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Abstract. In this article, we propose an approximate technique for reconstructing a time-dependent re-
action coefficient together with the surface heat flux histories and temperature distribution in a nonlinear
inverse heat conduction problem (IHCP). We assume that the initial condition and the transient heat flux
on the accessible boundary along with the temperature measured at specified interior locations in the do-
main of the problem are given as the input data. By applying the given measurements in a transformation,
the main problem is reformulated as a certain parabolic problem and later a procedure based upon de-
ploying the Ritz approximation along with the collocation method is applied which converts the problem
to a nonlinear system of algebraic equations. Accurate numerical results in dealing with the exact initial
and boundary data are obtained and regarding the perturbed boundary data, the regularization method
based on cubic spline approximation is used, which results in obtaining stable numerical derivatives.
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1 Introduction

In this work, we discuss the solution of the following parabolic equation for identifying the functions
(p(t),u(x, t)) [36]

ut(x, t)−uxx(x, t) = p(t)g(u(x, t))+ f (x, t), (x, t) ∈ Q, (1)

with the initial condition
u(x,0) = u0(x), x ∈ [y2,1], (2)

and Neumann boundary condition
ux(1, t) = 0, t ∈ (0,T ], (3)
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and subject to the additional temperature measurements given at two sensor positions 0≤ y2 < y1 ≤ 1 as

u(y1, t) = Y1(t), u(y2, t) = Y2(t), t ∈ [0,T ], (4)

where Q = [y2,1]× [0,T ] is a bounded domain in R2 and u0(x), Y1(t), Y2(t) are considered as the known
functions with appropriate conditions describing the initial condition and temperature distribution at the
known locations y1 and y2. The material source or reaction term g(u) is assumed to be a given function of
the state variable and the unknown time-dependent reaction coefficient p(t) characterizes some property
of the medium such as the intensity of the source term. We further suppose that the following consistency
conditions hold:

u′0(1) = 0, u0(y1) = Y1(0), u0(y2) = Y2(0). (5)

Inverse problem given by the system of Eqs. (1)-(4) and other similar problems usually appear in
the context of heat conduction or diffusion processes related to ignition and polymerization [15, 36] in
chemical or biochemical applications since detecting the intensity of reaction in time can be used for
recommendations on the choice of optimal parameters to further applications as monitoring purposes.

The IHCPs concerning the estimation of time-dependent coefficient when g(u) = u has been studied
in several articles [6–8,10,18,19,23,33,35]. Despite this fact, the case of the nonlinear function of g has
received less attention. In [31], the authors considered a homogeneous IHCP for recovering the time-
dependent coefficient p(t) when g(u) = uγ , γ ∈ (0,1) with homogeneous Neumann boundary conditions
and established the conditions under which the existence and uniqueness of the solution is guaranteed.
In [4,11], the authors proved the uniqueness of the solution of inverse problems for recovering unknown
state dependent reaction term in some reaction-diffusion equation and integral identities based on as-
sociated adjoint problem derived to show the relationship between the changes in the source term and
measured output data. In [12], the authors discussed the stable identification of a nonlinear source term
in parabolic equations from a single set of boundary measurements via Carleman estimates. In [24],
the authors employed a meshless method based on the application of the radial basis functions (RBFs)
technique and the Tikhonov regularization method for retrieving a state dependent source term in a one
dimensional heat equation. In [9], the author proved the unique solvability of a nonlinear inverse prob-
lem for recovering the right-hand side of a quasi-linear parabolic equation and presented a reconstruction
technique based on parametric representation of the sought coefficient. In [13], the author proposed a
polygonal approximation technique to find the nonlinear source term in a one-dimensional heat equation.

In [36], the authors utilized the following transformation

y =
x− y2

1− y2
, v(y, t) = u(x, t)−Y2(t), (6)

to obtain the equivalent problem

vt − γvyy = p(t)g(v+Y2(t))+ f
(

y2 +(1− y2)y, t
)
−Y ′2(t), (y, t) ∈ Q′, (7)

v(y,0) = u1(y), y ∈ [0,1], (8)

vy(1, t) = 0, t ∈ (0,T ], (9)

v(0, t) = 0, v(y∗, t) = Y1(t)−Y2(t), t ∈ [0,T ], (10)
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where

γ =
1

(1− y2)2 , u1(y) = u0

(
y2 +(1− y2)y

)
−Y2(0), y∗ =

y1− y2

1− y2
, Q′ = [0,1]× [0,T ],

and showed that the problem presented by Eqs. (1)-(4) has a unique classical solution for small values
of T and proposed a numerical scheme based on the finite difference method (FDM).

Although we know that the method used by [36] is effective in solving the above problem and even
a wide class of PDEs [17, 32], but the computational cost of the FDM is high and the accuracy of the
method is low. For this reason, we seek to provide a spectral method [1–3, 5, 20–22] that can be easily
implemented to obtain numerical accuracy beyond two or three digits. Moreover, we will provide appro-
priate instructions based on regularization methods, using which, the proposed technique can calculate
robust and reliable solutions [16] when dealing with noisy boundary conditions.

The organization of this article is as follows. In Section 2, we present the approximate solution
of the considered inverse problem. In Section 3, some simulations are presented to demonstrate the
effectiveness of the proposed method. Finally, in Section 4, we present the concluding remarks.

2 Computational Scheme

By defining the following functions

b(y, t) := y
Y1(t)−Y2(t)

y∗
, (11)

s(y, t) := b(y, t)+u1(y)−b(y,0), w(y, t) := v(y, t)− s(y, t), (12)

and taking the compatibility conditions (5) into account, we get

w(y,0) = 0, 0≤ y≤ 1, w(0, t) = w(y∗, t) = 0, t ∈ [0,T ]. (13)

Then, by applying the assumptions (11)-(12) into the problem (7)-(10) the following is derived

wt − γwyy = p(t)g
(

w+ s(y, t)+Y2(t)
)
+ f
(

y2 +(1− y2)y, t
)

−Y ′2(t)+ γu
′′
1(y)− st(y, t), (y, t) ∈ Q′, (14)

wy(1, t) =
1
y∗

(
Y1(t)−Y2(t)−Y1(0)+Y2(0)

)
+u

′
1(1), t ∈ (0,T ], (15)

where

st(y, t) = y
Y ′1(t)−Y ′2(t)

y∗
. (16)

Accordingly, if the functions of boundary and initial conditions are continuous in corners, i.e. the condi-
tions (5) are satisfied, then problems (7)-(10) and (13)-(16) are equivalent if

u1(y) ∈C2([0,1]), Y1(t) & Y (t) ∈C1([0,T ]), y1 6= y2.
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Thus in the sequel, solving the system of Eqs. (13)-(16) is considered instead of problem (1)-(4). In
this regard, we employ the orthonormal Bernstein basis functions (OBBFs) {φi(y)}∞

i=0 and {ψ j(t)}∞
j=0

[25, 26] which are complete in the Hilbert spaces L2[0,1] and L2[0,T ] respectively, that are defined as
follows

φi(y) =
φ ∗i (y)√∫ 1

0 (φ
∗
i (y))2dy

, y ∈ [0,1], ψi(t) =
ψ∗i (t)√∫ T

0 (ψ∗i (t))2dt
, t ∈ [0,T ], (17)

such that for any fixed natural numbers 1 ≤ n ≤ m, functions φ ∗i (y) and ψ∗i (t) are constructed via the
following Gram-Schmidt formulas

φ
∗
0 (y) := (1− y)m, φ

∗
n (y) :=

m!yn(1− y)m−n

(m−n)!n!
−

n−1

∑
k=0

∫ 1
0 m!yn(1− y)m−nφ ∗k (y)dy

(m−n)!n!
∫ 1

0

(
φ ∗k (y)

)2

dy

φ
∗
k (y), (18)

ψ
∗
0 (t) :=

(T − t)m

T m , ψ
∗
n (t) :=

m!tn(T − t)m−n

T m(m−n)!n!
−

n−1

∑
k=0

∫ T
0 m!tn(T − t)m−nψ∗k (t)dt

T m(m−n)!n!
∫ T

0

(
ψ∗k (t)

)2

dt

ψ
∗
k (t). (19)

By taking the following column vectors of the OBBFs

φ(y) = [φ0(y),φ1(y), . . . ,φN(y)]>, ψ(t) = [ψ0(t),ψ1(t), . . . ,ψN′(t)]>, (20)

we introduce the differentiation of the vectors φ(y) and ψ(t) as

d
dy

φ(y) := DNφ(y), 0≤ y≤ 1,
d
dt

ψ(t) := DN′ψ(t), 0≤ t ≤ T, (21)

where the notations DN and DN′ stand for the (N + 1)× (N + 1) and (N′+ 1)× (N′+ 1) operational
matrices of differentiation [25, 26] corresponding to the basis functions φi(y) and ψi(t), respectively. By
denoting

rφ

i (y) :=
dφi(y)

dy
, rψ

i (t) :=
dψi(t)

dt
,

and considering the entries of the matrices DN and DN′ by dN
i j and dN′

i j , respectively, we find

dN
i j =

∫ 1

0
rφ

i (y)φ j(y)dy, i, j = 0,N, dN′
i j =

∫ T

0
rψ

i (t)ψ j(t)dt, i, j = 0,N′. (22)

The Ritz approximate solutions pN′(t) and wN,N′(y, t) for the unknown functions p(t) and w(y, t),
based on the OBBFs are suggested as follows:

pN′(t) := θ
>

ψ(t) =
N′

∑
j=0

θ jψ j(t), (23)

wN,N′(y, t) := ty(y− y∗)φ>(y)Cψ(t) =
N

∑
i=0

N′

∑
j=0

ci jty(y− y∗)φi(y)ψ j(t), (24)

In this work, we represent the transpose operator by notation >
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such that the unknown matrix C and vector θ> are given by

C =

 c00 · · · c0N′
...

...
cN0 · · · cNN′

 , θ
> = [θ0,θ1, ...,θN′ ]. (25)

It is worthy to point out that the approximation wN,N′(y, t) proposed by Eq. (24) precisely fulfills the
boundary and initial conditions (13). We call (24) as the approximate solution of the system of Eqs.
(13)-(16) if the following conditions are also included

R1(y, t, p(t),w(y, t)) := wt − γwyy− p(t)g
(

w+ s(y, t)+Y2(t)
)
− f
(

y2 +(1− y2)y, t
)

+Y ′2(t)− γu
′′
1(y)+ st(y, t) = 0, (26)

R2(t,wy(1, t)) := wy(1, t)−
1
y∗

(
Y1(t)−Y2(t)−Y1(0)+Y2(0)

)
−u

′
1(1) = 0. (27)

In this respect, by taking (23) and (24) into account and using the operational matrices of differentiation
DN and DN′ , we compute the following approximations of wt(y, t), wy(y, t) and wyy(y, t)

wt(y, t) ' y(y− y∗)φ>(y)C
(

ψ(t)+ tDN′ψ(t)
)
, (28)

wy(y, t) ' t
(
(2y− y∗)φ>(y)+ y(y− y∗)φ>(y)D>N

)
Cψ(t), (29)

wyy(y, t) ' t
(

2φ
>(y)+(4y−2y∗)φ>(y)D>N + y(y− y∗)φ>(y)(D>N )

2
)

Cψ(t). (30)

By substituting the approximations (28)-(30) in Eqs. (26)-(27) we get

R1(y, t, pN′(t),wN,N′(y, t))' y(y− y∗)φ>(y)C
(

ψ(t)+ tDN′ψ(t)
)
− f
(

y2 +(1− y2)y, t
)
− γu

′′
1(y)

− γt
(

2φ
>(y)+(4y−2y∗)φ>(y)D>N + y(y− y∗)φ>(y)(D>N )

2
)

Cψ(t)

−θ
>

ψ(t)g
(

ty(y− y∗)φ>(y)Cψ(t)+ s(y, t)+Y2(t)
)

+Y
′
2(t)+ y

Y ′1(t)−Y ′2(t)
y∗

= 0, (31)

R2(t,wyN,N′ (1, t))' t
(
(2− y∗)φ>(1)+(1− y∗)φ>(1)D>N

)
Cψ(t)

− 1
y∗

(
Y1(t)−Y2(t)−Y1(0)+Y2(0)

)
−u

′
1(1) = 0. (32)

Next, by collocating [27–30] the residual functions (31) and (32) at the points

xi =
i

N +2
, t j =

jT
N′+2

, i = 1,N +1, j = 1,N′+1, (33)
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we achieve to the nonlinear system of algebraic equations as follows{
R1(xi, t j, pN′(t j),wN,N′(xi, t j)) = 0, i = 1,N +1, j = 1,N′+1,
R2(t j,wyN,N′ (1, t j)) = 0, j = 1,N′+1.

(34)

By solving the system of Eqs. (34) for the elements

ci j, i = 0,N, j = 0,N′, θ j, j = 0,N′,

utilizing the Newton’s iterative method [34], the unknown matrix C and vector θ are specified. It is worth
noting that as the parameters N and N′ increase, if the functions R2(t j,wyN,N′ (1, t j)) and
R1(xi, t j, pN′(t j),wN,N′(xi, t j)) converge to zero, then Eqs. (26) and (27) are satisfied. On the other hand,
the initial and boundary conditions (13) are also accurately fulfilled by the approximation (24), thus
pN′(t) and wN,N′(y, t) as the approximations to the system of Eqs. (13)-(16) tend to the analytical solu-
tions p(t) and w(y, t), respectively. If so, then from relations (6) and (12), the approximation of u(x, t) is
obtained as

uN,N′(x, t) = wN,N′(
x− y2

1− y2
, t)+ s(

x− y2

1− y2
, t)+Y2(t). (35)

Furthermore, it should be noted that the approximations recast by Eqs. (24)-(35) are valid as long as
the input initial and boundary data of the problem are free of errors. Otherwise, appropriate procedure
should be adopted so that the errors in the input data are controlled. For the case of inaccurate boundary
conditions, we suppose that Y η

i (t), i∈ {1,2} be perturbations subject to ‖Yi(t)−Y η

i (t)‖∞ ≤ η . Then, we
fix the constant M and consider the approximations of Y η

i (t) and (Y η

i )′(t) based on the following spline
functions

Y η

i (t)' Si(t) =


S1i(t), 0≤ t < T

M ,

S2i(t), T
M ≤ t < 2T

M ,
...

SMi(t),
(M−1)T

M ≤ t < T,

(Y η

i )′(t)' S′i(t) =


S′1i(t), 0≤ t < T

M ,

S′2i(t),
T
M ≤ t < 2T

M ,
...

S′Mi(t),
(M−1)T

M ≤ t < T,

(36)

where i ∈ {1,2, ...,M}, j ∈ {1,2}, and

Si j(t) = α
( j)
i,1 t3 +α

( j)
i,2 t2 +α

( j)
i,3 t +α

( j)
i4 , S′i j(t) = 3α

( j)
i,1 t2 +2α

( j)
i,2 t +α

( j)
i,3 . (37)

We wish to find the unknown coefficients α
(k)
i, j , i = 1,M, j = 1,4, k ∈ {1,2} such that the functions Si(t)

be the natural spline approximations of Y η

i (t). In this respect, for each k ∈ {1,2} we form the following
equations

α
(k)
i,1 (

jT
M )3 +α

(k)
i,2 (

jT
M )2 +α

(k)
i,3 (

jT
M )+α

(k)
i,4 = Y η

k ( jT
M ), j ∈ {i−1, i}, i = 1,M,

α
(k)
1,2 = 0, 6α

(k)
M,1T +2α

(k)
M,2 = 0,

3α
(k)
i,1 (

iT
M )2 +2α

(k)
i,2 (

iT
M )+α

(k)
i,3 −3α

(k)
i+1,1(

iT
M )2−2α

(k)
i+1,2(

iT
M )−α

(k)
i,3 = 0, i = 1,M−1,

6α
(k)
i,1 (

iT
M )+2α

(k)
i,2 −6α

(k)
i+1,1(

iT
M )−2α

(k)
i+1,2 = 0, i = 1,M−1,

(38)

and the result of which will be the systems represented generically by

Bkα
(k) = ek,
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where the vectors α(k) contain the unknowns α
(k)
i j , i = 1,M, j = 1,4, k ∈ {1,2}. The Tikhonov regular-

ization method solves the modified system

(B>k Bk +λkI)α(k) = B>k ek, λk > 0, (39)

to get the unknown vectors α
(k)
k and then the functions S′i(t) are specified which are used in Eqs. (16)

and (31) instead of Y ′i (t).

Remark 1. Although the instruction given by Eqs. (36)-(39) provides a suitable method to find stable
numerical derivative, but as a new approach and by writing Eq. (26) in the following integral form

R3(y, t, p(t),w(y, t)) := w(y, t)−
∫ t

0

{
γwyy(y,r)+ p(r)g

(
w(y,r)+ s(y,r)+Y2(r)

)}
dr

−
∫ t

0
f
(

y2 +(1− y2)y,r
)

dr+Y2(t)+ s(y, t)

−Y2(0)−u1(y)− tγu
′′
1(y) = 0, (40)

we can avoid differentiating with respect to the time variable t regarding the noisy boundary conditions.
By substituting the approximations of w(y, t), wyy(y, t) and p(t) in Eq. (40), we have

R3(y, t, pN′(t),wN,N′(y, t)) ' y(y− y∗)φ>(y)Cψ(t)+Y2(t)+ s(y, t)−u0

(
y2 +(1− y2)y

)
− tγu

′′
1(y)

−γ

(
2φ
>(y)+(4y−2y∗)φ>(y)D>N + y(y− y∗)φ>(y)(D>N )

2
)

C
∫ t

0
z1(r)dr

−
∫ t

0
z2(y,r)dr,

where z1(r) = [rψ0(r), . . . ,rψN′(r)]> and

z2(y,r) = f
(

y2 +(1− y2)y,r
)
+ p(r)g

(
w(y,r)+ s(y,r)+Y2(r)

)
.

Finally, the following system of nonlinear algebraic equations is solved to find the unknowns C and θ :{
R3(xi, t j, pN′(t j),wN,N′(xi, t j)) = 0, i = 1,N +1, j = 1,N′+1,
R2(t j,wyN,N′ (1, t j)) = 0, j = 1,N′+1.

Meanwhile, for computing the values
∫ t j

0 z1(y)dy and
∫ t j

0 z2(xi,y)dy we apply the Simpson’s rule as fol-
lows

∫ t j

0
z1(y)dy '

H j

3

{
z1(0)+ z1(t j)+4

M′
2

∑
k=1

z1

(
(2k−1)H j

)
+2

M′
2 −1

∑
k=1

z1

(
2kH j

)}
,

∫ t j

0
z2(xi,y)dy '

H j

3

{
z2(xi,0)+ z2(xi, t j)+4

M′
2

∑
k=1

z2

(
xi,(2k−1)H j

)
+2

M′
2 −1

∑
k=1

z2

(
xi,2kH j

)}
,

where H j = t j/M′.
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3 Illustrative tests

Three examples are solved in this section. The functions

E(u(x, t)) = |u(x, t)−uN,N′(x, t)|, E(p(t)) = |p(t)− pN′(t)|,

are used to represent the absolute error corresponding to the functions u(x, t) and p(t). Meanwhile,
by denoting the unknown function ux(0, t) = q(t), we define the absolute error of function q(t) by
E(q(t)) = |ux(0, t)−uxN,N′ (0, t)|. Throughout this work, numerical calculations are performed in Mathe-
matica software. The utilized commands are as follows: FindRoot (to solve the nonlinear systems of alge-
braic equations), LinearSolve (to solve the linear systems of algebraic equations) and
RandomReal[{−1,1}] (to generate random real numbers belonging to the interval [−1,1]). The L-Curve
criterion [14] is employed for selecting the regularization parameters λ j, j ∈ {1,2}.

Example 1. The inverse problem with the following properties is considered

ut −uxx = p(t)e−u +(
x2

2
− x−2)e

t
2 − (

t +0.8
1+(t +0.1)2 )e

(2x−x2)e
t
2 , in [0.1,1]× [0,1],

u0(x) = x2−2x, 0.1≤ x≤ 1, ux(1, t) = 0, 0 < t ≤ 1,

u(0.5, t) = −0.75e
t
2 , u(0.1, t) =−0.19e

t
2 , t ∈ [0,1],

to retrieve the following analytical solutions

p(t) =
t +0.8

1+(t +0.1)2 , u(x, t) = e
t
2 (x2−2x).

The problem is solved by employing the presented scheme in Section 2 with N = N′ = 2, where the exact
initial and boundary conditions are applied and the result of which is depicted in Figures 1-3. In addition,
we gradually increase the number of basis functions in the computations and tabulate the outcomes of this
experiment in Tables 1-2 to show the numerical convergence of the presented technique. The obtained
numerical results confirm the reduction of error and increase of accuracy in numerical approximations.
Next, we want to investigate the sensitivity of our solution method to small changes in the boundary
conditions. In this regard we utilize the following

Y η

j (ti) = Yj(ti)+η×RandomRea[{−1,1}], ti ∈ [0,1], j ∈ {1,2}, (41)

ux(1, t) = 0−η sin(
t

η2 ), t ∈ (0,1], (42)

where η ∈ {10−2,3× 10−2,5× 10−2} is the percentage of noise. By solving the problem via the pre-
sented technique in Section 2 and utilizing the regularization method given by Eqs. (36)-(39) with the
parameters N1 = N2 = 4 and M = 10, we get the results of approximating p(t) and q(t) shown in Fig-
ures 4-5 and Table 3. It is observed that by applying the regularization method, we control the impact of
the introduced errors to the boundary conditions and acceptable approximations are derived.
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0.2 0.4 0.6 0.8 1.0
t

0.01
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0.03

0.04

E(p(t))

Figure 1: Graph of E(p(t)) derived by the proposed method with N = N′ = 2 when exact input data are
used in Example 1.

0.2 0.4 0.6 0.8 1.0
t

0.00001

0.00002

0.00003

E(q(t))

Figure 2: Graph of E(q(t)) derived by the proposed method with N = N′ = 2 when exact input data are
used in Example 1.

Figure 3: Graph of E(u(x, t)) derived by the proposed method with N = N′ = 2 when exact input data
are used in Example 1.



26 K. Rashedi

Table 1: Computational results for Example 1 with the accurate boundary conditions.

(N,N′) ‖E(p(t))‖∞ ‖E(q(t))‖∞ ‖E(u(x, t))‖∞ ‖R2(t,wy(1, t))‖∞ ‖R1(y, t, p(t),w(y, t))‖∞

(3,3) 8×10−3 5.5×10−6 4.6×10−6 1.6×10−5 3.3×10−2

(5,5) 1.7×10−3 4.96×10−9 3.2×10−9 1.53×10−8 9.6×10−3

(7,7) 2.9×10−4 4.2×10−12 1.45×10−12 8.15×10−12 6.7×10−4

Table 2: Computational results for Example 1 with the accurate boundary conditions.

(N,N′) ‖E(p(t))‖2 ‖E(q(t))‖2 ‖E(u(x, t))‖2 ‖R2(t,wy(1, t))‖2 ‖R1(y, t, p(t),w(y, t))‖2

(3,3) 2×10−3 1.08×10−6 2.9×10−7 3.5×10−6 5.4×10−3

(5,5) 4.2×10−4 7.49×10−10 1.8×10−10 2.4×10−9 1.2×10−3

(7,7) 4.5×10−5 5.7×10−13 1.04×10−14 1.1×10−12 1×10−4

Example 2. In this example [36], we assume that the problem given by Eqs. (1)-(4) possesses the
following conditions:

f (x, t) =
(

π2

4(1− y2)2 −1
)

sin
(

π

2
.
x− y2

1− y2

)
e−t +(1+ t2)sin3

(
sin
(

π

2
.
x− y2

1− y2

)
e−t
)
, (43)

g(u) = sin3(u), u0(x) = sin
(

π

2
.
x− y2

1− y2

)
, Y1(t) = sin

(
π

2
.
y1− y2

1− y2

)
e−t , Y2(t) = 0, (44)

and its exact solutions are as follows

p(t) =−1− t2, u(x, t) = sin
(

π

2
.
x− y2

1− y2

)
e−t , Q = [0.1,1]× [0,1].

By taking y1 = 0.9, y2 = 0.1 and applying the approximations presented in Section 2 with different values
of N = N′ ∈ {1,2,3,4,5,6}, we derive the findings tabulated in Tables 4-5. Following the numerical
solutions, it can be observed that very good numerical approximations to the analytical solutions are
provided and the results further improve with increasing the parameters N and N′. As a conclusion,
when no noise is introduced to the initial and boundary data the proposed method produces excellent and
convergent approximations. Moreover, compared to the results presented in [36], it can be observed that
the algorithm proposed in the present paper yields better results because of providing higher accuracy
with lower computational cost.

Furthermore, to realize that how the proposed approximate method deals with inaccurate boundary
conditions, we consider the problem involving Eqs. (41)-(42) and solve it by utilizing the suggested
technique of Remark 2.1 along with the following parameters

N = N′ = 3, M′ = 50, η ∈ {0.001,0.002,0.003}.

The results are illustrated in Figures 6-7 and Table 6. As it can be seen, for small amounts of pertur-
bations in the boundary conditions, the obtained approximations are close to the analytical solutions.
Nevertheless, as time increases the errors increase and it results in some drawbacks for recovering the
value of p(t) at t = T , accurately. In addition, we should mention that we could not get acceptable
solutions for η > 0.003.
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Table 3: The L2-norm of errors corresponding to the unknown functions p(t) and q(t) for Example 1,
while the boundary data are contaminated with errors.

η ‖E(p(t))‖2 ‖E(q(t))‖2

0.01 0.009 0.003
0.03 0.04 0.02
0.05 0.09 0.03

***
****

****
*****

********
*********************************************************

○
○○
○○
○○
○○
○○○

○○○○
○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

+
+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0

1.2

p(t)

Figure 4: Graph of the exact solution of p(t) (blue curve), and approximate solutions found by the
proposed technique with the perturbed boundary data and appropriate regularization parameters λ1, λ2
for Example 1 (∗∗∗: when η = 0.01, λ1 = 10−6, λ2 = 10−2; ◦◦◦: when η = 0.03, λ1 = λ2 = 10−2; ++
+: when η = 0.05, λ1 = λ2 = 10−2).

Table 4: Computational results for Example 2 with the accurate boundary conditions.

(N,N′) ‖E(p(t))‖∞ ‖E(q(t))‖∞ ‖E(u(x, t))‖∞ ‖R2(t,wy(1, t))‖∞ ‖R3(y, t, p(t),w(y, t))‖∞

(2,2) 0.24 0.02 0.0004 0.002 0.063
(3,3) 0.058 0.0022 0.000064 0.00021 0.015
(4,4) 0.0045 0.00049 7.86×10−6 0.000014 0.0013
(5,5) 0.00053 4.2×10−5 5.59×10−7 8.2×10−7 0.00018
(6,6) 3×10−5 5.8×10−6 3.9×10−8 4×10−8 1.3×10−5

Example 3. Consider the equation

ut −uxx = p(t)eu +
4(x−1)2− (1+ t +(x−1)2)

(1+ t +(x−1)2)2 − (1+ t +(x−1)2)et , in [0.1,1]× [0,T ], (45)
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*********************************************************************************

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

0.2 0.4 0.6 0.8 1.0
t
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-2.2

-2.0
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Figure 5: Graph of the exact solution of q(t) (blue curve), and approximate solutions found by the
proposed technique with the perturbed boundary data and appropriate regularization parameters λ1, λ2
for Example 1 (∗∗∗: when η = 0.01, λ1 = 10−6, λ2 = 10−2; ◦◦◦: when η = 0.03, λ1 = λ2 = 10−2; ++
+: when η = 0.05, λ1 = λ2 = 10−2).

Table 5: Computational results for Example 2 with the accurate boundary conditions.

(N,N′) ‖E(p(t))‖2 ‖E(q(t))‖2 ‖E(u(x, t))‖2 ‖R2(t,wy(1, t))‖2 ‖R3(y, t, p(t),w(y, t))‖2

(2,2) 0.1 0.013 0.00022 0.0006 0.012
(3,3) 0.022 0.0014 0.00003 0.000042 0.002
(4,4) 0.002 0.0003 3×10−6 2.5×10−6 1.7×10−4

(5,5) 0.0002 0.00003 2.4×10−7 1.3×10−7 2×10−5

(6,6) 1.3×10−5 3.8×10−6 1.84×10−8 5.8×10−9 1.3×10−6

with the following initial and boundary conditions

u(x,0) = Ln((x−1)2 +1), x ∈ [0.1,1], u(
j

10
, t) = Ln((

j−10
10

)2 + t +1), j ∈ {1,4}, t ∈ [0,T ]. (46)

The problem is solved via the presented method with exact initial and boundary data per two different
time intervals, i.e. T ∈ {1,2}. The results are tabulated in Table 7. It is seen that the approximations of
unknown functions are improved by increasing the number of basis functions. However, for larger time-
span T , we need to increase the number of basis functions to get more accurate approximate solutions
and this increases the computational cost.

4 Conclusions

The content of this paper concerns an inverse problem originated from the heat conduction with a nonlin-
ear source term. The main goal is solving numerically the considered nonlinear IHCP for simultaneously
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Table 6: The L2-norm of errors corresponding to the unknown functions p(t) and q(t) for Example 2,
while the boundary data are contaminated with errors.

η ‖E(p(t))‖2 ‖E(q(t))‖2

0.001 0.03 0.003
0.002 0.42 0.008
0.003 0.5 0.01

*********************************************************************************

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○
○
○

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+
+
+
+
+
+
+
+

0.2 0.4 0.6 0.8 1.0
t

-3

-2
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p(t)

Figure 6: Graph of the exact solution of p(t) (blue curve), and approximate solutions found by the
proposed technique with the perturbed boundary for Example 2 (∗ ∗ ∗: when η = 0.001; ◦ ◦ ◦: when
η = 0.002; +++: when η = 0.003).

retrieving a time-dependent reaction coefficient and the surface heat flux histories and temperature dis-
tribution. First, the problem is recast as a certain PDE and the Ritz approximations based on the OBBFs
are employed to detect the unknown functions. Then, the collocation method is applied to reduce the
inverse problem to the solution of algebraic equations. The method employs the natural cubic spline
technique in order to approximate the perturbed boundary data as well as its derivative and additionally
Tikhonov regularization method is utilized for achieving stable solutions. We present some numerical
tests and the issues of numerical convergence and stability are discussed. It can be seen that by employ-
ing the proposed method satisfactory results are obtained such that in the presence of the exact initial and
boundary data the unknown functions are excellently retrieved and regarding the noisy boundary data
the obtained approximations deviate from the analytical solution almost proportional to the amount of
introduced noise.
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*********************************************************************************

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
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Figure 7: Graph of the exact solution of q(t) (blue curve), and approximate solutions found by the
proposed technique with the perturbed boundary for Example 2 (∗ ∗ ∗: when η = 0.001; ◦ ◦ ◦: when
η = 0.002; +++: when η = 0.003).

Table 7: Computational results for Example 3 with the accurate boundary conditions.

(N,N′,T ) ‖E(p(t))‖2 ‖E(q(t))‖2 ‖E(u(x, t))‖2

(2,2,1) 0.025 0.016 0.004
(2,2,2) 0.22 0.15 0.03
(4,4,1) 0.001 0.0006 0.0002
(4,4,2) 0.005 0.003 0.001
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