Inverse eigenvalue problem of nonnegative matrices via unit lower triangular matrices (Part I)

Alimohammad Nazari*, Atiyeh Nezami
Department of Mathematics, Arak University, P.O. Box 38156-8-8349, Arak, Iran
Email(s): a-nazari@araku.ac.ir, atiyeh.nezami@gmail.com

Abstract

This paper uses unit lower triangular matrices to solve the nonnegative inverse eigenvalue problem for various sets of real numbers. This problem has remained unsolved for many years for $n \geq 5$. The inverse of the unit lower triangular matrices can be easily calculated and the matrix similarities are also helpful to be able to solve this important problem to a considerable extent. It is assumed that in the given set of eigenvalues, the number of positive eigenvalues is less than or equal to the number of nonpositive eigenvalues to find a nonnegative matrix such that the given set is its spectrum.

Keywords: Nonnegative matrices, unit lower triangular matrices, inverse eigenvalue problem.
AMS Subject Classification 2010: 15A18,15A60,15A09, 93B10.

1 Introduction

The nonnegative inverse eigenvalue problem (NIEP) asks for necessary and sufficient conditions on a multiset $\sigma=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ of complex numbers as the spectrum of a nonnegative matrix A. If there is such a nonnegative matrix A with spectrum σ, we say that σ is realizable and that A is a realization of σ. Some necessary conditions for the realizability of σ are
(i) $\max \left\{\left|\lambda_{i}\right| ; \lambda_{i} \in \sigma\right\}$ belongs to σ;
(ii) $s_{k}=\sum_{i=1}^{n} \lambda_{i}^{k} \geq 0$; and
(iii) $s_{k}^{m} \leq n^{m-1} s_{k m}$ for $k, m=1,2, \ldots$

The Perron-Frobenius theorem implies the necessity of statement (i), the necessity of statement (ii) is the observation that the trace of the k-th power of a nonnegative matrix is nonnegative and equal to the sum

[^0](c) 2024 University of Guilan
http://jmm.guilan.ac.ir
of the k-th powers of the eigenvalues; and the necessity of (iii) is known as the Johnson-Loewy-London (JLL) inequality [7,9].

Throughout the remainder of the paper λ_{1} denotes $\max \left\{\left|\lambda_{i}\right| ; \lambda_{i} \in \sigma\right\}$, and σ is assumed to satisfy the necessary conditions (i), (ii) and (iii).

Many mathematicians have worked on the NIEP [3-5, 8, 11, 13-21], and there are several methods for finding realizations. In this paper we utilize a method, based on the similarity of a matrix to an upper triangular matrix, to solve several nonnegative inverse eigenvalue problems. This method was initiated by Guo in [6]. A matrix L is unit lower triangular provided each entry on its main diagonal equals 1 , and each entry above its main diagonal is zero. The inverse of a unit lower triangular matrix also is a unit lower triangular. Recently, Nazari et al. have used unit lower triangular matrices in solving the inverse eigenvalue problem of distance matrices [12].

The paper is organized as follows.
We solve the NIEP in several cases where each element of σ is real and the number of positive elements of σ is less than or equal the number of negative elements of σ. This means that $\sigma=$ $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ is a given multiset of real numbers such that $k \leq n / 2$ and

$$
\begin{equation*}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0 \geq \lambda_{n} \geq \cdots \geq \lambda_{k+1} \tag{1}
\end{equation*}
$$

we find a nonnegative matrix C such that the above set with condition (1) is its eigenvalues.

2 Real spectrum with one positive number

We first show how our method can be used for σ with just one positive element.To begin with, we present Suleimanova's Theorem [20] and provide another proof for it

Theorem 1. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a multiset of real numbers with conditions

$$
\lambda_{1}>0 \geq \lambda_{n} \geq \cdots \geq \lambda_{2}
$$

and $\lambda_{1} \geq-\sum_{i=2}^{n} \lambda_{i}$. Then σ is realizable.
Proof. For $n=1,\left[\lambda_{1}\right]$ is a realization. For $n \geq 2$, let

$$
A=\left[\begin{array}{ccccc}
\lambda_{1} & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{n} \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & \lambda_{n}
\end{array}\right], \quad L=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 1
\end{array}\right],
$$

and $t=\sum_{i=2}^{n} \alpha_{i}$, where α_{i} are nonnegative real numbers. Then

$$
C=L A L^{-1}=\left[\begin{array}{lllll}
\lambda_{1}-t & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{n} \tag{2}\\
\lambda_{1}-\lambda_{2}-t & \alpha_{2}+\lambda_{2} & \alpha_{3} & \cdots & \alpha_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\lambda_{1}-\lambda_{n-1}-t & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{n} \\
\lambda_{1}-\lambda_{n}-t & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{n}+\lambda_{n}
\end{array}\right],
$$

Inverse eigenvalue problem of nonnegative matrices ...
is similar to A. Additionally, C is nonnegative whenever

$$
\begin{equation*}
\lambda_{1} \geq t \text { and } \alpha_{i} \geq-\lambda_{i}, \quad i=2,3, \ldots, n \tag{3}
\end{equation*}
$$

By the assumptions on σ, setting $\alpha_{i}=-\lambda_{i}$ for $i=2, \ldots, n$ gives a solution for (3). Hence σ is realizable.

Remark 1. Note that if σ satisfies the hypothesis of Theorem 1 and additionally $\sum_{i=1}^{n} \lambda_{i}=0$, then in order for C to be nonnegative the constraints (3) require that $\lambda_{1}=t$ and $\alpha_{i}=-\lambda_{i}$ for $(i=2, \ldots, n)$. In other words, the matrix C constructed in the proof of Theorem 1 is unique.

Remark 2. In Theorem 1, if $\sum_{i=1}^{n} \lambda_{i}>0$, then there are infinitely many appropriate choices of α_{i} and hence we have many different C. In fact, for each n-tuple $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ of nonnegative real numbers with $\sum_{i=1}^{n} d_{i}=\sum_{i=1}^{n} \lambda_{i}$ there is a realization C of σ with main diagonal equal to d, because the equations $\alpha_{i}=d_{i}$ for $i=2,3, \cdots, n$, give us the value of α_{i} and the matrix A can be determined based on the values of α_{i}. For instance, consider $\sigma=\{10,-2,-2,-2,-1,-1\}$. By taking $\alpha_{i}=-\lambda_{i}(i=2, \ldots, 6)$, the resulting matrix is

$$
C=\left[\begin{array}{llllll}
2 & 2 & 2 & 2 & 1 & 1 \\
4 & 0 & 2 & 2 & 1 & 1 \\
4 & 2 & 0 & 2 & 1 & 1 \\
4 & 2 & 2 & 0 & 1 & 1 \\
3 & 2 & 2 & 2 & 0 & 1 \\
3 & 2 & 2 & 2 & 1 & 0
\end{array}\right]
$$

If we want the main diagonal of (2) to be $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0\right)$, we take $\alpha_{2}=5 / 2, \alpha_{3}=5 / 2, \alpha_{4}=5 / 2, \alpha_{5}=1$, $\alpha_{6}=1$, and the resulting matrix C is

$$
C=\left[\begin{array}{llllll}
1 / 2 & 5 / 2 & 5 / 2 & 5 / 2 & 1 & 1 \\
5 / 2 & 1 / 2 & 5 / 2 & 5 / 2 & 1 & 1 \\
5 / 2 & 5 / 2 & 1 / 2 & 5 / 2 & 1 & 1 \\
5 / 2 & 5 / 2 & 5 / 2 & 1 / 2 & 1 & 1 \\
3 / 2 & 5 / 2 & 5 / 2 & 5 / 2 & 0 & 1 \\
3 / 2 & 5 / 2 & 5 / 2 & 5 / 2 & 1 & 0
\end{array}\right] .
$$

3 Real spectrum with two positive numbers

Now, we consider σ having two positive eigenvalues. We begin with the case of $n=4$.
Theorem 2. Let $\sigma=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$ be a multiset of real numbers satisfying

$$
\begin{aligned}
\lambda_{1} \geq \lambda_{2} & >0 \geq \lambda_{4} \geq \lambda_{3} \\
\sum_{i=1}^{4} \lambda_{i} & \geq 0 \\
\lambda_{1} & \geq\left|\lambda_{3}\right| .
\end{aligned}
$$

Then σ is realizable.

Proof. If $\lambda_{2}+\lambda_{4} \geq 0$ and $\lambda_{1} \geq\left|\lambda_{3}\right|$, then according to Theorem 1 , we can find a nonnegative 2×2 matrix A_{2} that realizes $\left\{\lambda_{1}, \lambda_{3}\right\}$ and a nonnegative 2×2 matrix B_{2} that realizes $\left\{\lambda_{2}, \lambda_{4}\right\}$, so the matrix $C=\operatorname{diag}\left\{A_{2}, B_{2}\right\}$ has eigenvalues σ. If $\lambda_{2}+\lambda_{4}<0$ and $\lambda_{1} \geq\left|\lambda_{3}\right|$, then we assume that $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} be real numbers. Let $t=\sum_{i=2}^{4} \alpha_{i}$ and A and L be the following matrices

$$
A=\left[\begin{array}{cccc}
\lambda_{1} & \alpha_{2}+\alpha_{4} & \alpha_{3} & 0 \\
0 & \lambda_{2} & \alpha_{1} & \alpha_{4} \\
0 & 0 & \lambda_{3} & 0 \\
0 & 0 & 0 & \lambda_{4}
\end{array}\right] \quad \text { and } \quad L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

Then

$$
C=L A L^{-1}=\left[\begin{array}{cccc}
\lambda_{1}-t & \alpha_{2}+\alpha_{4} & \alpha_{3} & 0 \tag{4}\\
\lambda_{1}-\lambda_{2}-t-\alpha_{1} & \alpha_{2}+\lambda_{2} & \alpha_{3}+\alpha_{1} & \alpha_{4} \\
\lambda_{1}-\lambda_{3}-t & \alpha_{2}+\alpha_{4} & \alpha_{3}+\lambda_{3} & 0 \\
\lambda_{1}-\lambda_{2}-t-\alpha_{1} & \alpha_{2}+\lambda_{2}-\lambda_{4} & \alpha_{3}+\alpha_{1} & \alpha_{4}+\lambda_{4}
\end{array}\right],
$$

is similar to the A. Whenever

$$
\begin{align*}
-\lambda_{i} & \leq \alpha_{i}, \quad i=2,3,4, \\
t & \leq \lambda_{1}, \tag{5}\\
-\alpha_{3} & \leq \alpha_{1} \leq \lambda_{1}-\lambda_{2}-t, \\
0 & \leq \alpha_{2}+\alpha_{4},
\end{align*}
$$

the matrix C is nonnegative. The assumptions on σ imply that $\alpha_{2}=-\lambda_{2}, \alpha_{3}=-\lambda_{3}, \alpha_{4}=-\lambda_{4}$ and $\alpha_{1}=\lambda_{3}$ is a solution to these constraints. Hence σ is realizable.

Example 1. Suppose that $\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}=0$. If we take $\alpha_{i}=-\lambda_{i}, i=2,3,4$ and $\alpha_{1}=\lambda_{3}$ then the conditions in (5) are satisfied and each diagonal entry of C will be 0 . For instance let $\sigma=\{7,3,-5,-5\}$, the matrices L, L^{-1}, A and C will be obtained as follows:

$$
\begin{array}{cc}
L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right], \quad L^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right], \quad A=\left[\begin{array}{cccc}
7 & 2 & 5 & 0 \\
0 & 3 & -5 & 5 \\
0 & 0 & -5 & 0 \\
0 & 0 & 0 & -5
\end{array}\right], \\
C=L A L^{-1}=\left[\begin{array}{llll}
0 & 2 & 5 & 0 \\
2 & 0 & 0 & 5 \\
5 & 2 & 0 & 0 \\
2 & 5 & 0 & 0
\end{array}\right] .
\end{array}
$$

This spectrum is studied in [1] and our method gives an easily derived realization.
Now we consider the set of σ with two positive eigenvalues and three negative eigenvalues with special conditions.

Inverse eigenvalue problem of nonnegative matrices ...

Theorem 3. Let $\sigma=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right\}$, where $\lambda_{1}, \ldots, \lambda_{5} \in \mathbb{R}$ satisfy

$$
\begin{aligned}
& \lambda_{1} \geq \lambda_{2}>0 \geq \lambda_{5} \geq \lambda_{4} \geq \lambda_{3} \\
& \sum_{i=1}^{5} \lambda_{i} \geq 0 \\
& \lambda_{1} \geq\left|\lambda_{3}\right| \\
& \lambda_{1}+\lambda_{4}+\lambda_{5} \geq 0 .
\end{aligned}
$$

Then σ is realizable.
Proof. If $\lambda_{2}+\lambda_{4}+\lambda_{5} \geq 0$ and $\lambda_{1} \geq\left|\lambda_{3}\right|$, then according to Theorem 1 , we can find a nonnegative 3×3 matrix C_{3} that realizes $\left\{\lambda_{2}, \lambda_{4}, \lambda_{5}\right\}$ and a nonnegative 2×2 matrix C_{2} that realizes $\left\{\lambda_{1}, \lambda_{3}\right\}$, so the matrix $C=\operatorname{diag}\left\{C_{2}, C_{3}\right\}$ has eigenvalues σ. If $\lambda_{2}+\lambda_{4}+\lambda_{5}<0$ and $\lambda_{1} \geq\left|\lambda_{3}\right|$, then we suppose that $\alpha_{i}, i=1, \cdots, 5$ are real numbers. Set $t=\sum_{i=2}^{5} \alpha_{i}$. In this case, we consider

$$
A=\left[\begin{array}{ccccc}
\lambda_{1} & \alpha_{2}+\alpha_{4}+\alpha_{5} & \alpha_{3} & 0 & 0 \\
0 & \lambda_{2} & \alpha_{1} & \alpha_{4} & \alpha_{5} \\
0 & 0 & \lambda_{3} & 0 & 0 \\
0 & 0 & 0 & \lambda_{4} & 0 \\
0 & 0 & 0 & 0 & \lambda_{5}
\end{array}\right], \quad L=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Then $C=L A L^{-1}$ is the matrix

$$
C=\left[\begin{array}{ccccc}
\lambda_{1}-t & \alpha_{2}+\alpha_{4}+\alpha_{5} & \alpha_{3} & 0 & 0 \tag{6}\\
\lambda_{1}-\lambda_{2}-t-\alpha_{1} & \alpha_{2}+\lambda_{2} & \alpha_{3}+\alpha_{1} & \alpha_{4} & \alpha_{5} \\
\lambda_{1}-\lambda_{3}-t & \alpha_{2}+\alpha_{4}+\alpha_{5} & \alpha_{3}+\lambda_{3} & 0 & 0 \\
\lambda_{1}-\lambda_{2}-t-\alpha_{1} & \alpha_{2}+\lambda_{2}-\lambda_{4} & \alpha_{3}+\alpha_{1} & \alpha_{4}+\lambda_{4} & \alpha_{5} \\
\lambda_{1}-\lambda_{2}-t-\alpha_{1} & \alpha_{2}+\lambda_{2}-\lambda_{5} & \alpha_{3}+\alpha_{1} & \alpha_{4} & \alpha_{5}+\lambda_{5}
\end{array}\right]
$$

The matrix C is similar to the matrix A, and C is nonnegative if and only if

$$
\begin{aligned}
-\lambda_{i} & \leq \alpha_{i}, \quad i=2,3,4,5 \\
t & \leq \lambda_{1}, \\
0 & \leq \alpha_{2}+\alpha_{4}+\alpha_{5} \\
-\alpha_{3} \leq \alpha_{1} & \leq \lambda_{1}-\lambda_{2}-t .
\end{aligned}
$$

With the given hypothesis on σ, one solution to this system of inequalities is

$$
\alpha_{2}=-\lambda_{2}, \quad \alpha_{3}=-\lambda_{3}, \alpha_{4}=-\lambda_{4}, \alpha_{5}=-\lambda_{5}, \alpha_{1}=\lambda_{3}
$$

Hence σ is realizable.
Theorem 4. Let $\sigma=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right\}$, where $\lambda_{1}, \ldots, \lambda_{5} \in \mathbb{R}$, satisfy

$$
\begin{aligned}
& \lambda_{1} \geq \lambda_{2}>0 \geq \lambda_{5} \geq \lambda_{4} \geq \lambda_{3} \\
& \sum_{i=1}^{5} \lambda_{i} \geq 0 \\
& \lambda_{2}+\lambda_{5} \leq 0
\end{aligned}
$$

Then σ is realizable.

Proof. Suppose a_{3}, a_{4} and $\alpha_{i}, i=2, \cdots, 5$ are real numbers. Set $t=\sum_{i=2}^{5} \alpha_{i}$. In this case, we consider

$$
A=\left[\begin{array}{ccccc}
\lambda_{1} & \alpha_{2}+\alpha_{5} & \alpha_{3} & \alpha_{4} & 0 \\
0 & \lambda_{2} & a_{3} & a_{4} & \alpha_{5} \\
0 & 0 & \lambda_{3} & 0 & 0 \\
0 & 0 & 0 & \lambda_{4} & 0 \\
0 & 0 & 0 & 0 & \lambda_{5}
\end{array}\right], \quad L=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right] .
$$

Then $C=L A L^{-1}$ is the matrix

$$
C=\left[\begin{array}{ccccc}
\lambda_{1}-t & \alpha_{2}+\alpha_{5} & \alpha_{3} & \alpha_{4} & 0 \tag{7}\\
\lambda_{1}-\lambda_{2}-t-a_{3}-a_{4} & \alpha_{2}+\lambda_{2} & \alpha_{3}+a_{3} & \alpha_{4}+a_{4} & \alpha_{5} \\
\lambda_{1}-\lambda_{3}-t & \alpha_{2}+\alpha_{5} & \alpha_{3}+\lambda_{3} & \alpha_{5} & 0 \\
\lambda_{1}-\lambda_{4}-t & \alpha_{2}+\alpha_{5} & \alpha_{3} & \alpha_{4}+\lambda_{4} & 0 \\
\lambda_{1}-\lambda_{2}-t-a_{3}-a_{4} & \alpha_{2}+\lambda_{2}-\lambda_{5} & \alpha_{3}+a_{3} & \alpha_{4}+a_{4} & \alpha_{5}+\lambda_{5}
\end{array}\right] .
$$

The matrix C is similar to the matrix A, and C is nonnegative if and only if

$$
\begin{aligned}
-\lambda_{i} & \leq \alpha_{i}, \quad i=2,3,4,5, \\
t & \leq \lambda_{1}, \\
0 & \leq \alpha_{2}+\alpha_{5}, \\
-\alpha_{3} & \leq a_{3}, \\
-\alpha_{4} & \leq a_{4}, \\
a_{3}+a_{4} & \leq \lambda_{1}-\lambda_{2}-t .
\end{aligned}
$$

With the given hypothesis on σ, one solution to this system of inequalities is

$$
\alpha_{2}=-\lambda_{2}, \alpha_{3}=-\lambda_{3}, \alpha_{4}=-\lambda_{4}, \alpha_{5}=-\lambda_{5}, a_{3}=\lambda_{3}, a_{4}=\lambda_{4} .
$$

Hence σ is realizable.
Example 2. Let $\sigma=\{7,1,-3,-3,-2\}$, then consider the matrices A and L as following

$$
A=\left[\begin{array}{ccccc}
7 & 1 & 3 & 3 & 0 \\
0 & 1 & -3 & -3 & 2 \\
0 & 0 & -3 & 0 & 0 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & -2
\end{array}\right], \quad L=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right] .
$$

We have

$$
C=L A L^{-1}=\left[\begin{array}{ccccc}
0 & 1 & 3 & 3 & 0 \\
5 & 0 & 0 & 0 & 2 \\
3 & 1 & 0 & 3 & 0 \\
3 & 1 & 3 & 0 & 0 \\
5 & 2 & 0 & 0 & 0
\end{array}\right]
$$

Inverse eigenvalue problem of nonnegative matrices ...

Now we consider the general case of two positive eigenvalues.
Theorem 5. Let $\sigma=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ be a multiset of $n \geq 4$ real numbers such that

$$
\lambda_{1} \geq \lambda_{2}>0 \geq \lambda_{n} \geq \cdots \geq \lambda_{3}
$$

$\sum_{i=1}^{n} \lambda_{i}=0$ and $\lambda_{1}+\sum_{i=r}^{n} \lambda_{i} \geq 0$, where r is the largest positive integer such that $\lambda_{2}+\sum_{i=r}^{n} \lambda_{i} \leq 0$. Then σ is realizable.

Proof. Let α_{i} for $i=2,3, \ldots, n$ and $a_{i} \geq \alpha_{i}(i=3, \ldots, n)$, be real numbers. Set $t=\sum_{i=2}^{n} \alpha_{i}$. As $\lambda_{1}+\lambda_{2}=$ $-\lambda_{3}-\cdots-\lambda_{n}$, we have $3 \leq r \leq n$. Consider the matrices

$$
A=\left[\begin{array}{cccccccc}
\lambda_{1} & \alpha_{2}+\left(\alpha_{r}+\cdots+\alpha_{n}\right) & \alpha_{3} & \cdots & \alpha_{r-1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & a_{3} & \cdots & a_{r-1} & \alpha_{r} & \cdots & \alpha_{n} \\
0 & 0 & \lambda_{3} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & \lambda_{r-1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda_{r} & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & \cdots & \lambda_{n}
\end{array}\right],
$$

and

$$
L=\left[\begin{array}{cccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
1 & 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\
1 & 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\
1 & 1 & 0 & \cdots & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 0 & \cdots & 0 & 0 & \cdots & 1
\end{array}\right]
$$

where the second column of $L=\left(l_{i j}\right)$ has $n-r+1$ ones from entry $l_{r 2}$ to entry $l_{n 2}$. Then the matrix $C=L A L^{-1}$ is given by

$$
C=\left[\begin{array}{ccccccccc}
c_{11} & c_{12} & \alpha_{3} & \alpha_{4} & \cdots & \alpha_{r-1} & 0 & \cdots & 0 \\
c_{21} & \alpha_{2}+\lambda_{2} & \alpha_{3}+a_{3} & \alpha_{4}+a_{4} & \cdots & \alpha_{r-1}+a_{r-1} & \alpha_{r} & \cdots & \alpha_{n} \\
c_{31} & c_{32} & \lambda_{3}+\alpha_{3} & \alpha_{4} & \cdots & \alpha_{r-1} & 0 & \cdots & 0 \\
c_{4,1} & c_{42} & \alpha_{3} & \lambda_{4}+\alpha_{4} & \cdots & \alpha_{r-1} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\
c_{r-1,1} & c_{r-1,2} & \alpha_{3} & \alpha_{4} & \cdots & \lambda_{r-1}+\alpha_{r-1} & 0 & \cdots & 0 \\
c_{r 1} & c_{r 2} & \alpha_{3}+a_{3} & \alpha_{4}+a_{4} & \cdots & \alpha_{r-1}+a_{r-1} & \lambda_{r}+\alpha_{r} & \cdots & \alpha_{n} \\
\vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \alpha_{3}+a_{3} & \alpha_{4}+a_{4} & \cdots & \alpha_{r-1}+a_{r-1} & 0 & \cdots & \lambda_{n}+\alpha_{n}
\end{array}\right]
$$

where

$$
\begin{aligned}
c_{11} & =\lambda_{1}-t \\
c_{i 1} & =\lambda_{1}-\lambda_{i}-t, i=3,4, \cdots, r-1, \\
c_{21} & =c_{r 1}=\cdots=c_{n 1}=\lambda_{1}-\lambda_{2}-t-\left(a_{3}+\cdots+a_{r-1}\right), \\
c_{12} & =c_{32}=\cdots=c_{r-1}=\alpha_{2}+\alpha_{r}+\cdots+\alpha_{n} \text { and } \\
c_{i 2} & =\alpha_{2}+\lambda_{2}-\lambda_{i}, \quad i=r, \ldots, n .
\end{aligned}
$$

The matrix C is nonnegative (and hence a realization of σ) if and only if

$$
\begin{aligned}
-\lambda_{i} & \leq \alpha_{i}, & & i=2, \ldots, n, \\
t & \leq \lambda_{1}, & & \\
-\alpha_{i} & \leq a_{i}, & & i=3, \ldots, r-1, \\
\lambda_{1}-\lambda_{i}-t & \geq 0, & & \\
\lambda_{1}-\lambda_{2}-t-\left(\alpha_{3}+\cdots+\alpha_{r-1}\right) & \geq 0, & & \\
\left(\alpha_{2}+\alpha_{r}+\cdots+\alpha_{n}\right) & \geq 0, & & i=r, \ldots, n .
\end{aligned}
$$

with

$$
\alpha_{i}=-\lambda_{i}, \quad i=2, \ldots, n
$$

and

$$
a_{i}=\lambda_{i}, \quad i=3, \ldots, n
$$

and C is a nonnegative matrix. Hence, σ is realizable.

Example 3. Let $\sigma=\{19,1,-5,-5,-3,-3,-2,-2\}$. This spectrum is chosen from [2] and we show how to use our method to find a realization. We select

$$
A=\left[\begin{array}{cccccccc}
19 & 1 & 5 & 5 & 3 & 3 & 2 & 0 \\
0 & 1 & -5 & -5 & -3 & -3 & -2 & 2 \\
0 & 0 & -5 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -5 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -2
\end{array}\right], \quad L=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Then the matrix $C=L A L^{-1}$ is

$$
C=\left[\begin{array}{cccccccc}
0 & 1 & 5 & 5 & 3 & 3 & 2 & 0 \\
17 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
5 & 1 & 0 & 5 & 3 & 3 & 2 & 0 \\
5 & 1 & 5 & 0 & 3 & 3 & 2 & 0 \\
3 & 1 & 5 & 5 & 0 & 3 & 2 & 0 \\
3 & 1 & 5 & 5 & 3 & 0 & 2 & 0 \\
2 & 1 & 5 & 5 & 3 & 3 & 0 & 0 \\
17 & 2 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

4 Real spectrum with three positive numbers and its extension

Now we study σ with three positives and at least 3 non-positives.
Theorem 6. Let $\sigma=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}\right\}$ be a list of real numbers satisfying

$$
\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}>0>\lambda_{6} \geq \lambda_{5} \geq \lambda_{4}
$$

$\sum_{i=1}^{6} \lambda_{i} \geq 0, \lambda_{1} \geq\left|\lambda_{4}\right|$ and $\lambda_{3} \leq\left|\lambda_{6}\right|$, and also $\lambda_{1}+\lambda_{3}+\lambda_{5}+\lambda_{6} \geq 0$. Then σ is realizable.
Proof. If $\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{6} \geq 0$, and $\lambda_{3} \leq\left|\lambda_{6}\right|$, then we have $\lambda_{2}+\lambda_{5} \geq 0$, so $\lambda_{2} \geq\left|\lambda_{5}\right|$ and according to Theorem 2 we can find a nonnegative 4×4 matrix C_{4} that realizes $\left\{\lambda_{2}, \lambda_{3}, \lambda_{5}, \lambda_{6}\right\}$ and it is easy to find a nonnegative 2×2 matrix C_{2} that realizes $\left\{\lambda_{1}, \lambda_{4}\right\}$, so the matrix $C=\operatorname{diag}\left\{C_{2}, C_{4}\right\}$ has eigenvalues σ. If $\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{6} \leq 0$, we choose the real numbers $\alpha_{i}(\mathrm{i}=1, \ldots, 6), a_{24}, a_{34}$ and a_{35} such that

$$
\begin{aligned}
-\lambda_{i} & \leq \alpha_{i}, \quad i=2, \ldots, 6 \\
t & \leq \lambda_{1}, \\
-\alpha_{5} & \leq a_{35} \leq \alpha_{2}+\lambda_{2}-\lambda_{3} \\
-\alpha_{4} & \leq a_{24} \leq \lambda_{1}-\lambda_{2}-t \\
-\alpha_{4} & \leq a_{24}+a_{34} \leq \lambda_{1}-\lambda_{2}-t, \\
0 & \leq \alpha_{6}+\alpha_{3}, \\
\alpha_{4} & \leq t
\end{aligned}
$$

where $t=\sum_{i=2}^{6} \alpha_{i}$. Let

$$
A=\left[\begin{array}{cccccc}
\lambda_{1} & \alpha_{2}+\alpha_{5}+\alpha_{6}+\alpha_{3} & 0 & \alpha_{4} & 0 & 0 \\
0 & \lambda_{2} & \alpha_{6}+\alpha_{3} & a_{24} & \alpha_{5} & 0 \\
0 & 0 & \lambda_{3} & a_{34} & a_{35} & \alpha_{6} \\
0 & 0 & 0 & \lambda_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{5} & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda_{6}
\end{array}\right], \quad L=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right] .
$$

Then the matrix $C=L A L^{-1}$ is

$$
\left[\begin{array}{cccccc}
\lambda_{1}-t & t-\alpha_{4} & 0 & \alpha_{4} & 0 & 0 \tag{8}\\
\lambda_{1}-\lambda_{2}-t-a_{24} & \alpha_{2}+\lambda_{2} & \alpha_{6}+\alpha_{3} & \alpha_{4}+a_{24} & \alpha_{5} & 0 \\
\lambda_{1}-\lambda_{2}-t-a_{24}-a_{34} & \alpha_{2}+\lambda_{2}-\lambda_{3}-a_{35} & \alpha_{3}+\lambda_{3} & \alpha_{4}+a_{24}+a_{34} & \alpha_{5}+a_{35} & \alpha_{6} \\
\lambda_{1}-\lambda_{4}-t & t-\alpha_{4} & 0 & \alpha_{4}+\lambda_{4} & 0 & 0 \\
\lambda_{1}-\lambda_{2}-t-a_{24} & \alpha_{2}+\lambda_{2}-\lambda_{5} & \alpha_{6}+\alpha_{3} & \alpha_{4}+a_{24} & \alpha_{5}+\lambda_{5} & 0 \\
\lambda_{1}-\lambda_{2}-t-a_{24}-a_{34} & \alpha_{2}+\lambda_{2}-\lambda_{3}-a_{35} & \alpha_{3}+\lambda_{3}-\lambda_{6} & \alpha_{4}+a_{24}+a_{34} & \alpha_{5}+a_{35} & \alpha_{6}+\lambda_{6}
\end{array}\right] .
$$

The matrix C is nonnegative if and only if the claimed system of inequalities is consistent. To show that the above inequalities are compatible, we present the following: By selecting $\alpha_{i}=-\lambda_{i}$ for $\mathrm{i}=2,3, \ldots, 6$, all entries of the last column of matrix (8) will be nonnegative. Also, by selecting $a_{35}=\lambda_{5}$, the entries of the fifth column of this matrix will be nonnegative. Additionally if we select $a_{24}=\lambda_{4}$ and $a_{34} \geq 0$, then all entries of the fourth column of matrix (8) will be nonnegative. The condition $0 \leq \alpha_{6}+\alpha_{3}$ means that $\lambda_{3} \leq-\lambda_{6}$ and this confirms that all the entries of the third column of matrix (8) will also be nonnegative. In second column the condition $t-\alpha_{4} \geq 0$ is equivalent to $\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{6} \leq 0$ and the condition $\lambda_{3} \leq-\lambda_{6}$ gives $\lambda_{3} \leq-\lambda_{5}$ and consequently all entries of this column are nonnegative. For the first column, if we select $a_{34}=0$, and since

$$
\lambda_{1}-\lambda_{2}-t-a_{24}=\lambda_{1}+\lambda_{3}+\lambda_{5}+\lambda_{6} \geq 0,
$$

then we have nonnegative entries of this column.
We now discuss the method in Theorem 6 for the general case of three positive real eigenvalues. For convenience, we illustrate this for $n=10$ and we consider $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}>0 \geq \lambda_{10} \geq \cdots \geq \lambda_{4}$ with $\sum_{i=1}^{10} \lambda_{i} \geq 0$. We also assume that the three following conditions for these given eigenvalues are held:

$$
\begin{gather*}
\lambda_{2}+\lambda_{3}+\lambda_{5}+\lambda_{6}+\ldots+\lambda_{10} \leq 0, \tag{9}\\
\lambda_{3}+\lambda_{8}+\lambda_{9}+\lambda_{10} \leq 0, \tag{10}\\
\lambda_{1}+\lambda_{3}+\lambda_{5}+\lambda_{6}+\lambda_{7}+\lambda_{8}+\lambda_{9}+\lambda_{10} \geq 0 . \tag{11}
\end{gather*}
$$

Let

$$
L=\left[\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{12}\\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],
$$

Inverse eigenvalue problem of nonnegative matrices ...
127
and

$$
A=\left[\begin{array}{cccccccccc}
\lambda_{1} & \alpha_{2}+\alpha_{3}+\alpha_{5}+\cdots+\alpha_{10} & 0 & \alpha_{4} & 0 & 0 & 0 & 0 & 0 & 0 \tag{13}\\
0 & \lambda_{2} & \alpha_{3}+\alpha_{10}+\alpha_{9}+\alpha_{8} & a_{24} & \alpha_{5} & \alpha_{6} & \alpha_{7} & 0 & 0 & 0 \\
0 & 0 & \lambda_{3} & a_{34} & a_{35} & a_{36} & a_{37} & \alpha_{8} & \alpha_{9} & \alpha_{10} \\
0 & 0 & 0 & \lambda_{4} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{5} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda_{6} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda_{7} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{8} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{9} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{10}
\end{array}\right],
$$

where $\alpha_{i} \geq-\lambda_{i}$ for $i=2, \ldots, 10$. Then the matrix C is

$$
C=\left[\begin{array}{lllllllll}
\lambda_{1}-t & t-\alpha_{4} & 0 & \alpha_{4} & 0 & 0 & 0 & 0 & 0 \\
c_{21} & \alpha_{2}+\lambda_{2} & c_{23} & \alpha_{3}+\lambda_{3} & c_{34} & \alpha_{5}+a_{35} & \alpha_{6}+a_{36} & \alpha_{7}+a_{37} & \alpha_{8}
\end{array}\right.
$$

with

$$
\begin{aligned}
& t=\sum_{i=2}^{10} \alpha_{i}, \\
& c_{32}=c_{82}=c_{92}=c_{10,2}=\lambda_{2}-\lambda_{3}-a_{35}-a_{36}-a_{37}+\alpha_{2}, \\
& c_{23}=c_{53}=c_{63}=c_{73}=\alpha_{3}+\alpha_{10}+\alpha_{9}+\alpha_{8}, \\
& c_{34}=c_{84}=c_{94}=c_{10,4}=\alpha_{4}+a_{24}+a_{34}, \\
& c_{21}=c_{51}=c_{61}=c_{71}=\lambda_{1}-\lambda_{2}-t-a_{24}, \\
& c_{31}=c_{81}=c_{91}=c_{10,1}=\lambda_{1}-\lambda_{2}-t-a_{24}-a_{34} .
\end{aligned}
$$

Now, with conditions (9) and (10) and the following choices, it is easy to verify that the matrix C is nonnegative and then σ is realizable:

$$
\begin{aligned}
\alpha_{i} & =-\lambda_{i}, i=2,3, \ldots, 10 \\
a_{37} & =\lambda_{7}, \quad a_{34}=0, \quad a_{36}=\lambda_{6} \\
a_{35} & =\lambda_{5}, \quad a_{24}=\lambda_{4}
\end{aligned}
$$

Example 4. Let

$$
\sigma=\left\{\lambda_{1}=8, \lambda_{2}=5, \lambda_{3}=1, \lambda_{4}=-5, \lambda_{5}=-3, \lambda_{6}=-2, \lambda_{7}=-1, \lambda_{8}=-1, \lambda_{9}=-1, \lambda_{10}=-1\right\} .
$$

We see that $\lambda_{3}+\lambda_{8}+\lambda_{9}+\lambda_{10}=-2 \leq 0$, then by above theorem we find a nonnegative matrix C that σ
is its spectrum. At first, we choose the elements of matrix A as:

$$
A=\left[\begin{array}{cccccccccc}
8 & 3 & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 5 & 2 & -5 & 3 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -3 & -2 & -1 & 1 & 1 & 1 \\
0 & 0 & 0 & -5 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right] .
$$

Then with L given in (12), we have

$$
C=L A L^{-1}=\left[\begin{array}{llllllllll}
0 & 3 & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 3 & 2 & 1 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
5 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 & 2 & 0 & 0 & 2 & 1 & 0 & 0 & 0 \\
0 & 2 & 2 & 0 & 3 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 3 & 2 & 0 & 0 & 0 & 0 \\
0 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 5 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 5 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

which has spectrum σ.

Acknowledgements

The authors wish to thank an anonymous referee, whose sensible suggestions led to a significant rewrite which greatly simplified the overall presentation of the results.

References

[1] A. Borobia, J. Moro, R.L. Soto, A unified view on compensation criteria in the real nonnegative inverse eigenvalue problem, Linear Algebra Appl. 428 (2008) 2574-2584.

Inverse eigenvalue problem of nonnegative matrices ...
[2] M. Collao, C.R. Johnson, R.L. Soto, Universal realizability of spectra with two positive eigenvalues, Linear Algebra Appl. 454 (2018) 226-239.
[3] A. Cronin, Constructive methods for spectra with three nonzero elements in the nonnegative inverse eigenvalue problem, Linear Multilinear Algebra 66 (2018) 435-446.
[4] A. Cronin, T. Laffey, The Diagonalizable Nonnegative Inverse Eigenvalue Problem, Spec. Matrices 6 (2018) 273-281.
[5] M. Fiedler, Eigenvalues of nonnegative symmetric matrices, Linear Algebra Appl. 9 (1974) 119142.
[6] W. Guo, Eigenvalues of nonnegative matrices, Linear Algebra Appl. 266 (1997) 261-270.
[7] C.R. Johnson, Row stochastic matrices similar to doubly stochastic matrices, Linear Multilinear Algebra 10 (1981) 113-130.
[8] T. J. Laffey, E. Meehan, A characterization of trace zero nonnegative 5×5 matrices, Linear Algebra Appl. 302-303 (1999) 295-302.
[9] R. Loewy, D. London, A note on an inverse problem for nonnegative matrices, Linear Multilinear Algebra 6 (1978) 83-90.
[10] C. Manzaneda, E. Andrade, M. Robbiano, Realizable lists via the spectra of structured matrices, Linear Algebra Appl. 534 (2017) 51-72.
[11] E. Meehan, Some Results on Matrix Spectra, PhD thesis, University College Dublin, 1998.
[12] A. Nazari, A. Nezami, M. Bayat, Inverse eigenvalues problem of distance matrices via unit lower triangular matrices, Wavelet and Linear Algebra 10 (2023) 23-36.
[13] A.M. Nazari, F. Sherafat, On the inverse eigenvalue problem for nonnegative matrices of order two to five, Linear Algebra Appl. 436 (2012) 1771-1790.
[14] N. Radwan, An inverse eigenvalue problem for symmetric and normal matrices, Linear Algebra Appl. 248 (1996) 101-109.
[15] R. Reams, An inequality for nonnegative matrices and the inverse eigenvalue problem, Linear Multilinear Algebra 41 (1996) 367-375.
[16] O. Rojo, R. L. Soto, Existence and construction of nonnegative matrices with complex spectrum, Linear Algebra Appl. 368 (2003) 53-69.
[17] O. Rojo, R. L. Soto, Existence and construction of nonnegative matrices with complex spectrum, Linear Algebra Appl. 368 (2003) 53-69.
[18] H. S̆migoc, The inverse eigenvalue problem for nonnegative matrices, Linear Algebra Appl. 393 (2004) 365-374.
[19] H. S̆migoc, Construction of nonnegative matrices and the inverse eigenvalue problem, Linear Multilinear Algebra 53 (2005) 85-96.
[20] K.R. Suleimanova, Stochastic matrices with real characteristic values, Dokl. Akad. Nauk. SSSR, 66 (1949) 343-345.
[21] J. Torre-Mayo, M.R. Abril-Raymundo, E. Alarcia-Estevez, C. Marijuan, M. Pisonero, The nonnegative inverse eigenvalue problem from the coefficients of the characteristic polynomial. EBL digraphs, Linear Algebra Appl. 426 (2007) 729-773.

[^0]: * Corresponding author

 Received: 15 December 2022 / Revised: 11 September 2023 / Accepted: 15 November 2023
 DOI: 10.22124/JMM.2023.21759.2092

