-

nomial [3, 6], exponential [9, 10, 26, 30], trigonometric [4, 5, 13, 15] and the last introduced type, that is
the hyperbolic [8, 23–25, 28, 29].

The first primal-dual IPM for CQP, based on a KF, was proposed by Wang et al. in [27]. The proposed
KF already used for LP and SDP, covers the classical logarithmic KF and the SR function. Later on, Cai
et al. [9] presented a primal-dual IPM for CQP based on a finite barrier term. The theoretical results show
that their algorithms have the best-known iteration bound. Very recently, Boudjellal et al. also suggested
other KFs for CQP in [6, 7].

The main goal of this paper is to introduce a new twice parametric KF with a hyperbolic barrier
term. For the development of primal-dual IPMs to solve CQP problems, we analyze the properties of the
proposed KF. More precisely, we prove that, for large-update methods, the corresponding algorithm has
O
(
(p+q)

(
2+ 1

q logn
)2√n log n

ε

)
iteration bound. An interesting choice, where p = q = log(n), leads to

the best iteration complexity bound for large-update methods, namely, O
(√

n logn log n
ε

)
. Table 1 gathers

all twice KFs existing in the literature, to our knowledge.
This paper is organized as follows; In Section 2, we briefly describe the generic primal-dual IPMs

for solving CQP problems and its algorithm. In Section 3, we present our new twice KF and some of its
properties, we also compute the growth of the proximity function. In Section 4, we talk about the step
size. In Section 5, we provide the worst-case iteration complexity bounds for large- and small-update
methods. Section 6 contains some numerical experiments and commentaries. Finally, we finish the paper
with some concluding remarks.

Throughout the paper, we use the following notations. The non-negative and positive orthants are
denoted by Rn

+ and Rn
++, respectively. ‖ · ‖ denotes the Euclidian norm in Rn, 〈·, ·〉 denotes the inner
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product and e denotes the n-dimensional vector of ones. The set of all (m×n) matrices with real entries
is denoted by Rm×n, Sn

+ denotes the cone of positive semidefinite matrices in the real space of (n× n)
symmetrical matrices Sn. For a vector x ∈ Rn, X = diag(x) denotes the n× n diagonal matrix whose
diagonal entries are the components of x. For given vectors x and s, the vectors xs and x

s denote the
coordinate-wise operations on the vectors x,s.

For two functions f , g : Rn
++→ R, we say that, f (x) = O(g(x)) if f (x) ≤Cg(x) for some positive

constant C and f (x) = Θ(g(x)) if C1g(x)≤ f (x)≤C2g(x) for some positive constants C1 and C2.

2 Preliminaries

In this section, we describe the main idea of IPMs based on KFs for solving CQP problems. We also
provide the structure of the generic primal-dual interior-point algorithm.

Finding an optimal solution of (P) and (D) is equivalent to solve system of the Karush-Kuhn-Tucker
(KKT) optimality conditions

Ax = b, x≥ 0,

AT y−Qx+ s = c, s≥ 0,

xs = 0.

The main idea behind primal-dual IPMs is to replace the complementarity condition xs = 0 with the
equation xs = µe, where µ > 0 is a parameter, which we obtain the following perturbed system

Ax = b, x > 0,

AT y−Qx+ s = c, s≥ 0, (1)

xs = µe.

Since the matrix A is full rank and the IPC holds, system (1) has a unique solution (x(µ),y(µ),s(µ))
for any µ > 0, where x(µ) is called the µ-center of (P) and (y(µ),s(µ)) is called the µ-center of (D).
The set of µ-centers gives a homotopy path which is called the central path of the problems (P) and
(D). When µ → 0, the limit of the central path exists and converges to an analytic center of the optimal
solutions set of (P) and (D) for CQP.

Then, the new iterate is computed as

x+ = x+α∆x, s+ = s+α∆s, y+ = y+α∆y, (2)

where 0 < α ≤ 1 is the step size, then the new iterate satisfies (x+,s+)> 0. In fact, we may assume that
x0 = s0 = e and µ0 = 1.

For a fixed µ > 0, applying Newton’s method on (1) provides the following system for the search
directions (∆x,∆y,∆s)

A∆x = b,

AT
∆y−Q∆x+∆s = 0, (3)

s∆x+ x∆s = µe− xs.
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System (3) has a unique solution (∆x,∆y,∆s), called Newton’s direction.
Therefore, we define the following scaled vector v and the scaled search directions dx and ds by

v =
√

xs
µ
, dx =

v∆x
x

, ds =
v∆s

s
. (4)

After some elementary calculations, system (3) can be represented as follows

Ādx = 0,

ĀT
∆y− Q̄dx +ds = 0, (5)

dx +ds = v−1− v,

whereat,

Ā =
1
µ

AV−1X = AS−1V, Q̄ = µV S−1QV S−1.

It can be easily seen that dx = ds = 0 if and only if v−1− v = 0 if and only if x = e if and only if
x = x(µ), s = s(µ).

We can observe that the right-hand side in the third equation in (5) equals minus the gradient of the
classical logarithmic barrier function Ψc(v) : Rn

++→ R+ defined as

Ψc(v) := Ψc(x,s; µ) =
n

∑
i=1

ψc(vi) =
n

∑
i=1

(v2
i −1

2
− logvi

)
, v ∈ Rn

++.

That is to say
v−1− v =−∇Ψc(v),

we say that ψc(t) is the KF of the logarithmic barrier function Ψc(v).
We replace the right-hand-side of the last equation in (5) by −∇Ψ(v): the negative gradient of the

barrier function Ψ(v) whose KF is defined in (6). Then, system (5) becomes

Ādx = 0,

ĀT
∆y− Q̄dx +ds = 0,

dx +ds =−∇Ψ(v).

This system has a unique solution (dx,∆y,ds) for each µ > 0. If (x,y,s) 6= (x(µ),y(µ),s(µ)), then
(∆x,∆y,∆s) is nonzero.

The only difference comparing with the LP case is that, in the CQP analysis, we loose the orthogo-
nality of the search direction vectors dx and ds. Since Q̄ is symmetric positive semidefinite matrix, we
have

dT
x ds = dT

s dx =
(
Q̄dx− ĀT

∆y
)T dx = dT

x Q̄dx ≥ 0.

Despite this difference, almost all theoretical results on iterate directions developed for LP hold for CQP.
Now, we can outline the above procedure in the following primal-dual interior-point algorithm. Al-

gorithm 1 has an inner and an outer iteration. Each outer iteration consists of an update of the parameter
µ and a sequence of (one or more) inner iterations. At the start of an outer iteration of Algorithm 1 and
just before updating the parameter µ with the factor 1− θ , one has Ψ(v) ≤ τ , for given τ . Due to the
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Algorithm 1 A generic primal-dual interior-point algorithm for CQP.
Input

a threshold parameter τ > 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ ∈]0,1[;
(x0,y0,s0) satisfy the IPC and µ0 = 1 such that Ψ(x0,y0; µ0) := Ψ(v0)≤ τ.

begin
x := x0;s := s0; µ := µ0;

while nµ ≥ ε do
begin (outer iteration )

µ := (1−θ)µ;
while Ψ(x,y; µ) := Ψ(v)> τ do

begin (inner iteration)
x = x+α∆x;
y = y+α∆y;
s = s+α∆s;
v :=

√
xs
µ

end (inner iteration)
end (outer iteration)

µ-update, the vector v is divided by a factor
√

1−θ , which leads to an increase in the value of Ψ(v), in
general. The subsequent inner iterations are performed in order to decrease the values of Ψ(v) until it
passes the threshold τ again, i.e., Ψ(v)≤ τ . So, the largest values of the proximity function Ψ(v) occur
just after µ-update. At this stage, we have found an ε− optimal solution of problems (P) and (D).

3 The new twice parameterized KF and its properties

In this section, we introduce the following new KF and investigate its properties

ψpq(t) =
t2−1

2
− tanhp(1)

∫ t

1
cothp(x)eqc(coth(x)−coth(1))dx, t > 0, p≥ 1, q≥ 1, (6)

where

c =
1

coth2(1)−1
.

Now, we need to compute the first three derivatives of function (6). In fact, we have for all t > 0

ψ
′
pq(t) = t− tanhp(1)cothp(t)eqc(coth(t)−coth(1)), (7)

ψ
′′
pq(t) = 1+ tanhp(1)K(t)cothp−1(t)

(
p+qccoth(t)

)
eqc(coth(t)−coth(1)), (8)
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ψ
′′′
pq(t) =− tanhp(1)K(t)

((
p+qccoth(t)

)(
2coth2(t)+K(t)((p−1)+qccoth(t)

)
+qccoth(t)K(t)

)
eqc(coth(t)−coth(1)),

where

K(t) = coth2(t)−1 =
1

sinh2(t)
.

We can see that ψ ′′pq(t)> 1 and ψ ′′′pq(t)< 0, for all t > 0.
If we take t ≥ 1 in (6), we get x≥ 1. We know that the function x→ coth(x) is decreasing on (0,+∞),

which implies that coth(x)≤ coth(1). Thus

ψpq(t)≥
t2−1

2
−
∫ t

1
dx =

t2−1
2
− (t−1),

which implies that lim
t→+∞

ψpq(t) = +∞.

We recall from [28] that
2xcoth(x)−1 > 0, x > 0. (9)

When we take t < 1 in (6), we have for all x ∈ [t,1], coth(x)≥ coth(1). Thus,∫ 1

t
cothp(x)eqc(coth(x)−coth(1))dx≥

∫ 1

t
coth(x)dx.

This gives

ψpq(t)>
t2−1

2
+

tanhp(1)
2

∫ 1

t

1
x

dx =
t2−1

2
− tanhp(1) ln(t)

2
,

which leads to lim
t→0+

ψpq(t) = +∞. Thus, we can say that ψpq is a KF.

Lemma 1. Let ψpq be the function defined in (6). Then, we have

ct(coth2(t)−1)−1 > 0, i.e. ctK(t)−1 > 0, ∀t < 1. (10)

Proof. We define
g(t) = ct(coth2(t)−1)−1,

then, we have
g′(t) = c(coth2(t)−1)(1−2t coth(t))< 0.

We see from (9) that g is decreasing, then for all t < 1, we obtain g(t)> g(1) = 0.

Lemma 2. For the function ψpq defined by (6), we have

t ψ
′′
pq(t)−ψ

′
pq(t)> 0, t > 0, (11)

t ψ
′′
pq(t)+ψ

′
pq(t)> 0, t > 0, (i.e., ψpq is exponentially convex). (12)
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Proof. We use the first two derivatives of ψpq defined in (7) and (8). First, we have for (11)

t ψ
′′
pq(t)−ψ

′
pq(t) = tanhp(1)

(
K(t)t

(
p+qccoth(t)

)
+ coth(t)

)
eqc(coth(t)−coth(1)) > 0.

The inequality (12) is obvious for t ≥ 1 since in that case ψ ′pq(t)≥ 0.
For t < 1, we have

t ψ
′′
pq(t)+ψ

′
pq(t) = 2t + tanhp(1)

(
ptK(t)+ coth(t)

(
qc tK(t)−1

))
eqc(coth(t)−coth(1)),

which gives the desired inequality thanks to (10) since q≥ 1, this completes the proof.

In what follows, we define ρ : [0,+∞)→ (0,1] as the inverse function of t ∈ (0,1] 7→ −1
2 ψ ′pq(t). We

have the following lemma.

Lemma 3. For all z≥ 0, we have

eqc(coth(ρ(z))−coth(1)) ≤ 2z+1
tanhp(1)cothp(ρ(z))

, (13)

coth(ρ(z))≤ coth(1)+
1
q

log(2z+1). (14)

Proof. Let z ≥ 0, thus there exists a unique t ∈]0,1] such that z = −1
2 ψ ′pq(t). By the definition of ψ ′pq,

we have

−
(

t− tanhp(1)cothp(t)eqc
(

coth(t)−coth(1)
))

= 2z,

then, we obtain
tanhp(1)cothp(t)eqc(coth(t)−coth(1)) ≤ 2z+1.

Since
1

tanhp(1)cothp(t)
≤ 1, for all t ≤ 1, we have

eqc(coth(t)−coth(1)) ≤ 2z+1
tanhp(1)cothp(t)

≤ 2z+1. (15)

Taking the logarithm of both sides and since c > 1, we get

q(coth(t)− coth(1))≤ log(2z+1). (16)

Then, putting t = ρ(z) in (15) and (16), respectively, we get the desired inequalities.

The following lemma gives some other properties of the new proposed KF.

Lemma 4 (Lemma 3.4 in [22]). For any v ∈ Rn
++, one has

1.
1
2
(t−1)2 ≤ ψpq(t)≤

1
2
(ψ ′pq(t))

2, t > 0.

2. Ψ(v)≤ 2δ (v)2.
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3. ‖v‖ ≤
√

n+
√

2Ψ(v)≤
√

n+2δ (v),

where δ (v) : Rn
++→ R+ is the norm-based proximity measure defined as

δ (v) :=
1
2
‖−∇Ψ(v)‖= 1

2

√
n

∑
i=1

(ψ ′pq(vi))2.

Remark 1. We assume that Ψ(v)≥ τ ≥ 1. Using the second item of Lemma 4, we conclude that

δ (v)≥ 1
2
. (17)

3.1 The growth of the proximity function

In this subsection, we discuss the growth behavior of the proximity function after µ-update. Note that,
at the start of the algorithm and before updating the barrier parameter µ , we have Ψ(v) ≤ τ for a fixed
parameter τ . When µ is updated by factor 1− θ for θ ∈ (0,1], the vector v is updated as v+ = v√

1−θ
.

It causes an increase in the value of Ψ(v), in general. Therefore, the subsequent inner iterations are
performed in order to bring the values of Ψ(v) back to the situation, where Ψ(v)≤ τ . Here, we study the
effect of barrier update on the proximity function. To this end, we present two technical results.

Lemma 5. For given β ≥ 1, one has

ψpq(β t)≤ ψpq(t)+
1
2
(β 2−1)t2, t > 0.

Proof. Let us write ψpq(t) as

ψpq(t) =
t2−1

2
+ϕpq(t),

where

ϕpq(t) = ψpq(t)−
t2−1

2
=− tanhp(1)

∫ t

1
cothp(x)eqc(coth(x)−coth(1))dx.

One sees easily that ϕpq is a decreasing function. Since β ≥ 1, we conclude the desired inequality.

Theorem 1 (Lemma 4.2 in [22]). For any v ∈ Rn
++ and β ≥ 1, one has

Ψ(βv)≤Ψ(v)+
β 2−1

2

(
2Ψ(v)+2

√
2nΨ(v)+n

)
.

Corollary 1. For any 0≤ θ < 1 and v+ = βv with β =
1√

1−θ
, one has

Ψ(v+)≤Ψ(v)+
θ

2(1−θ)

(
2Ψ(v)+2

√
2nΨ(v)+n

)
.
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4 An estimation for the step size

In this section, we estimate the value of the step size α . So, we need to investigate the inner iteration of
the algorithm. The new points are constructed as (x+,s+) defined in (2) and the proximity function Ψ

decreases sufficiently. Due to (4), we can write the new iterate as

x+ =
x
v
(v+αdx), s+ =

s
v
(v+αds).

We assume that throughout the paper the step size α satisfies

v+αdx > 0, v+αds > 0.

We define the vector v+ :=
√

x+s+
µ

. Then, we have

v2
+ =

x+s+
µ

= (v+αdx)(v+αds).

Applying the exponentially convex property, we get an upper bound for the function Ψ(v+) as follows

Ψ(v+) = Ψ(
√

(v+αdx)(v+αds))≤
1
2
[
Ψ(v+αdx)+Ψ(v+αds)

]
.

We define the function f (α) as the difference of proximities between a new iterate and a current iterate
for a fixed µ

f (α) = Ψ(v+)−Ψ(v)≤ f1(α),

where f1(α) is the convex function

f1(α) :=
1
2
[
Ψ(v+αdx)+Ψ(v+αds)

]
−Ψ(v).

Here, we give the first derivative of the function f1(α) with respect to α as

f ′1(α) =
1
2

n

∑
i=1

(
ψ
′
pq(vi +αdxi)dxi +ψ

′
pq(vi +αdsi)dsi

)
.

Then, we get

f ′1(0) =
1
2
〈∇Ψ(v),(dx +ds)〉=−

1
2
〈∇Ψ(v),∇Ψ(v)〉=−2δ (v)2.

To simplify, we use the following notations; δ := δ (v) and Ψ := Ψ(v). Then, we consider some
important results for estimating the step size α .

Lemma 6 (Lemma 4.3 in [2]). Let ρ : [0,∞)→ (0,1] be the inverse of the function t ∈ (0,1] 7→ −1
2

ψ
′(t),

the largest possible value for the step size ᾱ is given by

ᾱ =
ρ(δ )−ρ(2δ )

2δ
. (18)
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Lemma 7 (Lemma 4.4 in [2]). Let ᾱ and ρ be defined as in Lemma 6. Then, we have

ᾱ ≥ 1
ψ ′′pq(ρ(2δ ))

. (19)

Using the above lemma, we have the following value for the step size

α̃ :=
1

ψ ′′pq(ρ(2δ ))
. (20)

Due to (19) and (20), it is easily seen that α̃ ≤ ᾱ .
Here, we demonstrate the step size during an inner iteration.

Lemma 8. Assume that Ψ(v)≥ τ ≥ 1, and let ρ and α̃ be defined as in Lemma 6 and Eq. (20) respec-
tively. Then, we have

α̃ ≥Θ

(
1

(p+q)δ
(
2+ 1

q log(4δ +1)
)2

)
. (21)

Proof. Here, we use the second derivative of ψpq. Based on the inequalities (13), (14) with z = 2δ , and
the following inequalities

K(ρ(2δ ))≤ K(ρ(2δ ))+1 = coth2(ρ(2δ )),

p+qccoth(ρ(2δ ))≤ 2(p+q)coth(ρ(2δ )),

we obtain

ψ
′′
pq(ρ(2δ )) = 1+ tanhp(1)(p+qccoth(t))cothp−1(ρ(2δ ))K(ρ(2δ ))eqc(coth(ρ(2δ ))−coth(1))

≤ 1+ tanhp(1)c(p+q)cothp+2(ρ(2δ ))eqc(coth(ρ(2δ ))−coth(1))

≤ 1+2tanhp(1)(p+q)cothp+2(ρ(2δ ))eqc(coth(ρ(2δ ))−coth(1))

≤ 1+2(p+q)(4δ +1)
(

coth(1)+
1
q

log(4δ +1)
)2

. (22)

From (22) and Remark 1, we get a lower bound for α̃

α̃ =
1

ψ ′′pq(ρ(2δ ))
≥

(
1

2(p+q)
(
2+ 1

q log(4δ +1)
)2
(4δ +1)

)

≥Θ

(
1

(p+q)δ
(
2+ 1

q log(4δ +1)
)2

)
,

which gives the result.

The following technical lemma is crucial for obtaining the decrease of the proximity function in the
inner iteration.
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Lemma 9 (Lemma 4.5 in [2]). For α satisfies α ≤ ᾱ, we have

f (α)≤−αδ
2.

As a consequence of Lemma 9 and the second item of Lemma 4, we conclude the following corollary.

Corollary 2. Let α̃ be given by (20). Then, we have

f (α̃)≤Θ

(
− δ

(p+q)
(
2+ 1

q log(4δ +1)
)2

)
≤Θ

(
−

√
Ψ

(p+q)(2+ 1
q log(

√
Ψ+1))2

)
. (23)

5 Iteration complexity

Thanks to Corollary 1, after µ-update, an upper bound for the proximity function is given by

Ψ(v+)≤Ψ(v)+
θ

2(1−θ)

(
2Ψ(v)+2

√
2nΨ(v)+n

)
.

Now, we need to count the number of inner iterations that are required to return the iterates back to
the situation where Ψ(v) ≤ τ after the µ-update. Then, we denote the value of the proximity function
Ψ(v) after updating µ by Ψ0, and the subsequent values by Ψk, for all k = 1, ...,K−1, where K denotes
the total number of inner iterations performed in an outer iteration. The following inequality is obtained
by using Corollary 1 and the fact that Ψ(v)≤ τ

Ψ0 ≤ τ +
θ

2(1−θ)

(
2τ +2

√
2nτ +n

)
. (24)

The decrease of Ψ in each inner iteration is given by this inequality

Ψk+1 ≤Ψk−
√

Ψk

(p+q)
(
2+ 1

q log(
√

Ψk +1)
)2 ≤Ψk−

√
Ψk

(p+q)
(
2+ 1

q log(
√

Ψ0 +1)
)2 ,

for all 0≤ k ≤ K−1.

Applying Lemma A.2 in [2] with tκ = Ψκ , β =
1

(p+q)(2+ 1
q log(

√
ψ0 +1))

and γ = 1
2 , we get the

following lemma.

Lemma 10. Let µ be updated by factor µ+ = (1−θ)µ for some θ ∈ (0,1). Then, the total number of
inner iterations in the outer iteration of Algorithm 1 is given by

K ≤ 2(p+q)
(

2+
1
q

log(
√

Ψ0 +1)
)2√

Ψ0. (25)

The following theorem presents an upper bound for the total number of iterations used by the algo-
rithm which is computed by multiplying the total number of inner iterations given by K with the number
of outer iterations. An upper bound for the number of required outer iterations is given by

O
(

1
θ

log
n
ε

)
,
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Theorem 2 (Lemma II.17 in [21]). The total number of iterations to get an ε-solution, i.e., a solution
that satisfies xT s = nµ ≤ ε , is bounded by

O
(
(p+q)

(
2+

1
q

log(
√

Ψ0 +1)
)2√

Ψ0
log n

ε

θ

)
.

For large-update methods, we have τ = O(n) and Θ = θ(1). Thus, we get from (24) that Ψ0 = O(n).
Taking p = q = O

(
logn

)
, we obtain the following upper bound for the total number of inner iterations

in an outer iteration

O
(√

n logn log
n
ε

)
.

Remark 2. For small-update methods, we have τ =O(1) and Θ= θ

(
1√
n

)
. Since we have ([12, Section

4.2])

Ψ0 ≤
θn+2

√
2τn+2τ

2(1−θ)
,

then, Ψ0 = O(1), which gives the following complexity bound

O
(
(p+q)

√
n log

n
ε

)
.

Letting p = q = O(1). Then the worst case iteration complexity for small-update IPMs is given by
O(
√

n logn), which matches to the currently best known iteration bound for small-update methods.

6 Numerical tests

In this section, we present some numerical results of Algorithm 1 with our new twice KF and the KF
introduced in [13]

ψF p(t) = 2π

∫ t

1

(
tan
(

πx
2x+2

)
− cot3p

(
πx

2x+2

))
dx, p≥ 2.

The numerical results are obtained using MATLAB R2017b environment. All examples are taken
from [6]. The values of the parameters are considered as τ = 5n, ε = 10−8, θ = 0.99, p ∈

{
2,4, log(n)

}
and q ∈

{
1,2, log(n)

}
.

We choose a step size α satisfying 0 < α < ᾱ and α = min(αx,αs) with

αx = min
i=1..n

−
xi

∆xi
, if ∆xi < 0,

1, elsewhere,

αs = max
i=1..n

−
si

∆si
, if ∆si < 0,

1, elsewhere.
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Example 1. m = 2, n = 3,

Q =

2 0 1
0 2 0
0 0 2

 , c =

−2
−4
0

 , A =

(
−1 1 0
1 1 0

)
and b =

(
1
2

)
,

where the initial feasible solutions are defined as follows

x0 =
(
0.3262,1.3261,0.3477

)t
, s0 =

(
0.7247,0.7247,2.0722

)t
, y0 =

(
0,2.0721

)t
.

The obtained primal-dual optimal solution is

x∗ =
(
0.5000,1.4999,0.0001

)t
, s∗ =

(
0.0000,0.0000,0.9998

)t
, y∗ =

(
0.0000,−0.9997

)t
.

Example 2. m = 2, n = 4,

Q =

 4 −2 0 0
−2 4 0 0
0 0 0 0

 , c =


−4
−6
0
0

 , A =

(
−1 1 1 0
1 5 0 1

)
, and b =

(
2
5

)
,

where the initial feasible solutions are defined as follows

x0 =
(
0.9683,0.5775,0.4543,1.1444

)t
, y0 =

(
−0.9184,−1.1244,

)t
,

s0 =
(
0.7612,0.9141,0.9185,1.1244

)t
.

The obtained primal-dual optimal solution is

x∗ =
(
1.1290,0.7742,0.0968,0.0000

)t
, s∗ =

(
0.0000,0.0000,0.0000,1.0322

)t
,

y∗ =
(
0.0001,−1.0322

)t
.

Example 3. m = 3, n = 5,

Q =


20 1.2 0.5 0.5 −1
1.2 32 1 1 1
0.5 1 14 1 1
0.5 1 1 15 1
−1 1 1 1 16

 , c =


1
−1.5

2
1.5
3

 ,

A =

 1 1.2 1 1.8 0
3 −1 1.5 −2 1
−1 2 −3 4 2

 , and b =

9.31
5.45
6.60

 ,

where the initial feasible solutions are defined as follows

x0 =
(
2.4539,0.7875,1.5838,2.4038,1.3074

)t
, y0 =

(
20.5435,9.4781,4.3927

)t
,

s0 =
(
7.1215,7.9763,8.3150,6.8686,7.9750

)t
.
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The obtained primal-dual optimal solution is

x∗ =
(
2.6321,0.7019,1.3994,2.4643,1.0846

)t
,

s∗ =10−8(0.0064,0.1056,0.1161,0.0037,0.1863
)t
,

y∗ =
(
25.2686,11.7725,5.2567

)t
.

Example 4. m = 3, n = 10

Q =



30 1 1 1 1 1 1 1 1 1
1 21 0 1 −1 1 0 1 0.5 1
1 0 15 −0.5 −2 1 0 1 1 1
1 1 −0.5 30 3 −1 1 −1 0.5 1
1 −1 −2 3 27 1 0.5 1 1 1
1 1 1 −1 1 16 −0.5 0.5 0 1
1 0 0 1 0.5 −0.5 8 1 1 1
1 1 1 −1 1 0.5 1 24 1 −1
1 0.5 1 0.5 1 0 1 1 39 1
1 1 1 1 1 1 1 1 1 11


, c =



−0.5
−1
0
0
−0.5

0
0
−1
−0.5
−1


,

A =

 1 −1 1.9 1.25 1.2 0.4 −0.7 1.06 1.5 1.05
1.3 1.2 0.15 2.15 1.25 1.5 0.4 1.52 1.3 1
1.5 −1.1 3.5 1.25 1.8 2 1.95 1.2 1 −1

 , and b =

11.651
16.672
21.295

 ,

where the initial feasible solutions are defined as follows

x0 =
(
0.949, 0.612, 1.847, 1.811, 1.251, 2.521, 1.506, 1.565, 0.820, 1.128

)t
,

y0 =
(
4.3800, 19.9367, 4.5679

)t
,

s0 =
(
3.890, 4.462, 3.978, 3.660, 3.901, 3.556, 3.876, 3.719, 3.913, 4.339

)t
.

The obtained primal-dual optimal solution is

x∗ =
(
0.9639, 0.5096, 1.7399, 1.9049, 1.2376, 2.6266, 1.6170, 0.9043, 0.8240, 0.8976

)t
,

s∗ = 10−9(0.0872, 0.4924, 0.1398, 0.0633, 0.0768, 0.0326, 0.3057, 0.0530, 0.1010, 0.3057
)t
,

y∗ =
(
4.2429, 22.3606, 5.1916

)t
.

Example 5. (Variable size)

n = 2m, A(i, j) =

{
0, if i 6= j and j 6= i+m,

1, if i = j or j = i+m,

c(i) = −1, c(i+m) = 0, b(i) = 2, for i = 1, . . . ,m. Q(i, j) = 0, for i, j = 1, . . . ,n. The initial strictly
feasible interior point is x0(i) = x0(i+m) = 1, y0(i) =−2, s0(i) = 1, s0(i+m) = 2, for i = 1, . . . ,m. The
obtained primal-dual optimal solution is x∗(i) = 2, x∗(i+m) = 0, y∗(i) = −1, s∗(i) = 0, s∗(i+m) = 1,
for i = 1, . . . ,m.
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Table 2: Number of inner iterations for p = 2.
Examples ψF p(t) ψp1(t) ψp2(t) ψp log(n)(t)
Example 1 33 15 18 15
Example 2 29 20 21 25
Example 3 34 15 15 15
Example 4 40 12 12 12
Example 5 (n,m) (20,10) 27 20 20 23
(100,50) 27 20 20 23
(200,100) 27 22 22 29
(400,200) 29 22 22 29
(1000,500) 29 22 22 29
(2000,1000) 29 22 22 29

Table 3: Number of inner iterations for p = 4.
Examples ψF p(t) ψp1(t) ψp2(t) ψp log(n)(t)
Example 1 338 16 15 16
Example 2 648 30 29 29
Example 3 4662 22 16 16
Example 4 − 12 12 12
Example 5 (n,m) (20,10) 127 27 31 31
(100,50) 148 27 31 31
(200,100) 148 27 31 31
(400,200) 148 30 33 33
(1000,500) 148 30 33 33
(2000,1000) 148 30 33 33

Comments

For each example, we used bold font to highlight the best, i.e., the smallest iteration number. From
Tables 2-4 we may conclude a few remarks.

• For all proposed examples, the algorithm based on the new KF requires less number of iterations to
obtain the optimal solution comparing with the algorithm based on the KF proposed in [13]. This proves
the efficiency of the proposed KF and evaluate its effect on the behavior of the algorithm.

• For p = q = logn, ψpq and ψF p meet the best theoretical complexity bound, but in Table 4, we can
observe that ψpq outperformed ψF p especially in Example 4 and in Example 5 for large sizes. In fact, the
algorithm based on the KF ψF p requires large number of iterations to obtain the optimal solution when
n≥ 400.

• For both functions ψpq and ψF p, the number of iterations clearly depends on the value of the
parameter p. It should also be noted that the value 2 of p significantly reduces the number of iterations
although it does not have the best complexity bound theoretically.
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Table 4: Number of inner iterations for p = log(n).
Examples ψF p(t) ψp1(t) ψp2(t) ψp log(n)(t)
Example 1 20 16 16 16
Example 2 24 25 24 27
Example 3 19 16 15 15
Example 4 213 12 12 12
Example 5 (n,m) (20,10) 29 23 24 27
(100,50) 33 27 33 27
(200,100) 75 33 33 33
(400,200) − 33 33 33
(1000,500) − 33 33 33
(2000,1000) − 33 33 33

7 Concluding remarks

This paper studied complexity analysis of primal-dual IPMs for CQP based on a new twice parameterized
KF that has a hyperbolic function in its barrier term. By means of some simple analysis tools, we
investigated several properties of this KF. We computed the worst-case iteration complexity bounds and
proved that Algorithm 1 enjoys O

(√
n logn log n

ε

)
iterations bound for large-update methods. For small-

update methods, we obtain the best-know iteration bound, namely, O
(√

n log n
ε

)
, by taking (p+ q) =

O(1). Finally, we present some numerical results to show the practical behavior of the new proposed KF.
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