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Abstract. In this paper, we present a well-organized strategy to estimate the fractional advection-
diffusion equations, which is an important class of equations that arises in many application fields. Thus,
Lagrange square interpolation is applied in the discretization of the fractional temporal derivative, and
the weighted and shifted Legendre polynomials as operators are exploited to discretize the spatial frac-
tional derivatives of the space-fractional term in multi-term time fractional advection-diffusion model.
The privilege of the numerical method is the orthogonality of Legendre polynomials and its operational
matrices which reduces time computation and increases speed. A second-order implicit technique is
given, and its stability and convergence are investigated. Finally, we propose three numerical examples
to check the validity and numerical results to illustrate the precision and efficiency of the new approach.

Keywords: Advection-diffusion model, multi-term time fractional term, collocation method, Legendre polynomial,
stability, convergence.
AMS Subject Classification 2010: 65L60, 65N12, 35R11.

1 Introduction

Advection-diffusion is a physical concept that describes the movement of a substance in a fluid. It
combines two important mechanisms: advection, which is the transport of a substance due to the flow of
the fluid, and diffusion, which is the random movement of the substance due to its thermal energy [5].
Advection-diffusion occurs in a wide range of natural and man-made systems, such as the transport of
pollutants in the atmosphere, the spread of chemicals in water bodies, and the exchange of gases in
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biological tissues. The behavior of advection-diffusion is influenced by various factors, including the
properties of the fluid and the substance, the geometry of the system, and the boundary conditions [3].
Understanding advection-diffusion is crucial for predicting and controlling the transport of substances in
different environments.

In recent years, several physical phenomena have been observed in media with complicated inner
designs. This has led to conclusions about mathematical samples and differential equations that include
fractional derivatives [13, 16].

In this paper, a type of multi-term time-fractional advection-diffusion equation (MTFADE) is being
evaluated as below

P(Dτ)v(x,τ) = K1
∂ 2β1v(x,τ)

∂ |x|2β1
+K2

∂ 2β2v(x,τ)
∂ |x|2β2

+q(x,τ), 0 < x < 1, 0 < τ < T, (1)

with the boundary conditions and initial condition as

v(0,τ) = r(τ), v(0,τ) = s(τ), 0≤ τ ≤ T,

v(x,0) = z(x), 0≤ x≤ 1,

respectively. In Eq. (1), the fractional factor P(Dτ) is described as

P(Dτ)v(x,τ) =
ε

∑
e=0

be
C
0 Dαe

τ v(x,τ),

with 0 < αε < · · ·< α1 < α0 ≤ 1 and be ≥ 0. Terms ∂ 2βi v(x,τ)
∂ |x|2βi

, i = 1,2 are the Riesz fractional derivative
with respect to x are described as

∂ 2βiv(x,τ)
∂ |x|2βi

=
−1

2cos(βiπ)

(
xD2βi

L v(x,τ)+ xD2βi
R v(x,τ)

)
,

where xD2βi
L v(x,τ) and xD2βi

R v(x,τ) describe the left and right fractional Riemann-Liouville derivatives
specified as below

xD2βi
L v(x,τ) =

1
Γ(2−2βi)

( d
dx

)n ∫ x

0
(x−ζ )n−2βiv(ζ ,τ)dζ ,

xD2βi
R v(x,τ) =

1
Γ(2−2βi)

(
− d

dx

)n ∫ 1

x
(ζ − x)n−2βiv(ζ ,τ)dζ ,

where n−1 < 2βi ≤ n,n ∈ N.
Note that a well-known Eq. (1) consists of some classic fractional instances. Using e = 0 in the

fractional factor P(Dτ) results in traditional advection-diffusion equation [20, 23]. Taking K1 = 0 and
β2 = 1 gives you the multi-term time-fractional diffusion equations [10, 19]. Taking α0 = 2,α1 = 1, and
K1 = 0 in the case 1 < αe < αe−1 < · · ·< α0 ≤ 2 results in a spatially fractional Telegraph equation [8].

Many studies have been done about the space-fractional, time-fractional, and space-time-fractional
generalization of the advection-diffusion model [15,17,18,21]. In addition to the physical aspects of this
equation, it has numerical aspects as well which are used for its solution and were vastly investigated in
many articles [24].
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To solve space-time fractional models, such as the fractional advection-diffusion model, productive
implicit numerical schemes have been proposed in [4, 25], and stability and convergence have been
considered [11, 12, 20]. Many papers have been designed based on numerical and analytical solutions
of MTFADEs [22]. Analytical solutions of these equations with just the diffusion term have also been
examined in [6].

The remainder of this paper deals with the following sections. The numerical procedure and con-
struction to discretize the instance are presented in Section 2. Moreover, the approximating operator of
the fractional Legendre polynomials is described in this section. The analysis of the convergence and
stability of the time scheme of the numerical strategy is also presented in Section 3. Section 4 deals with
some numerical examples and their comparison with other results.

2 Discretization of the model

This section consults the discretization of Eq. (1). To do so, let δh and δτ = T
M denote the sizes of the

spatial and temporal discretization steps, respectively. We describe the partition in space as {xi}M
i=0 that

is the root of the basis polynomials and the partition in time as τ j = jδτ, j = 0,1, . . . ,M. We denote the
discrete values of the variables v(x,τ) and q(x,τ) as

v(x,τk) = vk(x), v(xi,τk) = vk
i , q(xi,τk) = qk

i , k = 0,1, . . . ,M.

Since 0 < αe ≤ 1, the Caputo fractional derivative can be used instead of the Riemann-Liouville.

2.1 Time-discrete scheme

By applying S2 method in paper [9] in which the unknown function is approximated by Lagrange linear
interpolation for the case that j = 0 in the interval [τ0,τ1] and by Lagrange square interpolation for j > 0
in the interval [τ j−1,τ j] to discretize the temporal variable. Practically, we have three nodes to achieve
the approximation.

C
0 Dαe

τ vk(x) =
δτ
−αe

Γ(2−αe)

k

∑
j=0

S αe
k, j v

j(x)+O(δτ
3−αe), (2)

where for k = 1 and k = 2 the coefficients S αe
k, j is as

S αe
1, j =

{
−A1, j = 0,
A1, j = 1,

S αe
2, j =


−A2 +B2,2, j = 0,
A2 +C2,2, j = 1,
D2,2, j = 2,

and for k ≥ 3, we have

S αe
k, j =



−Ak +Bk, j+2, j = 0,
Ak +Bk, j+2 +Ck, j+1, j = 1,
Bk, j+2 +Ck, j+1 +Dk, j, 2≤ j ≤ k−2,
Ck, j+1 +Dk, j, j = k−1,
Dk, j, j = k,
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in which

Ak = k1−αe− (k−1)1−αe ,

Bk, j =
1

2−αe

[
(k− j+1)1−αe(k− j+

αe

2
)− (k− j)1−αe(k− j− αe

2
+1)

]
,

Ck, j =
2

2−αe

[
(k− j)1−αe(k− j−αe +2)− (k− j+1)2−αe

]
,

Dk, j =
1

2−αe

[
(k− j+1)1−αe(k− j− αe

2
+2)− (k− j)1−αe(k− j− 3αe

2
+3)

]
.

Applying the discretization of the relation (2) for the left side of Eq. (1), we have

ε

∑
e=0

beδτ
−αe

Γ(2−αe)
S αe

k,k vk(x)−K1
∂ 2β1vk(x)

∂ |x|2β1
−K2

∂ 2β2vk(x)
∂ |x|2β2

=
ε

∑
e=0

k−1

∑
j=0

beδτ
−αe

Γ(2−αe)
S αe

k−1, jv
j(x)

+qk(x)+O(δτ
3−maxαe), 0 < x < 1,

(3)

Letting V k
i as the approximate solution vk

i in Eq. (3), then we have

ε

∑
e=0

beδτ
−αe

Γ(2−αe)
S αe

k,kV k(x)−K1
∂ 2β1V k(x)

∂ |x|2β1
−K2

∂ 2β2V k(x)
∂ |x|2β2

=
ε

∑
e=0

k−1

∑
j=0

beδτ
−αe

Γ(2−αe)
S αe

k−1, jV
j(x)+qk(x). (4)

2.2 Spatial discrete scheme with Legendre approximation

Now, to get the full discrete of Eq. (4), we employ the following series

V k(x) =
k

∑
i=0

σ
k
i L

s
i (x), k = 0,1, . . . ,N, (5)

where Ls
ι (x) is the shifted orthogonal polynomials in the domain [0,1] that is defined in paper [14] as

Ls
i (x) =

b i
2 c

∑
r=0

i−2r

∑
ι=0

Ni,r,ιxι , i = 0,1, . . . , (6)

where

Ni,r,ι =

(
i−2r

ι

)
(−1)i−r−ι2ι−i(2i−2r)!

r!(i− r)!(i−2r)!
.

Then the unknown coefficients in Eq. (6) are defined as below

σ
k
i = (2i+1)

∫ 1

0
Ls

i (x)V k(x)dx.

Here is a formula for the approximation of the fractional derivative Ls
i , which we denote by Lγ,s

i .
Letting γ > 0, by using the Caputo linearity property, we get

Lγ,s
i (x) =

b i
2 c

∑
r=0

i−2r

∑
ι=dγe

Nγ

i,r,ιx
ι−γ , i = 0,1, . . . , (7)
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in which bγc and dγe are the floor and ceiling of the fractional term γ and

Nγ

i,r,ι =

(
i−2r

ι

)
(−1)i−r−ι2ι−i(2i−2r)!Γ(ι +1)

r!(i− r)!(i−2r)!Γ(ι− γ +1)
.

Notice that for 0 ≤ i < dγe, we have Lγ,s
i (x) = 0. Substituting the operators (6) and (7) in (4), we

approximate V k(x) with respect to x as below

k

∑
i=0

σ
k
i Ae,i(x) =

k−1

∑
j=0

j

∑
i=0

σ
j

i Be,i(x)+Q(x), (8)

where

Ae,i(x) =
ε

∑
e=0

b i
2 c

∑
r=0

i−2r

∑
ι=0

beδτ
−αe

Γ(2−αe)
S αe

k,k Ni,r,ιxι +
K1

2cos(β1π)

b i
2 c

∑
r=0

i−2r

∑
ι=dβ1e

(
Nβ1

i,r,ιx
ι−β1 +Nβ1

i,r,ι(1− x)ι−β1
)

+
K2

2cos(β2π)

b i
2 c

∑
r=0

i−2r

∑
ι=dβ2e

(
Nβ2

i,r,ιx
ι−β2 +Nβ2

i,r,ι(1− x)ι−β2
)
,

Be,i(x) =
ε

∑
e=0

b i
2 c

∑
r=0

i−2r

∑
ι=0

beδτ
−αe

Γ(2−αe)
S αe

k−1, jNi,r,ιxι , Q(x) = qk(x).

We use the collocation manner to obtain the coefficients σ k
i of relation (8). For this objective, we get

the roots of the shifted Legendre polynomials, Ls
i (x), as the collocation points and substitute them in

Eq. (8) to obtain linear equations at each time step k. Ls
N−1(x) has N− 1 roots, which needs two more

conditions to obtain a system of linear equations with N +1 equations, which can be obtained using the
following boundary conditions for i = 0,1, . . . ,N and k = 1,2, . . . ,M

v(0, t) =
k

∑
i=0

σ
k
i L

s
i (0) =

k

∑
i=0

σ
k
i (−1)i = µ(tk), v(1, t) =

k

∑
i=0

σ
k
i L

s
i (1) =

k

∑
i=0

σ
k
i = ρ(tk).

To start the iterative method, we need the initial condition as

k

∑
i=0

σ
k
i L

s
i (x) = φ(x),

where σ k
i = (2i+1)

∫ 1

0
Ls

i (x)φ(x)dx.

3 Study of the convergence approach

This section investigates the order of convergence and the method’s stability. Defining the following
function space in Hilbert space L2(Ω) in Ω and standard norm ‖θ(x)‖2

2 = 〈θ(x),θ(x)〉, we prove two
theorems that describe the precision and efficiency of the numerical strategy explained in the earlier
section.

Hn
Ω(θ) = {θ ∈ L2(Ω),Dα

θ ∈ L2(Ω),∀|α| ≤ n},



736 Y. Esmaeelzade Aghdam, H. Mesgarani, Z. Asadi

where Dα is the fractional derivative.
Let V k(x) and V k

(x) be the exact and approximate solution of Eq. (4), respectively. Multiplying
εk(x) and integrating on Ω in the relation (4) and denoting εk(x) =V k

(x)−V k(x), we get the weak form
of the relation (4) as

ε

∑
e=0

beδτ
−αe

Γ(2−αe)
S αe

k,k 〈ε
k(x),εk(x)〉−K1〈

∂ 2β1εk(x)
∂ |x|2β1

,εk(x)〉−K2〈
∂ 2β2εk(x)

∂ |x|2β2
,εk(x)〉

=
ε

∑
e=0

k−1

∑
j=0

beδτ
−αe

Γ(2−αe)
S αe

k−1, j〈ε
j(x),εk(x)〉.

(9)

Before giving the stability and convergence of the weak scheme (9), we firstly give some lemmas.

Lemma 1 ([7]). For all f ,g ∈ Hn
Ω

and x ∈ R, we have

〈xDα
L f (x), xDα

R f (x)〉= cos(απ)‖xDα
L f (x)‖2 = cos(απ)‖xDα

R f (x)‖2, ∀α > 0,

〈xDα
L f (x),g(x)〉= 〈xD

α

2
L f (x), xD

α

2
R g(x)〉, 〈xDα

R f (x),g(x)〉= 〈xD
α

2
R f (x), xD

α

2
L g(x)〉, ∀α ∈ (1,2).

Lemma 2. For all ε ∈ Hn
Ω

, we have

〈∂
2βiεk(x)
∂ |x|2βi

,εk(x)〉=−‖xDβi
L ε

k(x)‖2, ∀i = 1,2.

Proof. Using Lemma 1 and features of the interior product, we get

〈∂
2βiεk(x)
∂ |x|2βi

,εk(x)〉= 〈 −1
2cos(βiπ)

(
xD2βi

L ε
k(x)+ xD2βi

R ε
k(x)

)
,εk(x)〉

=
−1

2cos(βiπ)

(
〈xD2βi

L ε
k(x),εk(x)〉+ 〈xD2βi

R ε
k(x),εk(x)〉

)
=

−1
2cos(βiπ)

(
〈xDβi

L ε
k(x), xDβi

R ε
k(x)〉+ 〈xDβi

R ε
k(x), xDβi

L ε
k(x)〉

)
=−‖xDβi

L ε
k(x)‖2.

Lemma 3 (See [1]). The coefficients that are defined in Eq. (2) have the following properties

1 < S αe
k,k ≤

3
2
, 1 < Dk,k ≤

3
2
,

k−1

∑
j=0

Sk, j =−Dk−1,k−1.

Theorem 1. When 0 < αe,βi < 1, e = 0,1, . . . ,ε, i = 1,2, the scheme (3) is unconditionally stable.

Proof. Lemmas 1 and 2 allow us to remove the second and third terms of Eq. (9). Then we have

ε

∑
e=0

beδτ
−αe

Γ(2−αe)
S αe

k,k 〈ε
k(x),εk(x)〉 ≤

ε

∑
e=0

k−1

∑
j=0

beδτ
−αe

Γ(2−αe)
S αe

k−1, j〈ε
j(x),εk(x)〉,
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and using the Cauchy Schwarz inequality, one get

ε

∑
e=0

beδτ
−αe

Γ(2−αe)
S αe

k,k‖ε
k(x)‖2 ≤

ε

∑
e=0

k−1

∑
j=0

beδτ
−αe

Γ(2−αe)
S αe

k−1, j‖ε
j(x)‖‖εk(x)‖,

⇒
ε

∑
e=0

beδτ
−αe

Γ(2−αe)
S αe

k,k‖ε
k(x)‖ ≤

ε

∑
e=0

k−1

∑
j=0

beδτ
−αe

Γ(2−αe)
S αe

k−1, j‖ε
j(x)‖,

Since beδτ
−αe

Γ(2−αe)
> 0 and 1 < S αe

k,k ≤
3
2 from Lemma 3 we denote the above relation as

‖εk(x)‖ ≤ εS αe
k,k‖ε

k(x)‖ ≤
ε

∑
e=0

S αe
k,k‖ε

k(x)‖ ≤
ε

∑
e=0

k−1

∑
j=0

ΓeS
αe

k−1, j‖ε
j(x)‖,

where Γe =
beδτ

−αe

Γ(2−αe)
. Applying the theory of induction applies to all k, we know that the above relation

satisfies as below

‖εk(x)‖ ≤
ε

∑
e=0

Γe

k−1

∑
j=0

S αe
k−1, j‖ε

0(x)‖.

Using the properties of the expansion coefficients in the Lemma 3 that describe the characteristics of
approximation coefficient 1 < Dk,k ≤ 3

2 and ∑
k−1
j=0 Sk, j =−Dk−1,k−1, it can be written as

‖εk(x)‖ ≤
ε

∑
e=0

Γe|Dk,k|‖ε0(x)‖= c‖ε0(x)‖,

where c =
ε

∑
e=0

Γe|Dk,k| is the positive constant. We have shown that the discrete scheme (4) is uncondi-

tionally stable.

The convergence of the scheme (4) is given in the following theorem.

Theorem 2. Let vk(x) ∈ H2
Ω

avd V k(x) ∈ H2
Ω

be the exact solution of (3) and the solution of the semi-
scheme (4), respectively. Considering ξ M(x) = |vk(x)−V k(x)| and C as a positive constant, we have

‖ξ M(x)‖ ≤CO(δτ
3−maxαe).

Proof. Subtracting (3) from (4) and denoting ξ k(x) = vk(x)−V k(x),k = 1,2, . . . ,M, we get

ε

∑
e=0

beδτ
−αe

Γ(2−αe)
S αe

k,k ξ
k(x)−K1

∂ 2β1ξ k(x)
∂ |x|2β1

−K2
∂ 2β2ξ k(x)

∂ |x|2β2
=

ε

∑
e=0

k−1

∑
j=0

beδτ
−αe

Γ(2−αe)
S αe

k−1, jξ
j(x)+CRk,

where Rk =O(δτ
3−maxαe). From Lemmas 1 and 2, we know that the second and third terms of the above

relation are negative, so it can be rewritten as

ε

∑
e=0

beδτ
−αe

Γ(2−αe)
S αe

k,k‖ξ
k(x)‖ ≤

ε

∑
e=0

k−1

∑
j=0

beδτ
−αe

Γ(2−αe)
S αe

k−1, j‖ξ
j(x)‖+C‖Rk‖.
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By the employed method to prove the earlier theorem, we know that there exists a positive fixed term c
such that

‖ξ k(x)‖ ≤ c‖ξ 0(x)‖+C‖Rk‖.

Since ‖ξ 0(x)‖= 0, we deduce that

‖ξ M(x)‖ ≤CO(δτ
3−maxαe).

This concludes the proof.

4 Numerical experiments

This section presents numerical experiments to demonstrate the proposed method’s ability. The exper-
iments are carried out using Wolfram Mathematica (version 11) on a personal computer with a Dell
Inspiron Intel (R) Core i72630QM 2.00GHz and 8:00 GB of memory. In the experiments, the suggested
new method is applied, and we also present the maximum norm error and L2− norm error between the
exact solution and numerical solution at T = 1 as below

L∞−norm = E∞(δh,δτ) = max
0≤i≤N

|vM
i − v̂M

i |, L2−norm = E2(δh,δτ) =

√
1
N

N

∑
i=0
|vM

i − v̂M
i |

2
,

respectively. In which vM
i is the exact solution and v̂M

i is the numerical solution with the mesh step-size
δh and δτ at the grid point (xi,τ j), i = 0,1, . . . ,N, j = 0,1, . . . ,M. Moreover, the convergence rate is
calculated as follows

Rate∞ = log2
E∞(δh,2δτ)

E∞(δh,δτ)
, Rate2 = log2

E2(δh,2δτ)

E2(δh,δτ)
.

The computing results for the maximal norm error and the convergence rate of examples are shown in
tables, which are utilizing the new method to discretize Eq. (1), wherein E∞(δh,δτ) represents the max-
imal norm error and Rate∞ represents the convergence rate related to it, defined in the above relations,
respectively. The results in this tables demonstrate that can achieve O(3−max(αi)), i = 1,2 convergence
accuracy in the temporal direction. Also, we compared the results of this paper with paper [2], and the
accuracy of the new method is better than the method of paper [2] and has fewer errors than it.

Example 1. We first consider one-dimensional Eq. (1), where (x,τ) ∈ [0,1]× [0,1], T = 1, and the
diffusion coefficients are given by K1 = K2 = 1 and the source term is

q(x, t) = 200(x2− x3)
( t2−α0

Γ(3−α0)
+

t2−α1

Γ(3−α1)

)
+

50K1(t2 +1)
cos(β1π)

(2
(
x2−2β1 +(1− x)2−2β1

)
Γ(3−2β1)

−
6
(
x3−2β1 +(1− x)3−2β1

)
Γ(4−2β1)

)
+

50K2(t2 +1)
cos(β2π)

(2
(
x2−2β2 +(1− x)2−2β2

)
Γ(3−2β2)

−
6
(
x3−2β2 +(1− x)3−2β2

)
Γ(4−2β2)

)
.

The initial and boundary values are chosen as v(x,0) = 100(x2− x3) and v(0,τ) = v(1,τ) = 0, respec-
tively. Moreover, the exact solution to the problem is v(x,τ) = 100(1+ τ2)(x2− x3). The computing
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Table 1: Maximal norm, E2-norm error and convergence rate with β1 = 0.2,β2 = 0.7, and N = 5 for Example 1
at T = 1.

with α1 = α2 = 0.5 with α1 = 0.7,α2 = 0.3

δτ E∞(δh,δτ) Rate∞ E2(δh,δτ) Rate2 E∞(δh,δτ) Rate∞ E2(δh,δτ) Rate2
1
20 2.88003E−3 − 8.36760E−3 − 4.65992E−3 − 1.35337E−2 −
1
40 5.04560E−4 2.51299 1.46594E−3 2.51298 9.12647E−4 2.35218 2.65059E−3 2.35217
1
80 8.88040E−5 2.50633 2.58011E−4 2.50633 1.80816E−4 2.33553 5.25143E−5 2.33553
1

160 1.56647E−5 2.50311 4.55123E−5 2.50310 3.60866E−5 2.32499 1.04806E−6 2.32499
1

320 2.76789E−6 2.50066 8.04183E−6 2.50066 7.23087E−6 2.31926 2.10001E−5 2.31926

Table 2: Comparing the error and convergence order of method [2] with the new method for Example 1 with
α0 = 0.5,α1 = 0.2,β0 = 0.3, and β1 = 0.8.

Error and the convergence order Error and the convergence order
of paper [2] of the new method with N = 5

δτ E∞(δh,δτ) Rate∞ E∞(δh,δτ) Rate∞ E2(δh,δτ) Rate2
1

64 2.9976E−2 − 3.91334E−5 − 1.08214E−4 −
1

128 9.4587E−3 1.6641 6.72919E−6 2.53990 1.86054E−5 2.54009
1

256 3.1683E−3 1.5779 1.16248E−6 2.53323 3.21374E−6 2.53340
1

512 1.5910E−3 1.5435 1.80841E−7 2.68442 4.99025E−7 2.68707
1

1024 8.3916E−4 1.5777 1.11978E−8 2.64325 3.13224E−8 2.65001

results of this model are shown in Table 1, wherein the maximal norm and E2-norm errors have been
provided with parametrs β1 = 0.2,β2 = 0.7, and the convergence rate has been found that it is equal
to O(3−max(αi)), i = 1,2 for all temporal discretization levels. From this table, we can see that the
convergence rate is 2.5 when α1 = α2 = 0.5 but it is 2.3 for α1 = 0.7,α2 = 0.3. Then the largest num-
bers of the parameters αi are required to determine the convergence rate. Comparing the error and
convergence order of the method [2] with the new method is represented in Table 2 with the parameters
α0 = 0.5,α1 = 0.2,β0 = 0.3, and β1 = 0.8. From this table, we can see that the proposed method is much
more efficient than method of [2]. Because when α0 = 0.5 the convergence order for the new method and
method [2] is 2.5 and 1.5, respectively. Moreover, the error of the new method is much less compared to
the paper of [2].

In Figure 1, we depict the curves of condition numbers of the stiffness matrix obtained for the space
partitions N = 5 and N = 7 with the various values β1 and β2. We can observe that the two curves
coincide precisely. It means the new algorithm will perform strongly to discrete the equation to be
obtained the resulting systems in this situation that will decrease condition numbers by increasing the
number of discretization points. And Figure 2 displays the absolute error with parameters N = 5,
α1 = 0.5,α2 = β1 = 0.2, and β2 = 0.7 with different values M which will decrease the absolute error by
increasing the number of discretization points.

Example 2. This example is similar to Example 1, where the exact solution is v(x,τ)= 100(1+τ2)x2(1−
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Figure 1: Condition numbers of the stiffness matrix obtained for the space partitions N = 5 and N = 7
with the various values β1 (left panel) and β2 (right panel) for Example 1.

x)2 and the diffusion coefficients are given as K1 = K2 = 1 and the source term is

q(x, t) = 200x2(1− x)2
( t2−α0

Γ(3−α0)
+

t2−α1

Γ(3−α1)

)
+

100K1(t2 +1)
cos(β1π)

((x2−2β1 +(1− x)2−2β1
)

Γ(3−2β1)

−
6
(
x3−2β1 +(1− x)3−2β1

)
Γ(4−2β1)

+
12
(
x4−2β1 +12(1− x)4−2β1

)
Γ(5−2β1)

)
+

100K2(t2 +1)
cos(β2π)

((x2−2β2 +(1− x)2−2β2
)

Γ(3−2β2)
−

6
(
x3−2β2 +(1− x)3−2β2

)
Γ(4−2β2)

+
12
(
x4−2β2 +(1− x)4−2β2

)
Γ(5−2β2)

)
.

The computed results of this model are represented in Table 3, that the maximal norm and E2-norm errors
have been provided with parameters β1 = 0.45,β2 = 0.7, and the convergence rate has been found that
it is equal to O(3−max(αi)), i = 1,2 for all temporal discretization levels. From this table, we see that
the convergence rate is 2.5 when α1 = α2 = 0.5 but it is 2.35 for α1 = 0.2,α2 = 0.65. Then the largest
numbers of the parameters αi are required to determine the convergence rate. Comparing the error and
convergence order of the method [2] with the new method is represented in Table 4 with the parameters
α0 = 0.7,α1 = 0.4,β0 = 0.3 and β1 = 0.85. From this table, we observe that the proposed method is much
more efficient than method of [2]. Moreover, the error of the new method is much less compared to the
paper of [2]. Figure 3 displays the absolute error with parameters N = 5, α1 = 0.3,α2 = 0.6,β1 = 0.4
and β2 = 0.8 with different values M which will decrease the absolute error by increasing the number of
discretization points.

Example 3. This example is not similar to Examples 1 and 2, in which the exact solution is v(x,τ) =
exp(−t)sinx and the diffusion coefficients are given K1 = K2 = 1 and the source term is achieved with
the exact solution. The initial and boundary values are v(x,0) = sinx, v(0,τ) = 0, and v(1,τ) = sin1
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Figure 2: Absolute error for the first example with parameter N = 5, α1 = 0.5,α2 = β1 = 0.2, and
β2 = 0.7 at T = 1.

Table 3: Maximal norm, E2-norm error and convergence rate with β1 = 0.45,β2 = 0.7, and N = 5 for Example 2
at T = 1.

with α1 = 0.2,α2 = 0.65 with α1 = α2 = 0.5

δτ E∞(δh,δτ) Rate∞ E2(δh,δτ) Rate2 E∞(δh,δτ) Rate∞ E2(δh,δτ) Rate2
1
10 1.30566E−3 − 4.49206E−7 − 1.52349E−4 − 4.64827E−4 −
1
20 2.20088E−5 2.56862 2.30350E−6 2.56742 2.31367E−5 2.71912 7.06426E−5 2.71808
1
40 3.97720E−6 2.46826 1.21600E−5 2.46729 3.68642E−6 2.64989 1.12627E−5 2.64899
1
80 7.53043E−7 2.40095 6.72457E−5 2.40025 6.06790E−7 2.60295 1.85482E−6 2.60220
1

160 1.46802E−7 2.35886 3.98597E−4 2.35838 1.02142E−7 2.57063 3.12350E−7 2.57004

Figure 3: Absolute error with parameters N = 5, α1 = 0.3,α2 = 0.6,= β1 = 0.4, and β2 = 0.8 for
Example 2 at T = 1.

respectively. The computed results of this model are represented in Table 5, that the maximal norm and
E2-norm errors have been provided with parameters β1 = 0.6,β2 = 0.8, and the convergence rate has
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Table 4: Comparing the error and the CPU time of the method [2] with the new method for example 2 with
α0 = 0.7,α1 = 0.4,β0 = 0.3, and β1 = 0.85.

Error and the CPU time Error and the CPU time
of paper [2] of the new method with N = 5

δτ E∞(2δτ,δτ) CPU(s) E∞(δh,δτ) CPU(s) Rate∞

Gauss CGNR MG New method
1

128 1.9108E−3 0.02 0.02 0.04 1.98616E−5 0.0189 −
1

256 4.7880E−4 0.24 0.38 0.19 3.36372E−6 0.2154 2.56186
1

512 1.2254E−5 3.19 3.14 0.84 6.06274E−7 1.0259 2.47202
1

1024 2.7918E−5 40.15 34.59 4.20 1.13894E−7 3.2468 2.41227
1

2048 8.5361E−6 698.80 693.64 22.54 2.20280E−8 8.5496 2.37028

Table 5: Maximal norm, E2-norm error and convergence rate with β1 = β2 = 0.7, and N = 5 for Example 3 at
T = 1.

with α1 = α2 = 0.4 with α1 = α2 = 0.7

δτ E∞(δh,δτ) Rate∞ E2(δh,δτ) Rate2 E∞(δh,δτ) Rate∞ E2(δh,δτ) Rate2
1
20 3.38983E−3 − 1.48477E−2 − 4.11076E−3 − 1.82796E−2 −
1
40 5.49963E−4 2.60200 2.44861E−3 2.60020 8.33588E−4 2.30200 3.71140E−3 2.30020
1
80 9.05216E−5 2.60300 4.03787E−4 2.60030 1.68919E−4 2.30300 7.53492E−4 2.30030
1

160 1.48892E−5 2.60399 6.65815E−5 2.60040 3.42064E−5 2.30400 1.52964E−4 2.30040
1

320 2.44739E−6 2.60495 1.09780E−5 2.60050 6.92212E−6 2.30498 3.10506E−5 2.30050

been found that it is equal to O(3−max(αi)), i = 1,2 for all temporal discretization levels. From this
table, we can see that the convergence rate is 2.6 when α1 = α2 = 0.4 but it is 2.3 for α1 = α2 = 0.7.
Then the largest numbers of the parameters αi are required to determine the convergence rate. From this
table, we can see that the proposed method is much more efficient and the absolute error will decrease
by increasing the number of discretization points.

5 Conclusion

In this paper, a square interpolation to discrete of the time-fractional derivative with a high-order and
spectral method based on Legendre polynomials is considered to solve MTFADE. For the discretized
design of the main equation, a matrix-approximate preconditioner is constructed, and this operator is
applied to solve it. Moreover, the stability and convergence of the scheme are discussed, and the semi-
discrete scheme is unconditionally stable. Theoretically, the convergence rate of the preconditioned
method is also given to be O(3−max(αi)), i = 1,2. The experimental results demonstrate that the
proposed preconditioners are efficient for the discretization of MTFADE. In the future, we will consider
the variable coefficients of higher order fractional differential equations and consider developing some
fast numerical methods.
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