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Abstract. The linear programming problem provided to bipolar fuzzy relation equation constraints is
considered in this paper. The structure of bipolar fuzzy relation equation system is studied with the max-
product composition. Two new concepts, called covering and irredundant covering, are introduced in the
bipolar fuzzy relation equation system. A covering-based sufficient condition is proposed to check its
consistency. The relation between two concepts is discussed. Some sufficient conditions are presented to
specify one of its optimal solutions or some its optimal components based on the concepts. Also, some
covering-based sufficient conditions are given for uniqueness of its optimal solution. These conditions
enable us to design some procedures for simplification and reduction of the problem. Moreover, a matrix-
based branch-and-bound method is presented to solve the reduced problem. The sufficient conditions and
algorithm are illustrated by some numerical examples. The algorithm is compared to existing methods.
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composition.
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1 Introduction

Let A+ = (a+i j) and A− = (a−i j) be two m× n fuzzy relation matrices with 0 ≤ a+i j ,a
−
i j ≤ 1 for each

i ∈ I = {1,2, . . . ,m} and j ∈ J = {1,2, . . . ,n}. Also, assume that b = (b1, . . . ,bm)
T ∈ [0,1]m and c =

(c1, . . . ,cn) ∈ R+n. In this paper, the linear programming problem subject to a system of max-product
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Bipolar Fuzzy Relation Equations (BFREs) is formulated as follows

min Z(x) =
n

∑
j=1

c jx j, (1)

s.t. A+ ◦ x∨A− ◦¬x = b, (2)

x ∈ [0,1]n. (3)

where the notation of ¬x denotes the negation of vector x as ¬x = (1− x1, . . . ,1− xn)
T . The notation of

“◦” is the max-product operator. The vector x = (x1, ...,xn)
T ∈ [0,1]n is the vector of decision variables

to be determined. The system (2)-(3) consists of finding a set of solution vectors x ∈ [0,1]n such that for
each i ∈ I, we have

max
j∈J

max
{

a+i j .x j,a−i j .(1− x j)
}
= bi. (4)

The solution set of system (2)-(3) is denoted by S(A+,A−,b). The problem (1)-(3) along with the max-
min operator has firstly been studied in a special case where A− is a zero matrix. This problem is called
a linear programming problem provided to a system of fuzzy relation equations. For the first time, the
system of FREs was studied by Sanchez [32] in 1976. Thereafter, many researchers have extended and
investigated its practical and theoretical aspects. Its applications were considered in different areas such
as fuzzy control, fuzzy pattern recognition, models of reasoning processes [24], chemistry engineering
problems [25], wireless communication [43], analysis of data transmission mechanism in BitTorrent-like
peer-to-peer file sharing system [44], description of the price requirements in the supply chain system
[45], the urban sewage treatment system [30], and textile engineering [27]. A comprehensive review of
applications of FREs can be seen as their use in estimating the peak hours in transport system, predicting
the behaviour to a motor-drive system, medical diagnosis, data compression, and treat analysis in Ref.
[33]. Its theoretical aspects focus on the types of fuzzy relation systems with the different composition
operators, solvability criteria, and algorithms for finding their solution set. The fuzzy relation systems
and their related points have been introduced in [27] and a universal algorithm was given to solve the
max-min FRE system in [26]. An algorithm was developed to find the solution set of max-T FRE
system where T is a class of pseudo-t-norms [4]. The relationship between the lexicographic solution
and the minimal solutions was studied for the max-min Fuzzy Relation Inequalities (FRIs) in [42]. The
convexity of the solution set and number of minimal solutions were discussed for the addition-min FRIs
in [44]. The structure of solution set of arbitrary-term-absent max-product FRIs was investigated as a
new kind of max-product FRIs in [29] and an algorithm was proposed to find its lexicographic minimum
solutions in [46]. The leximax minimum solution was defined for system of addition-min FRIs and
an algorithm was developed to find the solution in [47]. The version of two-sided FRIs was studied
with the addition-min composition in [39]. The other version of fuzzy relation programming is to find
specific solutions from FREs or FRIs such that they optimize several functions [41] or a certain function
in (1) the weighted min-max programming based on discrete functions [40] and developed dichotomy
algorithm [20] or (2) posynomial geometric programming [48]. A comprehensive study about the types
of FREs and their solvability has been given in [14].

The linear programming problem with the max-min FRE constraints is the result of modeling an
applied problem in the textile industry. Fang and Li [7] equivalently converted it to an 0-1 integer linear
programming problem and designed a branch-and-bound method to solve it. The problem was considered
by the max-product operator and extended Fang and Li’s method to solve this problem in [21]. Li and
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Fang [13] showed that the problem with Sup-T operator, where T is a continuous triangular norm, can
be reduced into a 0-1 integer programming problem in a polynomial time. Wu et al. [36] proposed an
upper bound for its optimal objective value and presented a more efficient algorithm to solve the problem
with the max-min operator. This algorithm examines fewer nodes to find the optimal solution than Fang
and Li’s method. A necessary condition was also presented to find one of the optimal solutions of the
problem [35]. Three rules were given to simplify the process of finding the optimal solution based on
the mentioned necessary condition. Guu and Wu [11] obtained a necessary condition for an optimal
solution of the problem with the max-product operator in terms of the maximum solution of FREs. This
condition was extended to the problem with max-strict-t-norm composition [34]. However, the method
in [34] cannot find all the optimal solutions when their number is more than one. To overcome the
difficulty, an algorithm was designed based on some necessary conditions for the optimal solutions and
some reduction rules in [31]. To decrease the complexity, the size of problem was cut down as much as
possible and an algorithm was proposed based on the concept of chained-set suite in [17]. An algorithm
was given to solve the problem with the max-product FRI constraints based on the maximum solution
and minimal solutions of FRI system in [28]. To decrease the computation rate, some procedures were
given to reduce the dimensions of the original problem in [3]. To avoid computing the minimal solutions,
an approach was presented to find the optimal solution without computing all minimal solutions of the
max-min FRI system in [12]. A new condition was provided to remove unnecessary paths to find the
optimal solution in [23]. Then, an algorithm was designed to solve the problem with the addition-min
composition in [37] which may require to the resolution of many linear programming problems. Guu
and Wu [10] reduced it to a single linear programming problem. To reduce number of the constraints
in [10], a smoothing approach was given to solve the problem in [9]. The study of the problem was also
extended to the max-pseudo-t-norms [1] and max-aggregation function composition [22].

The FRE and FRI systems of above problems are ascending with respect to their variables. In this
paper, we intend to study the linear objective function optimization on the systems which contain both
the decision variable vector and its negation, simultaneously, as problem (1)-(3). Freson et al. [8] firstly
considered a linear programming problem with such systems to optimize public awareness for their prod-
ucts. The variables induce a degree of appreciation and disappreciation to their products, respectively.
Such systems with bipolar variables are called BFREs. Freson et al. [8] firstly obtained the solution set
of each equation of BFREs (2)-(3) with the max-min composition. According to this point, they deter-
mined the solution set of the system of BFREs by a finite set of pairs of minimal and maximal solutions.
Lin and Jin [16] showed that checking the consistency of the system of BFREs is NP-complete using the
results in [15]. Yang [38] proposed a bipolar path approach for such systems and designed a path-based
algorithm to determine its complete solution set. Freson et al. [8] studied the linear optimization problem
provided to the constraints of BFREs with an application in management and designed an algorithm to
solve the optimization problem based on the structure of its feasible domain. In this method, generating
all the feasible candidate elements in a sublattice and checking their optimality are time-consuming. To
present a systematic technique, Li and Liu [18] converted the linear optimization problem subject to
BFRE constraints with the max-Lukasiewicz t-norm to a 0-1 integer linear programming problem and
solved it by the integer and combinational optimization techniques. However, these techniques involve
a high computational complexity. To improve computational efficiency, Liu et al. [19] proved that each
component of an optimal solution of the mentioned problem can be the component corresponding to the
lower or upper bound vector of its feasible domain. Based on the property, they proposed a simple value
matrix and some rules to simplify the problem. To further reduce computation, Aliannezhadi et al. [5]
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presented some rules to determine a number of optimal variables of the problem with the maximum-
parametric hamacher operator and presented an algorithm to find an upper bound for its optimal objective
value. They proposed an efficient algorithm based on the rules and the algorithm to solve the problem.
Also, Aliannezhadi and Abbasi Molai [6] detected and removed the redundancy constraints in the prob-
lem and proposed the sufficient optimality conditions for a feasible solution. An efficient algorithm was
designed to solve the problem by a value matrix and the sufficient conditions.

The resolution of linear programming problem with BFRE constraints has a high computational
complexity. Hence, the role of simplification procedures will be noticeable and important to reduce the
rate of computations. In this paper, we firstly define a new concept, called covering, in the system of
BFREs (2)-(3). The irredundant covering is introduced based on the covering. First of all, some suffi-
cient conditions are suggested to check the consistency of system (2)-(3) according to the new concepts.
Then, the sufficient conditions for the existence of an optimal solution for problem (1)-(3) are expressed.
Furthermore, some sufficient conditions are presented to determine one of its optimal solutions or some
of its optimal components. These sufficient conditions enables us to design some simplification proce-
dures for problem (1)-(3). Finally, an algorithm is designed to find one of its optimal solutions based
on the procedures and the branch-and-bound method. The sufficient conditions based on covering are
completely different with the conditions based on generating all elements of a sublattice and checking
their feasibility and optimality [8], the integer optimization techniques [18], some rules on a simple
value matrix in [19], some simplification rules and upper bound on the optimal objective function in [5],
and detecting the redundancy constraints and removing them [6]. To show its efficiency, the proposed
algorithm is compared to the existing algorithms.

The rest of this paper is organized as follows. Section 2 investigates the structure of feasible domain
of the problem (1)-(3). Section 3 is divided to two subsections. The first subsection introduces the
covering and irredundant covering concepts. Some sufficient conditions are also given to check the
consistency of system (2)-(3). The second subsection presents some sufficient conditions to determine
one of the optimal solutions of the problem or some of its optimal components without its resolution. In
Section 4, a new algorithm is designed to solve the problem using the sufficient conditions and branch-
and-bound approach. In Section 5, a numerical example is given to illustrate the algorithm. Section 6
compares the algorithm to the existing methods. Finally, conclusions and future research directions are
expressed in Section 7.

2 The structure of the feasible domain of problem (1)-(3)

A system of BFREs (2)-(3) is called consistent if S(A+,A−,b) 6= /0. Otherwise, it is inconsistent. We
now focus on the characterizations of system (2)-(3).

Lemma 1 ([6]). A vector x ∈ [0,1]n is a solution for the system of bipolar max-product fuzzy relation
equations (4) if and only if max

{
a+i j .x j,a−i j .(1− x j)

}
≤ bi for all i ∈ I and j ∈ J, and for each i ∈ I there

exists an index ji ∈ J such that max
{

a+i ji
.x ji ,a

−
i ji
.(1− x ji)

}
= bi.

We assume that if a−i j = 0, then max{1− bi
a−i j
,0}= 0 is defined. Also, if a+i j = 0, then min{ bi

a+i j
,1}= 1 is

defined. The lower and upper bound on the solution set of system (2)-(3) are introduced in the following
lemma.
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Lemma 2 ([2]). The vector of x̌ = (x̌1, . . . , x̌n)
T is the lower bound on the solution set of system (2)-

(3) where x̌ j = max
i∈I
{1− bi

a−i j
| a−i j > bi}, for each j ∈ J. Also, the vector of x̂ = (x̂1, . . . , x̂n)

T is the upper

bound on the solution set of system (2)-(3) where x̂ j = min
i∈I
{ bi

a+i j
| a+i j > bi}, for each j ∈ J. Furthermore,

it is assumed that max /0 = 0 and min /0 = 1.

Now, we express two special cases for system (2)-(3) in the following lemma.

Lemma 3 ([2]). Assume that S(A+,A−,b) 6= /0 and two vectors x̌ and x̂ be its lower and upper bound,
respectively.

1. If there exists j0 ∈ J such that x̌ j0 = x̂ j0 , then x j0 = x̌ j0 = x̂ j0 for all x ∈ S(A+,A−,b). Also, the
solution set of system (2)-(3) is the same to the following system max

j∈J−{ j0}
max

{
a+i j .x j,a−i j .(1− x j)

}
= bi, ∀i ∈ I− I,

x̌ j ≤ x j ≤ x̂ j, ∀ j ∈ J−{ j0}; x j0 = x̌ j0 = x̂ j0 ,

where I =
{

i ∈ I|max{a+i j0 .x j0 ,a
−
i j0 .(1− x j0)}= bi

}
and I 6= /0.

2. The solution set of system (2)-(3) is the same to the following systemmax
j∈J

max{a+i j .x j,a−i j .(1− x j)}= bi, ∀i ∈ I− I0,

x̌ j ≤ x j ≤ x̂ j, ∀ j ∈ J,

where I0 = {i ∈ I|bi = 0}. Also, x̌ j and x̂ j, for all j ∈ J, are defined on the basis of system (2)-(3).

We will assume that x̌ j < x̂ j, for each j ∈ J, and bi > 0, for each i ∈ I, without loss of generality. The
characteristic matrices of Q+ and Q− are defined below.

Definition 1 ([6]). Define two characteristic matrices Q+ = (q+i j)m×n and Q− = (q−i j)m×n such that for
each i ∈ I and j ∈ J, we have

q+i j =

{
1, if a+i j .x̂ j = bi,
0, otherwise,

and q−i j =

{
1, if a−i j .(1− x̌ j) = bi,

0, otherwise.

Furthermore, a series of index sets is defined based on the matrices Q+ and Q− as follows.

Definition 2 ([2]). (i) For the matrix of Q+, define I+j (x) = {i ∈ I | x j = x̂ j and q+i j = 1} and J+i (x) =
{ j ∈ J | x j = x̂ j and q+i j = 1}. Also, for the matrix of Q−, define I−j (x)= {i ∈ I | x j = x̌ j and q−i j = 1} and
J−i (x) = { j ∈ J | x j = x̌ j and q−i j = 1}, for each i ∈ I and j ∈ J. Furthermore, let I j(x) = I+j (x)∪ I−j (x),
for each j ∈ J. (ii) Let I+j = I+j (x̂), J+i = J+i (x̂), I−j = I−j (x̌), and J−i = J−i (x̌), for each i ∈ I and j ∈ J.

The vectors x̌ and x̂ are not necessarily feasible solutions for the system (2)-(3) and S(A+,A−,b) ⊆
{x|x̆ ≤ x ≤ x̂}. But their components can satisfy the equations in system (2)-(3). This fact is expressed
in the following theorem.
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Theorem 1 ([6]). A vector x∈ [0,1]n is a solution of system (2)-(3) if and only if x̌≤ x≤ x̂ and
⋃
j∈J

I j(x) = I.

The following lemma expresses an important property of the optimal solution of problem (1)-(3).

Lemma 4 ([6]). Suppose that problem (1)-(3) is feasible. Then there exists an optimal solution x∗ =
(x∗1, ...,x

∗
n)

T such that for each j ∈ J either x∗j = x̂ j or x∗j = x̌ j.

For each j ∈ J, label the values of x̂ j and x̌ j with boolean variables of y j and ¬y j, respectively.
The following theorem presents a criteria to check the consistency of system (2)-(3). With regard to
Definitions 1 and 2, we can express a similar to [15, Theorem 2.5] as follows.

Theorem 2. The system (2)-(3) is consistent if and only if its characteristic boolean formula C =
∧
i∈I

Ci is

well-defined and satisfiable, where Ci =
∨

j∈J+i

y j ∨
∨

j∈J−i

¬y j.

Now, we are ready to present the sufficient conditions for consistency of system (2)-(3) and detect
optimal variables based on the covering concept.

3 Covering-based sufficient conditions for consistency and simplification
of problem (1)-(3)

This section is divided to two subsections. The first subsection presents the definition of covering and its
related points. Then, sufficient conditions are proposed to check the consistency of system (2)-(3). The
second subsection provides some sufficient conditions to determine some of the optimal variables or one
of the optimal solutions for problem (1)-(3) based on the covering concept.

3.1 The sufficient conditions for consistency of system (2)-(3)

In this subsection, some sufficient conditions are proposed for consistency of system (2)-(3) based on the
covering concept. First of all, two index sets are defined as follows

I1 =
⋃
j∈J

I−j and I2 = I \ I1. (5)

Obviously, if I2 = /0, then x∗ = x̌ will be an optimal solution of problem (1)-(3). We are now ready to
present the following definition.

Definition 3. (i) The matrix of QR+ = (qR+
i j )|I2|×n is the matrix of Q+ with the removed row(s) i ∈ I1.

(ii) A set C ⊆ J is a covering of QR+ if
⋃
j∈C

I+j ⊇ I2. A covering C is irredundant if each proper subset of

C is not a covering of QR+. Let CS(QR+) be the set of all irredundant coverings of QR+.
(iii) A covering set C∈CS(QR+) is a feasible covering of QR+ if (

⋃
j∈C

I+j )∪(
⋃

j∈J\C
I−j )= I. Also, FCS(QR+)

is called the set of all feasible irredundant coverings of QR+.

It is noticeable that we may have S(A+,A−,b) 6= /0 when FCS(QR+) = /0. The following example
explains this point.
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Example 1. Consider the following system of bipolar max-Tp FREs A+ ◦ x∨A− ◦¬x = b, where

A+ =


0.4 0.05 0.02 0.09 0.07
1 0.24 0.12 0.19 0.22

0.58 1 0.42 0.31 0.26
0.35 0.25 0.18 0.54 0.72
0.17 0.2 0.45 0.33 0.48

 , A− =


0.01 0.05 0.08 0.03 0.2
0.2 0.19 0.23 1 0.16
0.51 0.7 0.9 0.6 0.42
0.46 0.3 0.29 0.23 0.53
0.14 0.1 0.16 0.3 0.31

 ,

and b = (0.1,0.25,0.63,0.54,0.36)T . Considering Lemma 2, the lower and upper bound of x̌ and x̂ can
be computed as follows: x̌ = (0,0.1,0.3,0.75,0.5)T and x̂ = (0.25,0.63,0.8,1,0.75)T . With regard to
Definition 1, two matrices Q+ and Q− are obtained as follows:

Q+ =

1 2 3 4 5
1
2
3
4
5


1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 1
0 0 1 0 1

 and Q− =

1 2 3 4 5
1
2
3
4
5


0 0 0 0 1
0 0 0 1 0
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0

 .

In this example, we have I1 = {1,2,3}, I2 = {4,5}, CS(QR+) =

{
{3,4},{5}

}
, and FCS(QR+) = /0,

where

1 2 3 4 5

QR+ =
4
5

(
0 0 0 1 1
0 0 1 0 1

)
.

Consider x = (x̂1, x̌2, x̌3, x̌4, x̂5). Since x̌≤ x≤ x̂ and (
⋃

j∈{1,5}
I+j )∪ (

⋃
j∈{2,3,4}

I−j ) = I, then x ∈ S(A+,A−,b)

and S(A+,A−,b) 6= /0. Hence, the bipolar system is not necessarily inconsistent if FCS(QR+) = /0.

We now present some sufficient conditions for consistency of system (2)-(3) in the following theorem.

Theorem 3. If there exists a C ∈CS(QR+) such that
⋃

j∈C I−j ⊆
⋃

j∈J−C I−j , then the solution set of system
(2)-(3) is not empty.

Proof. Assume that there exists an C ∈ CS(QR+) such that
⋃

j∈C I−j ⊆
⋃

j∈J−C I−j . Then, we have: I ⊇
(
⋃

j∈C I+j )
⋃
(
⋃

j∈J−C I−j ) ⊇ (
⋃

j∈C I+j )
⋃
(
⋃

j∈C I−j )
⋃
(
⋃

j∈J−C I−j ) = (
⋃

j∈C I+j )
⋃
(
⋃

j∈J I−j ) ⊇ I2
⋃

I1 = I.
The recent relations implies that (

⋃
j∈C I+j )

⋃
(
⋃

j∈J−C I−j ) = I. Hence, C ∈ FCS(QR+) and C is a fea-
sible irredundant covering. Now, define vector x = [x j] j∈J as follows:

x j =

{
x̂ j, if j ∈C,

x̌ j, otherwise,
∀ j ∈ J.

Obviously, we have x ∈ S(A+,A−,b). Hence, S(A+,A−,b) 6= /0.

The following lemma provides some sufficient conditions to satisfy FCS(QR+)⊇CS(QR+). Hence,
it implies that FCS(QR+) =CS(QR+).
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Lemma 5. If for each C ∈CS(QR+),
⋃

j∈C I−j ⊆
⋃

j∈J−C I−j , then FCS(QR+) =CS(QR+).

Proof. It is obvious that FCS(QR+) ⊆ CS(QR+) with regard to Definition 3. Now, it is enough to
show that CS(QR+) ⊆ FCS(QR+). For each C ∈ CS(QR+), we have: I ⊇ (

⋃
j∈C I+j )

⋃
(
⋃

j∈J−C I−j ) ⊇
(
⋃

j∈C I+j )
⋃
(
⋃

j∈C I−j )
⋃
(
⋃

j∈J−C I−j ) = (
⋃

j∈C I+j )
⋃
(
⋃

j∈J I−j ) ⊇ I2
⋃

I1 = I. The above relations imply
that (

⋃
j∈C I+j )

⋃
(
⋃

j∈J−C I−j ) = I. Hence, C ∈ FCS(QR+). Therefore, CS(QR+)⊆ FCS(QR+).

Now, we are ready to present some sufficient conditions to simplify the problem (1)-(3).

3.2 Some sufficient conditions for simplification of problem (1)-(3)

This section provides some sufficient conditions under which, one of the optimal solutions or some of
the optimal variables of problem (1)-(3) are directly determined.

Theorem 4. If there exists a cover C′ ∈ FCS(QR+) such that

∑
j∈C′

c j(x̂ j− x̌ j)≤ ∑
j∈C

c j(x̂ j− x̌ j), ∀C ∈CS(QR+), (6)

then there exists an optimal solution x∗ = (x∗j) j∈J for problem (1)-(2) as follows:

x∗j =


x̂ j if j ∈C′,

∀ j ∈ J.
x̌ j otherwise,

(7)

Proof. It is enough to show that (i) x∗ ∈ S(A+,A−,b) and (ii) Z(x∗) ≤ Z(x), for each x ∈ S(A+,A−,b).
Since C′ ∈ FCS(QR+), then x∗ ∈ S(A+,A−,b) with regard to Definition 3 (iii). On the other hand, for
any x ∈ S(A+,A−,b), there exists C ∈CS(QR+) such that x j = x̂ j, for each j ∈C and

Z(x)≥ ∑
j∈J\C

c jx̌ j + ∑
j∈C

c jx̂ j = ∑
j∈J

c jx̌ j + ∑
j∈C

c j(x̂ j− x̌ j).

Since
∑
j∈C

c j(x̂ j− x̌ j)≥ ∑
j∈C′

c j(x̂ j− x̌ j),

for each C ∈CS(QR+), then Z(x)≥ ∑
j∈J

c jx̌ j + ∑
j∈C′

c j(x̂ j− x̌ j) = Z(x∗), for any x ∈ S(A+,A−,b).

It is necessary to remind the following point about Theorem 4.

Remark 1. Consider relation (6) in Theorem 4. This inequality should be held for any C ∈ CS(QR+).
If this inequality holds for any C ∈ FCS(QR+), then Theorem 4 is not necessarily true. More precisely,
there may exist C1 ∈ CS(QR+) \ FCS(QR+) and K ⊆ J \C1 such that (

⋃
j∈C2

I+j )∪ (
⋃

j∈J\C2
I−j ) = I and

∑
j∈C2

c j(x̂ j− x̌ j) < ∑
j∈C

c j(x̂ j− x̌ j), for any C ∈ CS(QR+) and C 6= C1, where C2 = C1 ∪K. This point is

explained in Example 2.
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Example 2. Consider the following optimization problem:

min x1 +3x2 +2x3 +5x4 +8x5 +7x6,

s.t. A+ ◦ x∨A− ◦¬x = b,

x ∈ [0,1]6,

where

A+ =



0.4 0.05 0.21 0.19 0.09 0.05
0.32 0.12 0.13 0.08 0.04 0.48
0.05 0.03 0.01 0.1 0.01 0.04
0.11 0.3 0.13 0.2 0.09 0.02
0.06 0.2 0.02 0.02 0.15 0.24
0.26 0.48 0.6 0.24 0.75 0.34

 , A− =



0.3 0.4 0.13 0.17 0.09 0.02
0.21 0.32 0.8 0.06 0.13 0.01
0.1 0.05 0.04 0.18 0.04 0.05
0.13 0.02 0.12 0.03 0.3 0.2
0.08 0.01 0.02 0.02 0.08 0.02
0.13 0.26 0.23 0.24 0.22 0.14

 ,

b = (0.3,0.24,0.09,0.18,0.12,0.6)T , and x = (x1,x2,x3,x4,x5,x6)
T .

In this example, the lower and upper bound of x̌ and x̂ are as follows: x̌=(0.1,0.25,0.7,0.5,0.4,0.1)T

and x̂ = (0.75,0.6,1,0.9,0.8,0.5)T . Applying Definition 1, the matrices of Q+ and Q− are obtained as
follows:

Q+ =

1 2 3 4 5 6
1
2
3
4
5
6



1 0 0 0 0 0
1 0 0 0 0 1
0 0 0 1 0 0
0 1 0 1 0 0
0 1 0 0 1 1
0 0 1 0 1 0


and Q− =

1 2 3 4 5 6
1
2
3
4
5
6



0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 .

Also, the index sets of I+j and I−j , for all j ∈ J, can be computed as follows: I+1 = {1,2}, I+2 =

{4,5}, I+3 = {6}, I+4 = {3,4}, I+5 = {5,6}, I+6 = {2,5}, I−1 = {3}, I−2 = {1,2}, I−3 = {2}, I−4 =
{3}, I−5 = {4}, and I−6 = {4}.

Moreover, we can compute the index sets of J+i and J−i , for all i ∈ I, as follows: J+1 = {1}, J+2 =
{1,6}, J+3 = {4}, J+4 = {2,4}, J+5 = {2,5,6}, J+6 = {3,5}, J−1 = {2}, J−2 = {2,3}, J−3 = {1,4}, J−4 =
{5,6}, and J−5 = J−6 = /0.

The system of the bipolar max-product FREs of A+ ◦ x∨A− ◦¬x = b is consistent. Also, two index
sets I1 and I2 are as follows: I1 = {1,2,3,4} and I2 = {5,6}. The matrix of QR+ is obtained as follows:

1 2 3 4 5 6

QR+ =
5
6

(
0 1 0 0 1 1
0 0 1 0 1 0

)
.

Also, two sets CS(QR+) and FCS(QR+) are computed as follows:

CS(QR+) = {{2,3} ,{5} ,{3,6}} and FCS(QR+) = {{5} ,{3,6}} .

We now check the conditions of Theorem 4. Set C′ = {5} ∈ FCS(QR+). Although inequality c5(x̂5−
x̌5) = 3.2 ≤ ∑

j∈C
c j(x̂ j − x̌ j) holds for any C ∈ FCS(QR+), it does not hold for any C ∈ CS(QR+) and
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Theorem 4 cannot be used. It is easy to see that there exists C1 = {2,3} ∈ CS(QR+) \FCS(QR+) and
K = {1} such that (

⋃
j∈{1,2,3}

I+j )∪(
⋃

j∈{4,5,6}
I−j ) = I and ∑

j∈{1,2,3}
c j(x̂ j− x̌ j) = 2.3 < ∑

j∈C
c j(x̂ j− x̌ j), for each

C ∈ CS(QR+) and C 6= {2,3}. In this problem, the optimal objective value is 10.95 and the optimal
solution is x∗ = (x∗1,x

∗
2,x
∗
3,x
∗
4,x
∗
5,x
∗
6)

T = (0.75,0.6,1,0.5,0.4,0.1)T . In fact, the optimal solution x∗ has
been obtained from the cover C1 = {2,3}.

Now, we are ready to discuss on uniqueness of the obtained optimal solution by Theorem 4. Under
the assumptions of Theorem 4, the optimal solution is not necessarily unique. The important point is the
cost coefficients of problem (1)-(3). Since c j ≥ 0, for each j ∈ J, there may exist k ∈ J \

⋃
C∈CS(QR+)

{ j |

j ∈ C} such that ck = 0 and I+k = I−k = /0. In this case, each point in the closed interval [x̌k, x̂k] can be
selected as the kth component of an optimal solution. Under some conditions expressed in Theorem 5,
the optimal solution introduced in Theorem 4 is unique.

Theorem 5. If the cover C′ ∈ FCS(QR+) satisfies the following conditions,

1. c j > 0, ∀ j ∈ J \C′,

2. ∑
j∈C′

c j(x̂ j− x̌ j)< ∑
j∈C

c j(x̂ j− x̌ j), ∀C ∈CS(QR+) and C 6=C′,

then the optimization problem of (1)-(3) has a unique optimal solution of x∗ = (x∗j) j∈J as relation (7).

Proof. Considering proof of Theorem 4, the proof can be completed by showing that Z(x∗) < Z(x), for
each x ∈ S(A+,A−,b) with x 6= x∗. It is obvious that for any x ∈ S(A+,A−,b), there exists C ∈CS(QR+)
such that x j = x̂ j, for each j ∈ C and Z(x) ≥ ∑

j∈J
c jx̌ j + ∑

j∈C
c j(x̂ j− x̌ j). If C 6= C′ for x ∈ S(A+,A−,b)

with x 6= x∗, then inequality Z(x)> Z(x∗) can be easily obtained with regard to condition 2. Otherwise,
we have C =C′ for x ∈ S(A+,A−,b) with x 6= x∗, i.e., x j = x̂ j, for each j ∈C′. In this case, there exists
k ∈ J \C′ such that xk = x̂k due to x 6= x∗. Thus, we conclude that

Z(x)≥∑
j∈J

c jx̌ j + ∑
j∈C′

c j(x̂ j− x̌ j)+ ck(x̂k− x̌k). (8)

It can be easily seen that ck(x̂k− x̌k)> 0 with regard to x̌k < x̂k and condition 1. Applying inequality (8)
and ck(x̂k− x̌k)> 0, we have Z(x)> Z(x∗) and the proof is completed.

The following theorem provides covering-based sufficient conditions to determine one of the optimal
solutions of problem (1)-(3).

Theorem 6. If for each C ∈CS(QR+), we have
⋃

j∈C I−j ⊆
⋃

j∈J−C I−j , then there exists a C∗ ∈CS(QR+)
such that problem (1)-(3) has an optimal solution x∗ = [x∗j ] j∈J as follows

x∗j =

{
x̂ j, if j ∈C∗,
x̌ j, otherwise,

∀ j ∈ J. (9)

Proof. According to Lemma 5, it is concluded that FCS(QR+)=CS(QR+). Since | J | and the dimensions
of matrix QR+ are finite, | FCS(QR+) | is finite. Hence, there exists a covering C∗ ∈ FCS(QR+) such
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that ∑
j∈C∗

c j(x̂ j− x̌ j) ≤ ∑
j∈C

c j(x̂ j− x̌ j), ∀C ∈CS(QR+). According to Theorem 4, there exists an optimal

solution x∗ = [x∗j ] j∈J as follows

x∗j =

{
x̂ j, if j ∈C∗,
x̌ j, otherwise,

∀ j ∈ J.

Two following theorems present some sufficient conditions to detect some optimal components of
problem (1)-(3). These theorems can be used to simply or reduce the dimensions of the original problem.

Theorem 7. Suppose that: (1) for each C∈CS(QR+), we have
⋃

j∈C I−j ⊆
⋃

j∈J−C I−j , and (2)
⋂

C∈CS(QR+)C 6=
/0. Then there exists an optimal solution x∗ = [x∗j ] j∈J for problem (1)-(3) where for each j ∈

⋂
C∈CS(QR+)C,

x∗j = x̂ j.

Proof. According to assumption (1) and Theorem 3, the feasible domain of problem (1)-(3) is non-empty.
Since its feasible domain is a closed and bounded set, problem (1)-(3) has at least one optimal solution
as x∗ = [x∗j ] j∈J . With regard to assumption (1), it is concluded that CS(QR+) = FCS(QR+) according
to Lemma 5. Since | FCS(QR+) | is finite, there exists one C1 ∈ FCS(QR+) such that ∑

j∈C1
c j(x̂ j− x̌ j) ≤

∑
j∈C

c j(x̂ j− x̌ j), ∀C ∈CS(QR+). Hence, the assumptions of Theorem 4 are satisfied. So, there exists an

optimal solution x∗ = [x∗j ] j∈J such that x∗j = x̂ j, for each j ∈C1. Since
⋂

C∈CS(QR+)C⊆C1, it is concluded
that x∗j = x̂ j, for each j ∈

⋂
C∈CS(QR+)C.

Theorem 8. Assume that for each C ∈CS(QR+), the relation
⋃

j∈C I−j ⊆
⋃

j∈J−C I−j holds. If there exists
a covering C′ ∈ FCS(QR+) such that (1) for each C ∈ CS(QR+)−{C′}, we have C

⋂
C′ = /0 and (2)

for one C′′ ∈ CS(QR+)−{C′}, we have ∑
j∈C′

c j(x̂ j− x̌ j) > ∑
j∈C′′

c j(x̂ j− x̌ j). Then there exists an optimal

solution x∗ = [x∗j ] j∈J for problem (1)-(3) such that x∗j = x̌ j, for each j ∈C′.

Proof. The assumption of
⋃

j∈C I−j ⊆
⋃

j∈J−C I−j , for each C ∈ CS(QR+), implies that the feasible do-
main of problem (1)-(3) is a non-empty, according to Theorem 3. The feasible domain is also a closed,
and bounded set. Hence, problem (1)-(3) has at least one optimal solution as x∗ = [x∗j ] j∈J with C∗ ∈
FCS(QR+). On the other hand, the assumption (2) is concluded that

∑
j∈C′

c j(x̂ j− x̌ j)> ∑
j∈C′′

c j(x̂ j− x̌ j)≥ ∑
j∈C∗

c j(x̂ j− x̌ j).

Obviously, C′ 6=C∗. Since C′∩C∗ = /0, Theorem 4 implies that x∗j = x̌ j, for each j ∈C′.

The lemmas, theorems, and corollaries of this section are firstly applied to reduce the dimensions
of the original problem using the following remark and the original problem is reduced to a problem
with smaller dimensions. Since the resolution of the original problem is a NP-hard problem, these
simplifications can reduce the computational complexity, noticeably.
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Remark 2. Assume that some components of an optimal solution x∗ are determined under some sufficient
conditions in the resolution process of problem (1)-(3). If value x̌k is assigned the kth component of an
optimal solution x∗, then row(s) i ∈ I−k and column k can be removed from matrices Q+ and Q−. Also, if
value x̂k is assigned to the kth component of an optimal solution x∗, then row(s) i ∈ I+k and column k can
be deleted from matrices Q+ and Q−.

If all components of the optimal solution of problem (1)-(3) is not completely determined, then we
have to solve the reduced problem. To do this, we will apply the matrix-based branch-and-bound method
in the next section.

4 An algorithm for solving problem (1)-(3)

First of all, the objective function of problem (1)-(3) is rewritten as follows:

Z(x) =
n

∑
j=1

c jx j−
n

∑
j=1

c jx̌ j +
n

∑
j=1

c jx̌ j =
n

∑
j=1

c j(x j− x̌ j)+
n

∑
j=1

c jx̌ j.

Therefore, the problem (1)-(3) can equivalently rewrite as follows:

min Z̄(x) =
n

∑
j=1

c j(x j− x̌ j), (10)

s.t. A+ ◦ x∨A− ◦¬x = b, (11)

x ∈ [0,1]n. (12)

Now, we want to solve problem (10)-(12) according to Lemma 4. The problem (10)-(12) gives
us more information with respect to problem (1)-(3). For instance, consider two vectors x′ = [x′j] j∈J

and x′′ = [x′′j ] j∈J with x′t = x̂t and x′j = x j, for each j ∈ J −{t}, and x′′k = x̂k and x′′j = x j, for each
j ∈ J−{k}. If ck.x̂k > ct .x̂t , then we cannot conclude that Z(x′′) > Z(x′) or Z(x′′) < Z(x′). But, if
ck(x̂k − x̌k) < ct(x̂t − x̌t), then Z̄(x′′) < Z̄(x′) is concluded. This useful property is applied to design
a matrix-based branch-and-bound approach to solve problem (1)-(3). To do this, all rows i ∈ I2 are
transferred to the top of matrices Q+ and Q−. Now, define the following value matrix according to
problem (10)-(12).

Definition 4 ([6]). The value matrix M = [mi j]m×2n is defined as follows

mi,2 j−1 =

{
c j.(x̂ j− x̌ j), if q+i j = 1,
∞, otherwise,

and mi,2 j =

{
0, if q−i j = 1,
∞, otherwise.

for each i ∈ I and j ∈ J.

The branch-and-bound method is employed on the matrix M with three modifications as follows [2]:
1. If we choose x̂ j (or x̌ j) to branch from one node to another node, then we never use x̌ j (or x̂ j) to

branch further on the current node.
2. Under the following conditions, we cannot branch further on Node k.

2.1. We have reached to the last row of matrix M.
2.2. The selected variables along Node 0 to Node k together with x̌ j, for each j ∈ J \ Jk, satisfy all
the equations where Jk = { j ∈ J|x j has been selected along the branches from Node 0 to Node k}.
2.3. We do not have any candidate for satisfying an equation with regard to modification 1.
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3. If we cannot branch further on Node k under the conditions 2.1 and 2.2, then we assign x̌ j to x j,
for each j ∈ J \ Jk.

We now provide an algorithm to solve problem (1)-(3) based on the sufficient conditions and branch-
and-bound method.

Algorithm 1 An algorithm for solving problem (1)-(3)

Step 1. Compute the lower and upper bound of x̌ and x̂ by Lemma 2.
Step 2. If b = 0 and x̌≤ x̂, then S(A+,A−,b) = [x̌, x̂] and x∗ = x̌ is an optimal solution of problem (1)-(3)
according to Lemma 3 (2) and stop!
Step 3. If x̌ j < x̂ j, for each j ∈ J, and bi > 0, for each i ∈ I, then go to Step 4. Otherwise, use Lemma 3.
Step 4. Compute the matrices of Q+ and Q−, the index sets of I+j and I−j , for each j ∈ J, and the index
sets of J+i and J−i , for each i ∈ I using Definitions 1 and 2.
Step 5. Check the consistency of system (2)-(3) by Theorem 2 or Theorem 3. If it is inconsistent, then
stop! Otherwise, go to Step 6.
Step 6. Check the following sufficient conditions:

6.1. Find two index sets I1 and I2 by relation (5).
6.2. If I2 = /0, then x∗ = x̌ and stop!
6.3. Compute matrix QR+ and two sets CS(QR+) and FCS(QR+) using Definition 3
6.4. If the conditions of Theorem 5 are satisfied, then the unique optimal solution of problem

(1)-(3) is obtained by relation (7) and stop!
6.5. If the conditions of Theorem 4 are satisfied then choose a covering C∗ ∈CS(QR+) such that

∑
j∈C∗

c j(x̂ j− x̌ j)≤ ∑
j∈C

c j(x̂ j− x̌ j), for each C ∈CS(QR+). Then the optimal solution is as

relation (7) and stop!
6.6. If the conditions of Theorem 6 are satisfied, then the problem (1)-(3) has an optimal solution

as relation (9) and stop!
6.7. If the conditions of Theorem 7 are satisfied, then for each j ∈ ∩

C∈CS(QR+)
C, we have x∗j = x̂ j.

Update Q+, Q−, and QR+ using Remark 2.
6.8. If the conditions of Theorem 8 are satisfied, then for each j ∈C′, we have x∗j = x̌ j.

Update Q+, Q−, and QR+ using Remark 2.
Step 7. If Q+=Q−=/0, then assign x̌ j to x∗j for other unknown variables. Then, go to Step 10.
Step 8. Transfer all rows i ∈ I2 to the top of matrices Q+ and Q−. Also, generate the value matrix of M
using Definition 4.
Step 9. Apply the modified branch-and-bound method on the matrix of M to solve the problem (1)-(3).
Step 10. Produce the optimal solution and the optimal value of problem (1)-(3). End.

5 Numerical Examples

An example is given to illustrate the algorithm.
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Example 3. Consider the following problem:

min 4x2 +3x3 + x4 +5x5 +6x6 + x7 +2x8, (13)

s.t. A+ ◦ x∨A− ◦¬x = b, (14)

x ∈ [0,1]8,

where

A+ =



0.3 0.35 0.25 0.6 0.45 0.35 0.4 0.32
0.2 0.04 0.1 0.15 0.3 0.2 0.3 0.24
0.17 0.12 0.1 0.03 0.2 0.01 0.15 0.14
0.14 0.25 0.3 0.5 0.1 0.03 0.3 0.25
0.2 0.17 0.1 0.3 0.15 0.17 0.15 0.1
0.6 0.45 0.5 0.65 0.4 0.45 0.3 0.4
0.9 0.63 0.6 1 0.51 0.4 0.6 0.2
0.52 0.4 0.45 0.7 0.3 0.14 0.25 0.4
0.23 0.15 0.2 0.3 0.12 0.1 0.2 0.03
0.45 0.4 0.3 0.1 0.5 0.25 0.6 0.15


,

A− =



0.45 0.35 0.23 0.4 0.3 0.6 0.7 1
0.25 0.3 0.28 0.07 0.2 0.3 0.45 0.8
0.1 0.2 0.2 0.17 0.05 0.22 0.15 0.4
0.3 0.35 0.2 0.14 0.21 0.45 0.5 1
0.2 0.15 0.01 0.22 0.18 0.3 0.25 0.55
0.48 0.5 0.4 0.15 0.32 0.7 0.65 0.9
0.7 0.6 0.65 0.3 0.43 1 0.8 1
0.5 0.4 0.3 0.6 0.35 0.55 0.72 0.85
0.25 0.2 0.15 0.2 0.1 0.25 0.4 0.6
0.6 0.5 0.35 0.52 0.4 0.8 0.9 0.75


,

b = (0.36,0.24,0.15,0.3,0.18,0.45,0.63,0.42,0.2,0.48)T ,

x = (x1,x2,x3,x4,x5,x6,x7,x8)
T .

Now, we want to solve this example by Algorithm 1.
Step 1. In this example, the lower and upper bound of x̌ and x̂ are as follows:

x̌ = (0.2,0.25,0.25,0.3,0,0.4,0.5,0.7)T and x̂ = (0.7,1,0.9,0.6,0.75,1,0.8,1)T .

Step 2. Since b > 0, we go to Step 3.
Step 3. Since x̌ j < x̂ j, for each j ∈ J and bi > 0, for each i ∈ I, we go to Step 4.
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Step 4. The matrices of Q+ and Q− can be obtained as follows:

Q+ =

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8
9

10



0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 1 1 0 0 1 0 0
1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0


and Q− =

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8
9
10



1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0


.

The index sets of I+j and I−j , for all j ∈ J, can be computed as follows: I+1 = {7}, I+2 = {6,7}, I+3 =

{6}, I+4 = {1,4,5,8}, I+5 = {3}, I+6 = {6}, I+7 = {2,10}, I+8 = {2}, I−1 = {1,9,10}, I−2 = {3}, I−3 =
{3}, I−4 = {8}, I−5 = {5}, I−6 = {1,5,10}, I−7 = {9}, and I−8 = {2,4}.

Also, we can compute the index sets of J+i and J−i , for all i ∈ I, as follows: J+1 = {4}, J+2 =
{7,8}, J+3 = {5}, J+4 = {4}, J+5 = {4}, J+6 = {2,3,6}, J+7 = {1,2}, J+8 = {4}, J+9 = /0, J+10 = {7}, J−1 =
{1,6}, J−2 = {8}, J−3 = {2,3}, J−4 = {8}, J−5 = {5,6}, J−6 = J−7 = /0, J−8 = {4}, J−9 = {1,7}, and
J−10 = {1,6}.
Step 5. Since the bipolar max-Tp FREs of A+ ◦ x∨A− ◦¬x = b is consistent, we go to Step 6.
Step 6. Perform the process of problem reduction as follows:
6.1. Two index sets I1 and I2 can be obtained as follows: I1 = {1,2,3,4,5,8,9,10} and I2 = {6,7}. It
can be easily verified that Substep 6.2 cannot be used. So, we go to Step 6.3.
6.3. The matrix of QR+ is obtained as follows:

1 2 3 4 5 6 7 8

QR+ =
6
7

(
0 1 1 0 0 1 0 0
1 1 0 0 0 0 0 0

)
.

Also, we have CS(QR+) = {{2} ,{1,3} ,{1,6}} and FCS(QR+) = {{2} ,{1,3}} .
6.4. Since the following conditions are satisfied:

1. C′ = {1,3} ∈ FCS(QR+),

2. c j > 0, for each j ∈ {2,4,5,6,7,8},

3. ∑
j∈{1,3}

c j(x̂ j− x̌ j) = 1.95 < 3 = c2(x̂2− x̌2),

4. ∑
j∈{1,3}

c j(x̂ j− x̌ j) = 1.95 < 3.6 = ∑
j∈{1,6}

c j(x̂ j− x̌ j),

then by Theorem 5, the optimization problem of (13)-(14) has a unique optimal solution x∗ with the opti-
mal objective value 8.3 as follows: x∗=(x̂1, x̌2, x̂3, x̌4, x̌5, x̌6, x̌7, x̌8)

T =(0.7,0.25,0.9,0.3,0,0.4,0.5,0.7)T .
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6 Comparison of the proposed algorithm with the existing methods

This section compares the proposed algorithm with other existing methods to solve problem (1)-(3) with
regard to the results in Example 3 of Section 5. As it is considered in Example 3, the proposed algorithm
solves the problem without using the branch-and-bound method. Its optimal solution is obtained by
Theorem 5 in Substep 6.4. The proposed algorithm can also be applied for large scale problems because
the sufficient conditions are proved in a general case and the modified branch-and-bound method have no
limitations on the dimensions of problem. The sufficient conditions in the algorithm are based on some
theorems and lemmas which their results are exact. On the other hand, the optimal solution produced by
Step 9 is exact. Therefore, the proposed algorithm produces an exact optimal solution. We don’t use from
approximate methods or solutions in the steps of the algorithm. The authors in [8] investigated problem
(1)-(3) with the max-min composition operator. They presented an algorithm to solve the problem based
on the structure of its feasible domain. Its computational complexity is as TF = O(mn(2m+2)n), where
m and n denote the number of rows and columns of matrix A+ (or A−), respectively [6]. If we use
the method for an instance of the problem with the dimensions m = 10 and n = 8 in Example 3, its
computational cost is as: O(10× 8× (2× 10+ 2)8) = O(80× 228) = 438869882880×O(1). In fact,
(2×10+2)8 = 54875873536 elements are created and their feasibility should be checked in m equations
of n-variable. Then the optimal solution is obtained by computing the objective function values in the
feasible vectors and their comparison. So, this method needs huge computations and it is very time-
consuming. Li and Liu [18] studied the problem (1)-(3) using the max-Lukasiewicz t-norm composition.
In this method, the problem is directly converted to a 0-1 integer linear programming problem without
simplification and reduction procedures. If this method is applied to solve Example 3 with the max-
product composition, we should solve the following 0-1 integer programming problem by the branch-
and-bound method:

Z = min 6.35+3u2 +1.95u3 +0.3u4 +3.75u5 +3.6u6 +0.3u7 +0.6u8,

s.t.



−1 0 0 1 0 −1 0 0
0 0 0 0 0 0 1 0
0 −1 −1 0 1 0 0 0
0 0 0 1 0 0 0 −1
0 0 0 1 −1 −1 0 0
0 1 1 0 0 1 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 0 0 −1 0
−1 0 0 0 0 −1 1 0





u1
u2
u3
u4
u5
u6
u7
u8


≥



−1
0
−1
0
−1
1
1
0
−1
−1


,

u ∈ {0,1}8.

We now consider the algorithm in [5] with the max-parametric hamacher composition operators along
with some rules to simplify the original problem. The rules are completely different from the sufficient
conditions for simplification. If the rules in [5] are checked for Example 3, Rule 1 can be used for this ex-
ample. Let K = {8} ⊆ J = {1,2, ...,8}. Then

⋃
k∈K

I+k = {2} ⊆
⋃

k∈K
I−k = {2,4} and the conditions of Rule 1

in [5] are satisfied. Therefore, x∗8 = x̌8 = 0.7 and rows 2 and 4 and column 8 from matrices Q+ and Q− are
removed. Rule 1 cannot again be applied for the simplified problem. Rules 2,3, and 4 are not applicable
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for the simplified problem. To check Rule 5 in [5] for the simplified problem, we should run Algorithm 1
in [5]. In Step 1, a feasible solution x = (x̌1, x̂2, x̌3, x̌4, x̌5, x̌6, x̌7) = (0.2,1,0.25,0.3,0,0.4,0.5) is obtained
by characteristic boolean formula C =

∧
i∈I′

Ci where I′ = {1,3,5,6,7,8,9,10} and C1 = y4
∨
¬y1

∨
¬y6,

C3 = y5
∨
¬y2

∨
¬y3, C5 = y4

∨
¬y5

∨
¬y6, C6 = y2

∨
y3
∨

y6, C7 = y1
∨

y2, C8 = y4
∨
¬y4, C9 =¬y1

∨
¬y7,

and C10 = y7
∨
¬y1

∨
¬y6. The formula is satisfiable for y2 = 1, and y1 = y3 = y4 = y5 = y6 = y7 = 0. In

Step 2, J′ = {2}. In Step 3, since J′ 6= /0, we go to Step 4. In Step 4, c2(x̂2− x̌2) = 4× (1− 0.25) = 3
is computed. In Step 5, H = {h2 = c2(x̂2− x̌2)} = {h2 = 3}. Then Procedure Decreasing Order(H) is
run and with s1 = 2, we return to Step 6 of Algorithm 1. The condition of Substep 6.1 is not satisfied.
Therefore, we go to Step 7 and U = 7.95. For each k ∈ {1,2, ...,7}, we have ck(x̂k− x̌k)≤U . Therefore,
Rule 5 isn’t applicable for this example. Hence, the modified branch-and-bound should be run on the
following matrix:

M =

1 2 3 4 5 6 7
1
3
5
6
7
8
9
10



∞ 0 ∞ ∞ ∞ ∞ 0.3 ∞ ∞ ∞ ∞ 0 ∞ ∞

∞ ∞ ∞ 0 ∞ 0 ∞ ∞ 3.75 ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ 0.3 ∞ ∞ 0 ∞ 0 ∞ ∞

∞ ∞ 3 ∞ 1.95 ∞ ∞ ∞ ∞ ∞ 3.6 ∞ ∞ ∞

0 ∞ 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ 0.3 0 ∞ ∞ ∞ ∞ ∞ ∞

∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0
∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0.3 ∞


.

We now consider the algorithm given in [19] to solve the problem in Example 3. Rules 1, 2-1, and
2-2 in [19] aren’t applicable for this example. Rule 3 in [19] is satisfied for equations 2 and 8 because
J2(M)

⋂
J2(M) = {8} and J8(M)

⋂
J8(M) = {4}. Therefore, equations 2 and 8 can be removed. Hence,

columns 2 and 8 can be removed from matrices Q+ and Q−. According to Rule 4 in [19], no equations
can be satisfied by x8 = x̂8. So, x∗8 = x̌8 = 0.7. The rows corresponding to x̂8 and x̌8 and column 4 are also
removed from the matrix V corresponding to this problem in [19]. The reduction matrix V is as follows:

V =

1 3 5 6 7 9 10
x̂1
x̂2
x̂3
x̂4
x̂5
x̂6
x̂7
x̌1
x̌2
x̌3
x̌4
x̌5
x̌6
x̌7



∞ ∞ ∞ ∞ 0 ∞ ∞

∞ ∞ ∞ 3 3 ∞ ∞

∞ ∞ ∞ 1.95 ∞ ∞ ∞

0.3 ∞ 0.3 ∞ ∞ ∞ ∞

∞ 3.75 ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ 3.6 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ 0.3
0 ∞ ∞ ∞ ∞ 0 0
∞ 1 ∞ ∞ ∞ ∞ ∞

∞ 0.75 ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ 0 ∞ ∞ ∞ ∞

2.4 ∞ 2.4 ∞ ∞ ∞ 2.4
∞ ∞ ∞ ∞ ∞ 0.5 ∞



.
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Rules 5 and 6 in [19] aren’t applicable for this example. To obtain the optimal values of other
variables, the 0-1 integer linear programming problem equivalent to matrix V should be written which the
problem is solved by the branch-and-bound method. The method has a high computational complexity.
We now consider Algorithm 1 in [6] to solve the problem in Example 3. In its Step 1, the lower and upper
bound of x̌ and x̂ are computed. Since bi 6= 0, for each i ∈ I, Step 2 is not applicable for this problem.
In this problem, x̌ j < x̂ j, for each j ∈ J, and bi > 0, for each i ∈ I, are satisfied and the conditions of
Lemmas 4 and 6 in [6] aren’t held for the problem. Matrices Q+ and Q− and sets I+j , I−j , J+i , and J−i ,
for each i ∈ I and j ∈ J, are computed in Step 4. Also, the problem is feasible according to Step 5.
The process of problem reduction is done in Step 6. The conditions of Substep 6.2, 6.3, 6.4, and 6.5,
aren’t applicable for this problem. Only the condition of Substep 6.6 is satisfied for this problem and it
causes that rows 2 and 8 in the computation of the minimum objective value are removed. Also, Step 7
isn’t applicable for this problem. Hence, we can’t find an optimal value of any variable by the reduction
or simplification procedures of Algorithm 1 in [6]. So, the reduced problem should be solved by the
modified branch-and-bound method on matrix M to find the optimal values of all its variables.

M =

1 2 3 4 5 6 7 8
6
7
1
3
4
5
9
10



∞ ∞ 3 ∞ 1.95 ∞ ∞ ∞ ∞ ∞ 3.6 ∞ ∞ ∞ ∞ ∞

0 ∞ 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ 0 ∞ ∞ ∞ ∞ 0.3 ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞

∞ ∞ ∞ 0 ∞ 0 ∞ ∞ 3.75 ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ 0.3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0
∞ ∞ ∞ ∞ ∞ ∞ 0.3 ∞ ∞ 0 ∞ 0 ∞ ∞ ∞ ∞

∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞

∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0.3 ∞ ∞ ∞


.

In the proposed algorithm, the main challenge is to compute two sets CS(QR+) and FCS(QR+) with
regard to the matrix QR+. However, for this example, the dimensions of matrix QR+ is 2× 8 which is
less than the dimensions of above matrices.

7 Conclusions and future research directions

In this paper, a linear programming problem subject to a system of max-product bipolar fuzzy relation
equations was studied. The structure of its feasible domain was briefly investigated. The covering and
irredundant covering concepts were introduced for the system and a sufficient condition was proposed for
its consistency based on the concepts. The resolution of the bipolar fuzzy relation programming is a NP-
hard problem. Hence, some sufficient conditions were presented to find one of its optimal solutions or
some components of its optimal solution based on the covering concepts. Some sufficient conditions were
also suggested for its uniqueness. Finally, an algorithm was designed by the branch-and-bound method
and simplification rules based on the covering concepts and compared with other existing methods. In
the proposed algorithm, the main challenge is to compute two sets CS(QR+) and FCS(QR+) with regard
to the matrix QR+. Our future research directions can be focused on the following items:
(i) Sufficient conditions to reduce the dimensions of matrix QR+.
(ii) A systematic method to compute all of the elements of two sets CS(QR+) and FCS(QR+).
(iii) An efficient algorithm for finding all the optimal solutions of problem (1)-(3).
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