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Abstract. We are interested in the numerical solution of the continuous-time Lyapunov equation. Gen-
erally, classical Krylov subspace methods for solving matrix equations use the Petrov-Galerkin condition
to obtain projected equations from the original ones. The projected problems involves the restrictions of
the coefficient matrices to a Krylov subspace. Alternatively, we propose a scheme based on the extended
block Krylov subspace that leads to a smaller-scale equation, which also incorporates the restriction of
the inverse of the Lyapunov equation’s square coefficient. The effectiveness of this approach is experi-
mentally confirmed, particularly in terms of the required CPU time.
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1 Introduction

The low-rank continuous-time Lyapunov equation of the form

AX +X AT = BBT, (1)

where A ∈ Rn×n is a sparse non singular matrix and B ∈ Rn×r is full rank with r� n, admits an unique
solution if and only if νi 6= ν j for all i, j = 1, . . . ,n where ν1,ν2, . . . ,νn are the eigenvalues of A. Eq.
(1) appears in many fields, and plays a key role in quadratic integrals in optimal control [5], evaluating
covariance matrices in filtering and estimation of continuous systems, and pole assignment [17]. Further-
more, it is involved in reduced-order models [14] and in some iterative schemes for solving the algebraic
Riccati equation [13, 18].

There are numerous methods for solving the Lyapunov equation and their relevance depends on the
structure of the coefficient matrices and their sizes. For small-scale problems, it is preferable to use direct
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methods such as Hessenberg-Schur and Bartel-Stewart methods [3, 9]. However, these methods are not
computationally competitive for large-scale equations. In order to overcome the drawbacks of direct
approaches, several iterative schemes have been proposed, including the Alternating Direction Implicit
(ADI) iteration method [4, 8, 15], the Low-Rank Smith method [16], the Alternating Direction Implicit
method with Cholesky factorization [15], and the Matrix Sign Function method [2].

Over the past years, the so-called Krylov subspace methods have been widely used for solving matrix
equations, specifically the Lyapunov equation with sparse and large coefficient matrices. The basic idea
behind this class of methods is to reduce the order of the original problem by projecting it onto a Krylov
subspace that has a generally smaller dimension. The projected problem is then solved directly with
standard methods. To build a basis for this subspace, various projection techniques such as the Arnoldi
process or its extended variant, which is the key tool adopted in this paper for solving (1), are employed.
We recall that an m-dimensional extended block Krylov subspace associated with a square matrix G and
a block vector V of compatible sizes is given as

Ke
m(G,V ) = blockspan{G−mV, . . . ,G−1V,V,GV . . . ,Gm−1V}. (2)

Krylov subspaces of such form were introduced in [7] for approximating matrix functions and efficiently
used in [14] for solving the equation (1), the low-rank Sylvester equation [11, 19] and Riccati equa-
tion [10]. Considering the fact that it is generated using both G and G−1, this subspace, when used to
solve matrix equations, is supposed to contain more information about the coefficient matrices, and most
particularly about their inverses. Therefore, it has been noticed that these extra information improve the
performance of projection techniques on such subspaces when compared to those based on the regular
block Krylov subspaces. To build an orthonormal basis of Ke

m(G,V ), the extended block Arnoldi process
is often applied. In addition to the algebraic relations satisfied by this basis, a Petrov-Galerkin condition
is imposed and then exploited to reduce the order of the original equations. It should be noted that the
projected equations involve the restrictions of the original coefficient matrices to the projection subspace.
In this work, however, we seek an approximate solution for the continuous Lyapunov equation by trans-
forming it first to an equivalent discrete Sylvester equation. Then, we use the extended block Arnoldi
process as a projection technique to derive a projected Sylvester equation that has, among its coefficient
matrices, the restriction of A−1 to the Extended Krylov subspace Ke

m(G,V ).

The organization of the remaining sections of this paper is as follows. In Section 2, we will provide
a review of the extended block Arnoldi process, along with its relevant algebraic properties. Then, we
show how to apply this projection method for solving equation (1). The alternative scheme is described
in Section 3. In order to evaluate the effectiveness of the proposed method, we will compare it with the
classic extended block Arnoldi process applied to the continuous Lyapunov equation. The focus will be
on the CPU time and the number of iterations required by each method. the results of the numerical
experiments will be presented in the final section.

Throughout this paper, we will indicate by E(i, j)
k and e(i, j)k respectively the kth 2i j× r and i j× r

blocks of the identity matrix I2i j. ‖.‖2 and ‖.‖F will point out to the 2-norm and the Frobenius norm,
respectively and the transpose of a Matrix X will be expressed as XT .
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2 The Extended block Arnoldi process (EBA)

2.1 Algorithm and algebric relations

The EBA process serves as a projection tool onto an extended Krylov subspace Ke
m(G,V ), which is

formed by means of a non singular square matrix G and its inverse G−1. This process, outlined in
Algorithm 1, enables the construction of an orthonormal basis Vm for Ke

m(G,V ). As mentioned ear-
lier and drawing upon prior research, we firmly believe that incorporating G and G−1 will enhance the
projection efficiency. We initiate the process by deriving a unitary block vector V1 through the QR de-
composition of the matrix [V,G−1V ]. Subsequently, at each iteration j, the first n by r block of Vj is
multiplied by G, while the second is multiplied with G−1. Using Gram-Schmit process, the n by 2r
block [GV (1)

j ,G−1V (2)
j ] is orthogonalized with respect to the set of block vectors [V1, . . . ,Vj] giving arise

to Vj+1. This iterative procedure continues, and after completing m iterations, Algorithm 1 builds an
orthonormal basis Vm = [V1, . . . ,Vm] of Ke

m(G,V ). Moreover, the algorithm generates also a block upper
Hessenberg matrix referred to as H̄m = [Hi, j]∈R2(m+1)r×2mr, where Hi, j ∈R2r×2r with i = 1,2, . . . ,m+1
and j = 1,2, . . . ,m . We assume that for the rest of this paper, the occurrence of an undesirable break-
down due to any block H j+1, j being rank deficient is not expected. Let Tm = VT

m GVm be the restriction
of G to the extended Krylov subspace Ke

m(G,V ). According to [11], the matrix Tm satisfies the alge-
braic relations that are similar to those fulfilled by the block upper Hessenberg matrix produced through
regular block Arnoldi process. Indeed, let Ti, j be the (i, j)th 2r×2r block of Tm and

T̄m = VT
m+1 GVm,

then we have

GVm = Vm+1 T̄m (3)

= Vm Tm +Vm+1 Tm+1,m (E(m,r)
m )T. (4)

In terms of computational demands, obtaining T̄m can be expensive as it involves matrix-vector
products with G. To address this concern, an alternative approach is to recursively compute the columns
of T̄m based on the columns of H̄m. Let Hi+1,i and Λ be partitioned as follows

Hi+1,i =

[
H(1,1)

i+1,i H(1,2)
i+1,i

0r×r H(2,2)
i+1,i

]
, Λ =

[
Λ1,1 Λ1,2
0r×r Λ2,2

]
.

Theorem 1. [11] Let T̄m = [t:,1, t:,2, . . . , t:,2m] and H̄m = [h:,1,h:,2, . . . ,h:,2m] where t:, j,h:, j ∈ R2(m+1)r×r

be the block upper Hessenberg matrices defined earlier. For the blocks with odd indices we have

t:,2i−1 = h:,2i−1, (5)

while for the even blocks we have

t:,2 = (e(m+1,r)
1 Λ1,1− t:,1 Λ1,2)Λ

−1
2,2, (6)

t:,2i+2 = (e(m+1,r)
2i −

[
T̄i

02(m−i)r×2ir

]
h:,2i− t:,2i+1 H(1,2)

i+1,i)H
(2,2)
i+1,i

−1
. (7)
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Note that equations (3) and (4) hold true for

Qm = VT
m G−1Vm ∈ R2mr×2mr,

which represents the restriction of G−1 to the enriched Krylov subspace Ke
m(G,V ). Furthermore, the

columns of Qm can be computed from those of H̄m as given in the following result.

Theorem 2. Let Q̄m = [l:,1, l:,2, . . . , l:,2m] and H̄m = [h:,1,h:,2, . . . ,h:,2m] where l:, j,h:, j ∈ R2(m+1)r×r for
j = 1,2, . . .m. The odd-numbered blocks satisfy

t:,1 = (e(m+1,r)
1 Λ1,2−h:,1 Λ2,2)Λ

−1
1,1, (8)

t:,2 j+1 = (e(m+1,r)
2 j−1 −

[
Q̄ j

02(m− j)r×2ir

]
h1:2 jr,2 j−1)H

(1,1)
j+1, j

−1
, (9)

while for the even-numbered we have
t:,2 j = h:,2 j, (10)

Proof. Based on the QR decomposition of [V,G−1V ], we have

V =V (1)
1 Λ1,1, (11)

G−1V =V (1)
1 Λ1,2 +V (2)

1 Λ2,2. (12)

Therefore
G−1V (1)

1 = (V (1)
1 Λ1,2 +V (2)

1 Λ2,2)Λ
−1
1,1.

and the relation (8) is obtained by right-multiplying the previous equation with VT
m+1. For the other odd

indices and according to Algorithm 1, we may write

G−1V (1)
j =Vj+1 H j+1, j e(1,r)1 +V j H̄ j e( j,r)

2 j−1

=V (1)
j+1 H(1,1)

j+1, j +V j H̄ j e( j,r)
2 j−1.

Multiplying the above equality bt VT
m+1 G−1 gives that

VT
m+1 G−1V (1)

j+1 H(1,1)
j+1, j = l:,2i+1H(1,1)

j+1, j

= e(m+1,r)
2 j−1 −

[
Q̄i

02(m− j)r×2 jr

]
h1:2 jr,2 j−1,

hence (9) is obtained. About even indices, we can deduce from (12) that

G−1V (2)
j =Vj+1, j H j+1, j e(1,r)1 +V j H j e( j,r)

2 j

= V j+1H̄ j e( j+1,r)
2 j ,
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consequently

VT
m+1 G−1V (2)

j+1 =

[
I2( j+1)r

02(m− j)r×2 jr

]
H̄ j e( j+1,r)

2 j = H̄m e(m+1,r)
2 j = h:,2 j,

which completes the proof.

At the end of this section, it is important to note that in the context of Lyapunov equations of consid-
erable size, explicit computation of the inverse of G is not typically carried out. Instead, it is generally
more advantageous to approximate this inverse by solving a linear system using iterative methods in
conjunction with specific preconditioning techniques.

Algorithm 1 EBA Process
Require: Matrices : G ∈ Rn×n ; V ∈ Rn×r ; integer : m ;
Ensure: Matrices : Vm+1 = [V1,V2, . . . ,Vm+1] ∈ Rn×2mr and H m = [Hi, j] ∈ R2(m+1)r×2mr ;

1: Compute the QR decomposition of [V,G−1V ]; i.e., [V,G−1V ] = [V (1)
1 ,V (2)

1 ]Λ ;
2: for j = 1, . . . ,m do
3: Set V (1)

j =Vj(:,1 : r) and V (2)
j =Vj(:,r+1 : 2r) ;

4: Compute W = [GV (1)
j ,G−1V (2)

j ]
5: for i = 1, . . . , j do
6: Hi, j =V T

i W ;
7: W =W −Vi Hi, j ;
8: end for
9: Compute the QR decomposition of W , i.e., W =Vj+1 H j+1, j ;

10: end for

2.2 Application to the Lyapunov equation

Now, we show how the extended block Arnoldi process can be used for solving the equation (1). To that
end, let Vm denote the orthogonal matrix obtained by performing m iterations of Algorithm 1 applied to
the pair (A,B). Moreover, We seek approximate solutions of the form

Xm = VmYm(Vm)
T, (13)

where Ym ∈ R2mr×2mr. We suppose that Rm the residue associated to Xm satisfies the following orthogo-
nality condition:

(Vm)
T RmVm = 0, (14)

more precisely

(Vm)
T (AVmYm(Vm)

T +VmYm(Vm)
T AT −BBT )Vm = 0.

Supposing that the eigenvalues of Tm = VT
m AVm are all distinct, Ym is the solution of the following

smaller problem which can be effectively solved using direct methods [3]

Tm Ym +Ym (Tm)
T = B̃ B̃T, (15)
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where B̃ = VT
m B = e(m,r)

1 Λ1,1 and

Λ =

[
Λ1,1 Λ1,2
0r×r Λ2,2

]
,

is obtained from the QR decomposition of [B,A−1 B]. Regarding the arithmetic cost, as long as the
projection process requires more iterations to solve the problem, computing Xm and Rm becomes too
demanding. In fact, any matrix-vector product involving the matrix A slows down the convergence rate,
that why Rm can be obtained using a more economical formula that avoids such costly operations. Using
(4) we show that

Rm =−Vm+1

[
0mr×mr Ym E(m,r)

m (Tm+1,m)
T

Tm+1,m (E(m,r)
m )T Ym 0r×r

]
Vm+1.

Therefore
‖Rm‖F =

√
2‖Tm+1,mY(m−1)r:mr,:‖F . (16)

Algorithm 2 outlines the EBA process for solving the Lyapunov equation. We note that the projection
can be done every p iteration in order to reduce the operational cost. Moreover, according to lines 12-
15 of Algorithm 2, the solution is approximated by a product of two reduced-rank matrices using SVD
decomposition.

Algorithm 2 EBA process for solving low-rank Lyapunov equation
Require: A ∈ Rn×n; B ∈ Rn×r; mmax the maximum dimension of the block Krylov subspace; ε the

desired precision; τ the threshold used for the truncated SVD; p ∈ N the projection step size;
Ensure: Xm an approximate solution of the Lyapunov equation;

1: for m = 1,2, . . . ,mmax do
2: Generate the mth block of the orthonormal basis Vm as well as that of the Hessenberg matrix Hm

by applying simultaneously Algorithm 1 to the pair (A,B)
3: Compute the mth block of Tm using 1
4: if m is a multiple of p then
5: Solve the projected equation:

Tm Ym +Ym (Tm)
T = B̃ B̃T ,

6: Compute the norm of de Rm using (16)
7: if ‖Rm‖F ≤ ε then
8: Goto line 12
9: end if

10: end if
11: end for
12: Compute the SVD of Ym, i.e., Ym =U ΣUT where Σ = diag[σ1, . . . ,σmr] and σ1 ≥ . . .≥ σmr;
13: Find l such that σl+1 ≤ τ < σl and take Σl = diag[σ1, . . . ,σl];
14: Compute Zm = VmUl Σ

1/2
l ;

15: Compute the approximate solution Xm ≈ Zm (Zm)
T.
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3 An alternative approach

In this section, we show that an alternative approach can be used for solving equation (1). First, the
idea is to note that the continuous Lyapunov equation, if it admits a unique solution, is equivalent by
right-multiplying it with A−1 to the following discrete Sylvester equation

A−1 X AT +X = A−1 BBT, (17)

In other words, instead of applying the EBA process to solve (1), we will use it with a few modications
to get a low-rank solution to equation (17). Consequently, the projected equation implies restrictions of
A and A−1 to the extended Krylov subspace Ke

m(G,V ) which will hopefully improve convergence speed
compared to the regular EBA method. We still consider that X̃m the approximate solution of (17) is of
the form (13) meaning that X̃m = Vm Ỹm(Vm)

T where Vm is defined earlier while Ỹm, as we will see, is
the solution of a projected equation derived from (17). Now, consider R̃m = A−1 BBT −A−1 X̃m AT − X̃
the residue related to X̃m. By applying the orthogonality condition (14) to R̃m, we show that Ỹm solves
the follwing projected Sylvester equation

Qm Ym (Tm)
T + Ỹm = B̂ B̃T, (18)

where Qm = VA
m

T A−1VA
m and Tm = Vm

T AVm are respectively the restrictions of A−1 and A to the
enriched Krylov subspaces Ke

m(A,B). Using the QR decomposition of [B,A−1 B], it is shown that B̃ =

VA
m

T B = e(m,r)
1 Λ1,1 while B̂ satisfies

B̂ = VT
m A−1 B = e(m,r)

1 ΓA
2,1 + e(m,r)

2 ΓA
2,2.

To optimize computational costs, the residue is computed as mentioned in the preceding section without
performing matrix-vector multiplication with the equation coefficients matrices. To that end, we consider
the following result.

Theorem 3. Let R̃m be the residue associated to X̃m the approximate solution of (17). We have

‖R̃m‖F =
√
‖λm‖2

F +‖µm‖2
F +‖νm‖2

F , (19)

where λm = Qm Ỹm Tm+1,m, µm = Qm+1,m (E(m,r)
m )T Ỹm (Tm)

T and

νm = Qm+1,m (E(m,r)
m )T Ỹm E(m,r)

m (Tm+1,m)
T .

Proof. Using the Arnoldi properties satisfied by Qm and Tm and the factorized form of X̃m, we can show
by simple manipulations that

R̃m = A−1 X̃ AT + X̃−A−1 BBT

= A−1Vm ỸmVT
m AT +Vm ỸmVT

m−Vm B̂ B̃T VT
m

=−Vm+1

[
Qm Ỹm (Tm)

T + Ỹm− B̂ B̃T Qm Ỹm Tm+1,m

Qm+1,m (E(m,r)
m )T Ỹ c

m (Tm)
T Qm+1,m (E(m,r)

m )T Ỹ c
m E(m,r)

m (Tm+1,m)
T

]
Vm+1.
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Hence the result, (19) is obtained by taking the Frobenius norm and considering that Ỹ c
m solves (18).

Remark 3.1. We note that the accuracy of X̃m as an approximate solution of the Lyapunov equation
can be checked out without computing its corresponding residue Rm = AX +X AT −BBT . In fact, it is
obvious to see that

Rm = AR̃m = AVm+1

[
0 −λm

−µm −νm

]
VT

m+1.

According to (3), we have AVm+1 = Vm+2 T̄m+1. Therefore

‖Rm‖F = ‖Vm+2 T̄m+1

[
0 −λm

−µm −νm

]
VT

m+1‖F

≤ ‖T̄m+1‖F

√
‖λm‖2

F +‖µm‖2
F +‖νm‖2

F

≤ ‖T̄m+1‖F ‖R̃m‖F .

To use the previous relation as stopping criteria, we will call for an additional iteration since T̄m+1 is
computed at the (m+1)th iteration. That is why we will halt the process when ‖A‖F ‖R̃m‖F ≤ ε where ε

is the tolerance used for solving (1).

Now, let X be the exact solution of (17) and X̃m the approximate solution provided by the alternative
method. Assuming that the matrix A is stable, meaning that all its eigenvalues are inside the unit circle.
The following result shows that the error X− X̃m may be upper bounded.

Theorem 4. Let X be the exact solution of (17) and X̃m the approximate solution provided by the alter-
native method. We have

‖X− X̃m‖F ≤
‖Tm+1,m‖F ‖Qm‖F +‖Qm+1,m‖F ‖Tm‖F +‖Tm+1,m‖F ‖Qm+1,m‖F

1−‖Qm‖F‖Tm‖F
‖Ỹm‖F . (20)

Proof. Since Ỹm solves (18), we may write

Vm(Qm Ym (Tm)
T + Ỹm−VT

m A−1 BBT Vm)VT
m = 0.

Using (4), we have

(A−1Vm−Vm+1 Qm+1,m (E(m,r)
m )T )Ỹm(VT

m AT −E(m,r)
m Tm+1,mV T

m+1)+Vm ỸmVT
m−A−1 BBT = 0.

Therefore, X̃m is the exact solution of the discrete Sylvester equation

(A−1−ψm)X̃m(AT −ωm)+ X̃m = A−1 BBT, (21)

where ψm = Vm+1 Qm+1,m (E(m,r)
m )T VT

m and ωm = Vm E(m,r)
m Tm+1,mV T

m+1. Subtracting (21) from (17)
gives that

A−1(X− X̃m)AT +Xm− X̃m =−A−1 X̃m ωm−ψm X̃m AT +ψm X̃m ωm.

It follows that

X− X̃m =
∞

∑
i=1

A−i
Θm(AT )i,
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where Θm =−A−1 X̃m ωm−ψm X̃m AT +ψm X̃m ωm. Considering that ‖A−1‖F = ‖Qm‖F , ‖AT‖F = ‖Tm‖F

and assuming that ‖Qm‖F‖Tm‖F ≤ 1 , we have

‖X− X̃m‖F ≤ (
∞

∑
i=1
‖A−i‖F‖(AT )i‖F)‖Θm‖

≤ (
∞

∑
i=1

(‖Qm‖F‖Tm‖F)
i)‖Θm‖

≤ ‖Θm‖F

1−‖Qm‖F‖Tm‖F
.

Since ‖X̃m‖F = ‖Ỹm‖F , ‖ψm‖F = ‖Qm+1,m‖F and ‖ωm‖F = ‖Tm+1,m‖F , we get that

‖Θm‖F = ‖−A−1 X̃m ωm−ψm X̃m AT +ψm X̃m ωm‖F

≤ (‖Tm+1,m‖F ‖Qm‖F +‖Qm+1,m‖F ‖Tm‖F +‖Tm+1,m‖F ‖Qm+1,m‖F)‖Ỹm‖F ,

which proofs (20). Algorithm 3 summarizes the proposed method.

Algorithm 3 Alternative EBA Method for solving low-rank Lyapunov equation (AEBA)
Require: A ∈ Rn×n; B ∈ Rn×r; mmax the maximum dimension of the Krylov subspace; ε the desired

precision; τ the threshold used for the truncated SVD; p ∈ N the projection step size;
Ensure: X̃m an approximate solution of the Lyapunov equation;

1: for m = 1,2, . . . ,mmax do
2: Generate the mth block of the orthonormal basis Vm as well as that of the Hessenberg matrix Hm

by applying simultaneously Algorithm 1 to the pair (A,B)
3: Compute the mth blocks of Tm and Qm using (1) and (2)
4: if m is a multiple of p then
5: Solve the projected equation: Qm Ym (Tm)

T + Ỹm = B̂ B̃T ,
6: Compute the norm of de R̃m using (19)
7: if ‖R̃m‖F ≤ (‖A‖F)

−1 ε then
8: Goto line 12
9: end if

10: end if
11: end for
12: Compute the SVD of Ỹm, i.e., Ỹm =U ΣUT where Σ = diag[σ1, . . . ,σmr] and σ1 ≥ . . .≥ σmr;
13: Find l such that σl+1 ≤ τ < σl and take Σl = diag[σ1, . . . ,σl];
14: Compute Zm = VmUl Σ

1/2
l ;

15: Compute the approximate solution X̃m ≈ Zm (Zm)
T .

We note that a similar approach has been applied to the Sylvester equation with a factored right-
side [1], which represents the general case of equation (1). Nevertheless, we tried to find a significantly
more accurate solution with a noticeable reduction in execution time. In addition, theoretical results
relating to the upper bound of the approximation error and the residual norm have been adjusted to deal
with the specific case discussed in this paper.



94 I. Abdaoui

4 Applications and comparaison

In order to evaluate the alternative method for solving the Lyapunov equation (referred to as AEBA), we
will compare its numerical behavior with the classical method denoted as EBA. The CPU time and the
number of iterations performed by each algorithm will be taken into account. The tests are conducted
using Matlab R2018 on a professional Windows 10 system equipped with an Intel(R) Core(TM) i5
processor @2.40GHz and 8 gigabytes of memory. To solve the projected equations (15) and (17), we
used the Matlab functions lyap and dlyap2, respectively. The action of A−1 is computed using the LU
decomposition while the right hand side of the Lyapunov equations is chosen randomly. The tolerance
employed to truncate SVD of Ym and Ỹm is set to τ = 10−12.

Example 1. The first set of experiments (Table 1) involves coefficient matrices from the Suitesparse
Matrix collection [6]. In the second set of tests (Table 2), the matrix A is chosen from the MATLAB

gallery. For the fist set, we plot the variations of the residual norm against the number of iterations as
illustrated in Figure 1. The compared methods are stopped once we have Rm < 10−8.

Table 1: Obtained results by the EBA and AEBA methods for the solving Lyapunov equation (Example
1, Set 1).

(A,n,r) Method Iterations Residual norm CPU time

(swang1,3169,3) AEBA 11 1.13e-10 0.12
CEBA 10 1.63e-09 0.23

(cage9,3534,6) AEBA 10 1.92e-11 1.44
CEBA 9 2.23e-10 1.86

(poli,4008,10) AEBA 10 1.68e-09 0.75
CEBA 16 1.60e-10 1.56

(thermal,3456,5) AEBA 12 8.12e-11 5.59
CEBA 11 8.34e-10 5.80

(pde2961,2961,5) EBA * * *
AEBA 27 3.28e-09 3.00

(poli large,15575,2) AEBA 12 4.84e-09 0.18
CEBA 13 2.88e-09 0.32

Despite having performed more iterations in some cases, the alternative method converges faster than
the classical method. This does not mean that we have not encountered cases where the latter performs
better in terms of execution time, as in the case of the matrix “poisson” in the second test set.

Example 2. In the first set of tests, we consider the matrix of the form

A =



4 1− p 0 . . . 0 1
1+ p 4 1− p 0 . . . 0

0
. . . . . . 0

. . .
...

...
. . . . . . 0

. . . 0

0 . . . 0 0
. . . 1− p

1 0 . . . 0 1+ p 4


,
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Figure 1: Convergence curves of the CEBA and AEBA methods (Set 1).

Table 2: Obtained results by the EBA and AEBA methods for solving the Lyapunov equation (Example
1, Set 2)

Test Method Iterations Residual norm CPU time

A =lesp, n = 10000
r = 2 AEBA 47 1.80e-07 75.7

CEBA * * *

r = 5 AEBA 39 1.57e-07 78.7
CEBA * * *

A = triw, n = 3000
r = 2 AEBA 10 6.51e-10 1.86

CEBA 10 6.90e-10 1.89

r = 5 AEBA 10 9.94e-10 2.17
CEBA 10 1.06e-09 3.14

A = poisson, n = 8100
r = 2 AEBA 49 2.81e-09 3.33

CEBA 26 7.04e-09 0.81

r = 5 AEBA 10 9.94e-10 2.17
CEBA 10 1.06e-09 3.14

used in [12] for solving large-scale algebraic Riccati equation with p ∈ ]0,1[. In order to check the
accuracy of the approximate solutions, the exact solution is computed before running the comparative
methods, while the stopping criteria is Rm < 10−10. The error norm and the rank of the approximate
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solution are also provided. In the second set, the matrix A is given such that

A = 2−t In +diag(1 : n)+ tridiag(1,0,−1),

where t = 0.4. Comparing the AEBA and CEBA methods show that the former is generally faster than
the classic method. Additionally, the solution provided by the AEBA method consistently achieves a
lower rank than the CEBA solution in the first set of this example. Regarding the number of iterations, it
is noteworthy that the alternative approach converges with fewer iterations in many cases. However, we
emphasize that the CEBA method yields a more accurate solution in the second set concerning the error
norm.

Table 3: Obtained results by the EBA and AEBA methods for solving the Lyapunov equation (Example
2, Set 1)

Test Method Iterations Residual norm CPU time ‖X−Xm‖F Rank(Xm)

n = 3000
r = 2 AEBA 10 5.63e-11 0.14 2.70e-11 22

CEBA 11 1.19e-11 0.31 2.95e-12 23

r = 5 AEBA 11 2.26e-11 0.42 1.18e-11 60
CEBA 11 9.05e-11 0.98 1.59e-11 65

n = 5000
r = 2 AEBA 10 9.09e-11 0.093 4.36e-11 24

CEBA 11 3.09e-11 0.12 9.76e-12 27

r = 5 AEBA 10 5.71e-11 0.37 2.80e-11 55
CEBA 11 9.87e-11 0.51 5.46e-11 72

n = 10000
r = 2 AEBA 11 1.11e-11 0.39 1.16e-11 24

CEBA 13 3.94e-11 1.03 2.46e-11 33

r = 5 AEBA 9 3.43e-12 0.56 2.77e-11 45
CEBA 9 3.94e-11 0.70 5.38e-11 58

5 Conclusions

In this paper, we have proposed an alternative method based on the extended block Arnoldi process for
solving the continuous Lyapunov equation. We have shown that the original equation can be transformed
into an equivalent Sylvester equation. Moreover, the projected equation obtained with this approach in-
volves the restrictions of A and A−1 to the projection subspace. The main impression is that the machine
time, required to obtain an approximate solution for the equation under study, has been improved com-
pared to the classical method .
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