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Abstract. This paper proposes a new robust optimization approach for solving multi-objective linear
programming problems under uncertainty. The uncertainty is assumed to be in the objective function
coefficients and the constraint parameters. The proposed approach is based on an alternative model
for obtaining robust efficient solutions to the original problem. A numerical example is given to test
and illustrate the effectiveness of the proposed approach, and a comparison with a method given in the
literature is discussed based on certain performance metrics.
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1 Introduction

In many real-life problems, decision-makers are looking for solutions that satisfy their constraints and
simultaneously optimize several conflicting criteria. Examples are the optimization of cost and time
in transportation problems [3], cost and profit in production planning [5], cost of therapy and patients
satisfaction in healthcare management problems [26], and revenue and risk in portfolio optimization
problems [29]. Theoretical issues, applicability and numerous approaches for solving such problems
have been widely considered. Some reviews in this regard can be found in [10, 13, 18]. In deterministic
multi-objective optimization problems, objective coefficients and constraint parameters are nominal and
precisely determined. They are known before solving the problem under consideration, which makes it
possible to obtain nominal solutions to the problem.

However, uncertainty is an important characteristic of real-world problems. When solving multi-
objective optimization problems, the precise input data are often unknown beforehand. The input data
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may be unknown and uncertain for several reasons, such as measurement errors, fluctuations, lack of
precise information, disturbances and perturbation of nominal data because of the interaction of the
problem with other related problems. For example, in import and export problems, transportation costs
can be uncertain because of changes in fuel prices, availability of transportation modes, and global cir-
cumstances [1]. Customer demand may not be known by those delivering goods before the goods arrive
at the destination [6, 17]. Transportation times may also be uncertain because of weather conditions,
accumulated delays and road congestion [22]. Moreover, in the case of transport of dangerous goods, the
number of persons exposed to the danger should be taken into account, but is usually unknown. Another
example is uncertainty of returns from financial markets in portfolio selection problem [25]. This list of
examples is not exhaustive, but the main common challenge is to consider uncertainty when addressing
these multi-objective optimization problems.

There have been two approaches to deal with uncertainty in optimization problems: stochastic op-
timization and robust optimization [19]. In the first approach, the aim is to find feasible solutions such
that the uncertain parameters are assumed to be random variables and to obey a probability distribution.
On the other hand, the second approach robust optimization consists of looking for solutions that still
apply in different situations and protect against uncertainty regardless of the parameter values within an
uncertain set, without any probability distribution assumptions.
Multi-objective optimization and robust optimization have both been thoroughly considered in many
problems. However they have rarely been combined in the same problem, and this research area de-
serves further investigation.

Robustness has been carefully considered in the literature for single-objective optimization; see [4,
16,27]. Topics related to robust optimization, formulations and solution approaches are reviewed in [21].
Because of the multiple and conflicting objectives of real-world problems, it is crucial to deal with
uncertainties in multi-objective optimization problems.

Generally speaking, in multi-objective optimization problems uncertainty is taken into consideration
using various concepts of robustness such as minmax robustness [8], component-wise worst case robust-
ness [12,20], robustness based on set order relations [9], and robustness in an optimization problem such
as a bi-level vector optimization problem [28].

In particular, multi-objective linear programming with uncertainties has been investigated by various
authors using different research viewpoints. Rivaz and Yaghoobi [24] introduced a minmax regret ap-
proach to obtain solutions to a multi-objective linear programming problem with interval uncertainties
in the objective function coefficients. These authors modelled the uncertain coefficients of the problem
using closed intervals. In addition, to take into account all the possibilities for the coefficients of the ob-
jective functions, they presented an approach which consists of using a minmax regret method based on
an assumed reference point given by the decision-maker. Rivaz and Saeidi [23] introduced an interval-
based approach for solving multi-objective linear problems. They proposed an order relation for interval
numbers to deal with the uncertainties that affect the objective coefficients and the constraint parameters.
Goberna et al. [15] investigated a multi-objective linear programming problem with uncertainties in both
the objective functions and the constraints. They introduced a radius concept of robustness for checking
the non-emptiness of the robust feasible set. Their approach involves considering all the possible scenar-
ios across all parameters within the uncertainty set; uncertainty is considered by using ellipsoidal, norm
and box data uncertainty sets, which leads to an optimization problem with second-order constraints.
Georgiev et al. [14] studied robustness in terms of post-optimal analysis instead of looking for a solution
to a multi-objective linear programming problem that remains feasible even if the data for the problem
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vary. The idea presented by the authors is to solve the deterministic problem and explore the conditions
under which its efficient solution remains efficient when the coefficients of the objective functions are
subject to change.

We generally note that, in most research studies that are interested in multi-objective linear optimiza-
tion under uncertainties, the robustness is considered for certain objective functions of the problem or the
constraints. However, uncertainty in both the constraints and all the objective functions simultaneously
has not had enough attention in the research community.

In most of these studies, robustness is introduced using interval-based approaches, minmax regret,
and all possible results from the data. Considering all possible scenarios is obviously expensive in terms
of computation and time, especially with a very large number of scenarios. In other studies, uncertainty
is taken into account by using a norm-based approach, which leads to the loss of linearity of the problem
under study. Taking into account all the scenarios and the loss of linearity of the problem represent
drawbacks that will be avoided in the approach proposed in our paper.

This article attempts to suggest an approach to solve a multi-objective linear programming problem
with uncertainties in the constraints and also in the objective functions. This paper extends the approach
in [7] for single-objective linear programming problems to the multi-objective version of the problem.
Moreover, a scalarization approach is proposed to obtain efficient solutions to the problem with uncer-
tainties. Indeed, instead of looking directly for robust and efficient solutions to a multi-objective linear
programming problem with uncertainties, the core idea is to solve an alternative model that is a deter-
ministic and single-objective problem.

The remainder of this paper is organized as follows. Section 2 introduces the necessary preliminar-
ies. Section 3 discusses the proposed formulation of multi-objective linear programming problems with
uncertainties, and the proposed alternative model. The scalarization approach is demonstrated in Section
4. A numerical example, computational results and comparison with another method are provided in
Section 5. Finally, the paper is concluded in Section 6.

2 Preliminaries

Consider the following multi-objective linear programming problem

min Zk(x) =
m

∑
j=1

ck jx j, k = 1, . . . , p,

s.t.
m

∑
j=1

ai jx j ≤ bi, i = 1, . . . ,n, (1)

x j ≥ 0, j = 1, . . . ,m.

We introduce the order relation used in this paper as defined by Ehrgott [11].

Definition 1. Let v = (v1,v2, . . . ,vp) and u = (u1,u2, . . . ,up) be two vectors in Rp. Then, v � u if vi ≤
ui ∀i ∈ {1,2, . . . , p} and ∃ i0 ∈ {1, . . . , p} such that vi0 < ui0 . In other words, v� u if v is smaller than or
equal to u in every component and strictly smaller in at least one component.

Definition 2. Let v = (v1,v2, . . . ,vp) and u = (u1,u2, . . . ,up) be two vectors in Rp. We write v ≺ u if
vi < ui ∀i ∈ {1,2, . . . , p}, which means v is smaller than u in every component.
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By using such order relations, we can compare the feasible solutions of problem (1) from a multi-
objective point of view. The following definitions describe the characterization of the feasible solutions
that we look for when solving problem (1).

Definition 3. A feasible solution x∗ is a Pareto efficient solution (or simply an efficient solution) to
problem (1) if there is no other feasible solution x such that Z(x)� Z(x∗).

Definition 4. A feasible solution x∗ is called a weakly efficient solution of problem (1) if there is no other
feasible solution x such that Z(x)≺ Z(x∗).

3 Robust multi-objective linear program

Consider the multi-objective linear programming problem (1). Assume that the objective coefficient
ck j and the constraint parameter ai j are affected by data uncertainty. The coefficient ck j,k ∈ K =
{1,2, . . . , p}, j ∈ J = {1,2, . . . ,m} is modelled as a parameter c̃k j that takes values in the interval [ck j−
ĉk j,ck j + ĉk j] where ĉk j is the deviation from the nominal value ck j. Let Jk define the set of coefficients
of the kth objective function that are subject to uncertainty. Thus, Jk = { j ∈ J : ĉk j > 0}. We introduce
an integer parameter ∇k ∈ [0, |Jk|]. This parameter adjusts the robustness of the kth objective. The coef-
ficient ai j, i ∈ I = {1,2, . . . ,n}, j ∈ J = {1,2, . . . ,m} is modelled as a parameter ãi j that takes values in
the interval [ai j− âi j,ai j + âi j], where âi j is the deviation from the nominal value ai j. Let Ii define the set
of parameters of the ith constraint that are subject to uncertainty (we assume that ai j and not bi may be
affected by uncertainty). In other words, Ii = { j ∈ J : âi j > 0}. We introduce another integer parameter
Γi ∈ [0, |Ii|] which adjusts the robustness of the data in the ith constraint.

The proposed extension to a robust multi-objective linear programming problem (RMLP) can be
formulated as follows

Min Z̃k(x) =
m

∑
j=1

ck jx j + max
{Uk:Uk⊂Jk, |Uk|≤∇k}

∑
j∈Uk

ĉk j.x j, k = 1, . . . , p,

s.t.
m

∑
j=1

ai jx j + max
{Si:Si⊂Ii, |Si|≤Γi}

∑
j∈Si

âi j.x j ≤ bi, i = 1, . . . ,n, (2)

x j ≥ 0, j = 1, . . . ,m.

The kth objective function is protected by

βk(x,∇k) = max
{Uk:Uk⊂Jk, |Uk|≤∇k}

∑
j∈Uk

ĉk j.x j.

The ith constraint is protected by

ϕi(x,Γi) = max
{Si:Si⊂Ii, |Si|≤Γi}

∑
j∈Si

âi j.x j.

Note that an efficient solution of problem (2) is called a robust efficient solution. Next, we establish the
following theorem.
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Theorem 1. The robust multi-objective linear programming problem (2) can be equivalently formulated
as the following deterministic multi-objective linear programming problem (3), which is an alternative
model (ARMLP)

min θk(x) =
m

∑
j=1

ck j.x j + ∑
j∈Jk

pk j +∇k.gk, k = 1, . . . , p,

s.t.
m

∑
j=1

ai j.x j + ∑
j∈Ii

ωi j +Γi.ηi ≤ bi, i = 1, . . . ,n,

pk j +gk ≥ ĉk j.x j, j ∈ Jk, k = 1, . . . , p,

ωi j +ηi ≥ âi j.x j, j ∈ Ii, i = 1, . . . ,n,

pk j ≥ 0, j ∈ Jk, k = 1, . . . , p, (3)

ωi j ≥ 0, j ∈ Ii, i = 1, . . . ,n,

gk ≥ 0, k = 1, . . . , p,

ηi ≥ 0, i = 1, . . . ,n,

x j ≥ 0, j = 1, . . . ,m.

Proof. Given a fixed vector x, the protection function of the kth objective function is:

βk(x,∇k) = max
{Uk:Uk⊂Jk, |Uk|≤∇k}

∑
j∈Uk

ĉk j.x j

This is equivalent to the following optimization problem

βk(x,∇k) = max ∑
j∈Jk

ĉk j.x j.tk j,

s.t. ∑
j∈Jk

tk j ≤ ∇k, (4)

tk j ∈ {0,1}, j ∈ Jk,

βk(x,∇k) is equivalent to the selection of a subset Uk ⊂ Jk with a cardinality of at most ∇k, that is, the
selection of no more than ∇k elements with a value of 1, which constitutes the optimum solution for
problem (4).

The dual version of problem (4) is the following problem

βk(x,∇k) = min ∇k.gk + ∑
j∈Jk

pk j,

s.t. pk j +gk ≥ ĉk j.x j, j ∈ Jk, (5)

pk j ≥ 0, j ∈ Jk,

gk ≥ 0.

In the same manner, the protection function of the ith constraint is

ϕi(x,Γi) = max
{Si:Si⊂Ii, |Si|≤Γi}

∑
j∈Si

âi j.x j.



700 A. Abbassi

This is equivalent to the following optimization problem

ϕi(x,Γi) = max ∑
j∈Ii

âi j.x j.νi j,

s.t. ∑
j∈Ii

νi j ≤ Γi, (6)

νi j ∈ {0,1}, j ∈ Ii,

ϕi(x,Γi) consists of the selection of a subset Si ⊂ Ii with a cardinality of at most Γi, that is, the selection
of no more than Γi elements with a value of 1, which constitutes the optimal solution of problem (6).

The dual version of problem (6) is the following problem

ϕi(x,Γi) = min Γi.ηi + ∑
j∈Ii

ωi j,

s.t. ωi j +ηi ≥ âi j.x j, j ∈ Ii, (7)

ωi j ≥ 0, j ∈ Ii.

ηi ≥ 0

As a remark, when ∇k = 0 and Γi = 0 then βk(x,∇k) = 0 and ϕi(x,Γi) = 0. Thus, the problem is
equivalent to the deterministic problem with nominal data (problem (1)).

For all ∇k ∈ [0, |Jk|], problem (4) is bounded and feasible. By strong duality, the dual problem (5)
is also bounded and feasible. Moreover, the objective function values of the primal problem (4) and the
dual problem (5) are equal. Similarly, the primal problem (6) and its dual problem (7) are feasible and
bounded for all Γi ∈ [0, |Ii|], and their objective function values are equal.

Let us return to problem (2). By integrating the new formulations of βk(x,∇k) and ϕi(x,Γi), we
find that problem (2) is equivalent to the optimization problem (3). Next, we propose the following
theorem.

Theorem 2. Any efficient solution of problem (3) is a robust efficient solution of problem (2).

Proof. Let x∗ be an efficient solution of problem (3). In fact, x∗ is a component of a solution (x∗, p∗,g∗)
which efficiently optimizes the objective functions of problem (3).

Suppose x∗ is not an efficient solution of problem (2). Then there exists a feasible point x,x 6= x∗,
such that z̃(x)� z̃(x∗). In other words, ∃k0 ∈ {1, . . . , p} at least, such that z̃k0(x)< z̃k0(x

∗). This means
m

∑
j=1

ck0 j.x j + max
{Uk0 :Uk0⊂Jk0 ,|Uk0 |≤∇k0}

∑
j∈Uk0

ĉk0 j.x j <
m

∑
j=1

ck0 j.x∗j + max
{Uk0 :Uk0⊂Jk0 ,|Uk0 |≤∇k0}

∑
j∈Uk0

ĉk0 j.x∗j ,

which implies
m

∑
j=1

ck0 j.x j +∇k0 .gk0 + ∑
j∈Jk0

pk0 j <
m

∑
j=1

ck0 j.x∗j +∇k0 .g
∗
k0
+ ∑

j∈Jk0

p∗k0 j.

Using the results of the primaldual conversion of problems (4) and (5), we have θk0(x) < θk0(x
∗). This

means that x∗ is not an efficient solution of problem (3), and this is a contradiction.

In the next section, the weighted sum method is used as a scalarization approach to find robust
efficient solutions to the multi-objective linear programming problem with uncertainties.
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4 Weighted sum scalarization

The weighted sum scalarization approach is one of the best-known and most common methods for solv-
ing deterministic multi-objective optimization problems like (1) that is formulated as follows:

min
p

∑
k=1

λk.Zk(x),

s.t.
m

∑
j=1

ai j.x j ≤ bi, i = 1, . . . ,n,

x j ≥ 0, j = 1, . . . ,m,

such that λk ≥ 0 ∀k = 1, . . . , p and ∑
p
k=1 λk = 1. The main advantage of weighted sum scalarization is

that it allows us to find efficient solutions of a multi-objective optimization problem by reducing it to a
single-objective optimization problem. Next, we introduce the weighted sum scalarization formulation
of problem (3) with the objective function ∑

p
k=1 λk.θk(x) as follows:

min ψ(x) =
p

∑
k=1

m

∑
j=1

λk.ck j.x j +
p

∑
k=1

∑
j∈Jk

λk.pk j +
p

∑
k=1

λk.∇k.gk,

s.t. (8)

All the constraints of problem (3)

Theorem 3. If x∗ is a unique optimal solution of problem (8), then x∗ is an efficient solution of problem
(3).

Proof. Let x∗ be a component of the unique optimal solution of problem (8). Suppose that x∗ is not an
efficient solution for problem (3). So, there exists x such that θ(x)� θ(x∗). Then, θk(x)≤ θk(x∗) ∀k =
1, . . . , p and θk0(x)< θk0(x

∗) for an element k0 ∈ {1, . . . , p}, which means ∀k = 1, . . . , p :

m

∑
j=1

ck j.x j + ∑
j∈Jk

pk j +∇k.gk ≤
m

∑
j=1

ck j.x∗j + ∑
j∈Jk

p∗k j +∇k.g∗k

and for an element k0 ∈ {1, . . . , p}

m

∑
j=1

ck0 j.x j + ∑
j∈Jk0

pk0 j +∇k0 .gk0 <
m

∑
j=1

ck0 j.x∗j + ∑
j∈Jk0

p∗k0 j +∇k0 .g
∗
k0
.

We arbitrarily choose λk ≥ 0 such that ∑
p
k=1 λk = 1. Then we have

p

∑
k=1

m

∑
j=1

λkck j.x j +
p

∑
k=1

∑
j∈Jk

λk pk j +
p

∑
k=1

λk∇k.gk ≤
p

∑
k=1

m

∑
j=1

λkck j.x∗j +
p

∑
k=1

∑
j∈Jk

λk p∗k j +
p

∑
k=1

λk∇k.g∗k .

This means that ψ(x)≤ ψ(x∗), and this is in contradiction with the optimality and the uniqueness of the
solution x∗ of problem (8).
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Remark 1. The result of Theorem 3 remains true with λk > 0 strictly positive ∀k = 1, . . . , p such that
∑

p
k=1 λk = 1, even if the uniqueness of the optimal solution is not guaranteed. The proof is similar to the

previous one.

To summarize this section, if (x∗, p∗,g∗) is an optimal solution to problem (8), then x∗ is a robust
efficient solution to problem (2). Indeed, if (x∗, p∗,g∗) is an optimal solution to problem (8), then by
Theorem 1 (x∗, p∗,g∗) is an efficient solution to problem (3). Thus, by Theorem 2, x∗ is an efficient
solution of the robust multi-objective linear programming problem (2), which is the main optimization
problem that we are trying to solve. Overall, to find the robust efficient solutions for a multi-objective
linear programming problem with uncertain data, it is sufficient to solve the deterministic single-objective
problem (8).

The next section provides a numerical example to demonstrate the effectiveness of the proposed
approach.

5 Numerical example

Suppose a company produces five products P1,P2,P3,P4 and P5. The aim is to simultaneously minimize
the total cost and the total time of manufacturing, in order to make a profit that exceeds 5000$. The
profits per unit of P1,P2,P3,P4 and P5 are, respectively, 60$,30$,60$,50$, and 40$.

The manufacturing cost and time of one unit of each product is summarized in Table 1. The company
uses four raw materials M1,M2,M3 and M4 for manufacturing the products. Table 2 summarizes the
number of units of each raw material M j required to manufacture one unit of each product Pi.

Table 1: Manufacturing cost and time for producing one unit of each product.

P1 P2 P3 P4 P5

Manufacturing cost of one unit (in $) 250 200 300 500 300
Manufacturing time of one unit (in min) 100 400 300 100 60

Table 2: Number of units of each raw material used for producing one unit of each product.

M1 M2 M3 M4

One unit of product P1 2 1 1 2
One unit of product P2 1 1 2 3
One unit of product P3 1 2 1 2
One unit of product P4 2 1 3 1
One unit of product P5 2 3 1 1

Furthermore, raw materials M1,M2,M3 and M4 are assumed to be available with limited quantities
of 150,175,201 and 400 units respectively. The aim is to minimize the total cost and the total time of
manufacturing. The formulation of this problem is given as the following deterministic multi-objective
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linear model:

min 250x1 +200x2 +300x3 +500x4 +300x5,

min 100x1 +400x2 +300x3 +100x4 +60x5,

s.t.

2x1 + x2 + x3 +2x4 +2x5 ≤ 150,

x1 + x2 +2x3 + x4 +3x5 ≤ 175,

x1 +2x2 + x3 +3x4 + x5 ≤ 201,

2x1 +3x2 +2x3 + x4 + x5 ≤ 400,

60x1 +30x2 +60x3 +50x4 +40x5 ≥ 5000,

x1,x2,x3,x4,x5 ≥ 0.

Let us assume that the manufacturing cost and time of some products, as well as the quantities of some
raw materials, are uncertain. For instance, let us suppose the costs of producing one unit of products
P3 and P5 are uncertain. Instead of the nominal values for the costs c13 = 300 and c15 = 500, we have
c̃13 ∈ [200,400] and c̃14 ∈ [400,600]. Similarly, the production times of P2 and P3 are assumed to be
uncertain. Instead of the nominal values c22 = 400 min and c24 = 300 min, these values vary in intervals
as follows: c̃22 ∈ [370,430] and c̃23 ∈ [270,330].

For the constraint parameters, it is assumed that, instead of the nominal values a11 = 2,a15 = 2,a23 =
2,a25 = 3,a32 = 2,a41 = 2 and a42 = 3, these parameters are uncertain and vary in intervals as follows:
ã11 ∈ [1,3], ã15 ∈ [1,3], ã23 ∈ [1,3], ã25 ∈ [2,4], ã32 ∈ [1,3], ã41 ∈ [1,3] and ã42 ∈ [1,5].

To obtain a robust efficient solution to the problem with these uncertain data, the mathematical model
in the form of the alternative problem (3) is used. The formulation is given by the following problem

min 250x1 +200x2 +300x3 +500x4 +300x5 + p13 + p14 +∇1.g1,

min 100x1 +400x2 +300x3 +100x4 +60x5 + p22 + p23 +∇2.g2,

s.t.

2x1 + x2 + x3 +2x4 +2x5 +ω11 +ω15 +Γ2.ν2 ≤ 150,

x1 + x2 +2x3 + x4 +3x5 +ω23 +ω25 +Γ1.ν1 ≤ 175,

x1 +2x2 + x3 +3x4 + x5 +ω32 +Γ3.ν3 ≤ 201,

2x1 +3x2 +2x3 + x4 + x5 +ω41 +ω42 +Γ4.ν4 ≤ 400, (9)

60x1 +30x2 +60x3 +50x4 +40x5 ≥ 5000,

pk j +gk ≥ ĉk j.x j, j ∈ Jk,k = 1, . . . , p,

ωi j +νi ≥ âi j.x j, j ∈ Ii, i = 1, . . . ,n,

pk j,gk ≥ 0, j ∈ Jk, k = 1, . . . , p,

ωi j,νi ≥ 0, j ∈ Ii, i = 1, . . . ,n,

x j ≥ 0, j = 1, . . . ,m.

Using the weighted sum scalarization formulation given by problem (8), we can solve the robust multi-
objective programming problem with data uncertainties. Note that the models are implemented in
Cplex12.5 using a Personal Computer core i3, 2.2GHz with 4GB of RAM.
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5.1 Comparison and performance metrics

For comparison, we test by solving the problem in the numerical example using the interval-based ap-
proach IBA proposed in [23]. In summary, the IBA method suggested in [23] consists of solving problem
(1):

min Zk(x) =
m

∑
j=1

ck j.x j, k = 1, . . . , p,

s.t.
m

∑
j=1

ai j.x j ≤ bi, i = 1, . . . ,n,

x j ≥ 0, j = 1, . . . ,m,

such that ck j ∈ [cL
k j,c

R
k j],ai j ∈ [aL

i j,a
R
i j] and bi ∈ [bL

i ,b
R
i ]. Note that when a coefficient is not uncertain, the

left and the right bounds coincide. Then the interval problem is given as

min Z
′
k(x) =

m

∑
j=1

[cL
k j,c

R
k j].x j, k = 1, . . . , p,

s.t.
m

∑
j=1

[aL
i j,a

R
i j].x j ≤ [bL

i ,b
R
i ], i = 1, . . . ,n, (10)

x j ≥ 0, j = 1, . . . ,m.

The authors of [23] supposed that an interval A can be represented by its left and right bounds [AL,AR]
or by its centre point Ac and the half-width length Aw, where

Ac =
AL +AR

2
and Aw =

AR−AL

2
.

They also proposed an order relation between any pair of intervals A and B defined as:
A � B if and only if AR ≤ BR and Ac ≤ Bc, and A < B if and only if A � B and A 6= B. In order to find
robust and efficient solutions, the authors suggested solving the following problem:

min z1(x) =
p

∑
k=1

m

∑
j=1

λk.cR
k j.x j,

min z2(x) =
p

∑
k=1

m

∑
j=1

λk.
cL

k j + cR
k j

2
.x j, (11)

s.t.
m

∑
j=1

(aL
i j +αi.(aR

i j−aL
i j)).x j ≤ bR

i −αi.(bR
i −bL

i ), i = 1, . . . ,n,

x j ≥ 0, j = 1, . . . ,m,

where 0≤ αi ≤ 1, i = 1, . . . ,n. Note that if αi = 0 ∀= 1, . . . ,n then the feasible set of solutions is larger.
The solutions of the previous problem (11) are robust efficient solutions for the multi-objective linear
problem with uncertain data. Indeed, suppose that x∗ = (x∗1,x

∗
2, . . . ,x

∗
n) is an efficient solution of problem

(11) and assume that x∗ is not an efficient solution of problem (10). Therefore, there is some feasible solu-
tion x = (x1,x2, . . . ,xn) to problem (10) such that (Z

′
1(x),Z

′
2(x), . . . ,Z

′
p(x))� (Z

′
1(x
∗),Z

′
2(x
∗), . . . ,Z

′
p(x
∗)),
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which means that: Z
′
k(x)≤ Z

′
k(x
∗) for k = 1, . . . , p and Z

′
k0
(x)< Z

′
k0
(x∗) for some 1≤ k0≤ p. This implies

that
p

∑
k=1

m

∑
j=1

[λk.cL
k j,λk.cR

k j].x j ≤
p

∑
k=1

m

∑
j=1

[λk.cL
k j,λk.cR

k j].x
∗
j

which is a contradiction to the efficiency of x∗ for problem (11) according to the interval order relation.
More details about this solution approach are available in [23].

To test the effectiveness of our approach in finding robust efficient solutions, and to compare it
with the previous IBA method, some performance metrics are used. Performance metrics are a well-
known tool to validate the reliability of a solution approach and to evaluate the accuracy of the solutions
obtained. According to [1], in order to measure the quality of the solutions obtained, comparison metrics
are needed and three aspects are measured: the distribution and position of the solutions with respect to
an ideal point, the closeness of the solutions obtained to a theoretical set of solutions, and the number of
solutions obtained.

The first performance metric is the mean ideal distance Mid. This calculates the mean distance
between the set of efficient solutions and the ideal point, and can be defined as follows:

Mid =
n

∑
i=1

‖ fi− fideal‖
n

,

where fideal = (min f1(x),min f2(x)), fi are the objective function values for each approach, and n is the
number of robust efficient solutions obtained. Note that the approach with a lower value of Mid is more
efficient [2].

The second metric is the inverted generational distance IGD [30], which is the average distance from
each reference point to the nearest obtained solution. When the value of the IGD is small, the good
convergence of solutions and their good distribution can be deduced. This metric can be calculated using
the following expression:

IGD =
1
n
. ∑

p∈P
d(p,X),

where P is the set of efficient solutions of the deterministic problem, X is the set of robust efficient
solutions obtained by the approach, and d(p,X) is the minimum distance between the point p and the set
X . The method is more efficient if the IGD value is lower.

5.2 Computational results

For the deterministic multi-objective linear programming problem, the efficient solutions obtained are
(64,0,18,0,2) , (66,0,18,0,0) and (66,1,17,0,0) with the objective function values (22000,11920),
(21900,12000) and (21800,12100), respectively. These efficient solutions are feasible for the determin-
istic problem with nominal data. However, they are not feasible for the problem with uncertain data,
which means that they are not robust efficient. The following Table 3 provides the objective function
values of the robust efficient solutions found using our approach and the IBA method, in addition to the
performance metrics of each one.
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Table 3: Objective funtions values of robust efficient solutions and performance metrics.

IBA method Our approach
( f1, f2) Mid IGD ( f1, f2) Mid IGD

(35450,18690) 15237 15109 (37850,16600);(31150,17400);(30500,18400) 12801 10706

For the robust multi-objective linear programming problem with uncertainties in both the objective
function coefficients and the constraint parameters, the robust efficient solutions obtained are with the
objective function values (37850,16600), (31150,17400) and (30500,18400), while the IBA approach
provides one robust efficient solution with an objective function value of up to (35450,18690). Note
that these robust efficient solutions obtained by both methods are feasible for each potential value of the
uncertain data. However, we can note that the set of solutions found using the method proposed in this
paper contains more robust efficient solutions than the set using the IBA method. It is interesting for
decision-makers if a method comes up with a finite set of varied solutions from which they can choose
an appropriate compromise solution, rather than a single solution.

We can conclude that, according to the results obtained from our approach and the performance
metrics, the robust efficient solutions obtained for the multi-objective linear programming problem with
uncertainties are various, well positioned in relation to the ideal points and close to the set of efficient
solutions of the deterministic problem of the numerical example.

6 Conclusions

In this paper, a new robust optimization approach is proposed for solving multi-objective linear pro-
gramming problems with uncertainties in both the objective function coefficients and the constraint pa-
rameters. The robust multi-objective problem is converted to an alternative deterministic multi-objective
problem, and then a scalarization approach is applied to obtain an efficient solution that is robust against
data uncertainties. The necessary properties and proofs, as well as a numerical example, are provided
to explain and illustrate the effectiveness of the proposed approach. A comparison to an interval-based
method from the literature is discussed in order to illustrate the principle of each and to introduce some
performance metrics.

Proposing new approaches and addressing large-scale problems with uncertain data and real-life case
studies could be the aim of further research.
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