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Abstract. For an optimal system design (OSD), data envelopment analysis (DEA) treats companies as
black boxes disregarding their internal processes. Considering the effect of these processes into account
companies can upgrade their internal mechanisms of optimal budgeting allocation. The internal pro-
cesses can be defined as series and parallel networks or a combination of them. In the literature, DEA
is utilized as an approach for OSD in order to determine the optimal budget for a company’s activities
in a system of series network production; but it is shown that this model is not suitable for budgeting
parallel systems. To fill this gap, a new model is presented in this paper to evaluate a company’s optimal
budgeting which has a parallel network system. The presented parallel network OSD via DEA models,
allocates the optimal budget to each of the internal processes of the decision-making units (DMU) based
on the efficiency of the parallel internal processes. The model, with a limited budget, also is able to
identify the amount of budget deficit and congestion. In this regard, two real cases are studied using
the suggested model, which is presented in the parallel network OSD via DEA and Forest production
in Taiwan. The optimal budget, budget deficit and congestion, and also the advantages of the proposed
model are discussed in these examples as well.

Keywords: Network data envelopment analysis, budgeting, parallel system, DEA.
AMS Subject Classification 2010: 34A34, 65L05.

1 Introduction

Data envelopment analysis (DEA) treats companies as black boxes; indeed, evaluating the black-box
production processes, allows one to address only a part of the overall inefficiency that is associated with
the production system’s exogenous inputs and final outputs. The reason is that the intermediate measures
connecting the sub-processes are completely disregarded. To fill these gaps, models are presented to
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evaluate a company’s inefficiencies by a network system. The first parallel processes is due to Charnes et
al. [5] and the first comprehensive study on network DEA models is done by Fare and Grosskopf [10] and
Fare and Grosskopf for the first time used the term ”network” DEA model and subsequently improved
by several scholars [11] (See the extensive literature on network DEA published in three review articles
( [6,16,20]). Emrouznejad and Yang, have surveyed and analyzed articles published in DEA applications
from 1978 to 2016 [8]. For several application areas (see, e.g., [1, 11, 12, 22–27, 30]).

The purpose of constructing a network production system has not only addressed the overall inef-
ficiency of a production process but also evaluated the inefficiencies associated with its sub-processes,
being linked through intermediate measures. There are broadly two types of network structures of a
system: series and parallel, along with their hybrid structures, which are represented by either a paral-
lel system of series components or a series system of parallel components [2]. In a series system, the
sub-processes are arranged in a sequence so that the outputs of one sub-process become the inputs of
the next sub-process. However, in a parallel system, all the sub-processes appear in parallel so that each
sub-process operates independently from one other and has no effect on the other ones. As regards the
efficiency evaluation, it should be reminded that the series network structure assumes a priori resource
allocation of a firm to be given, and then evaluates the efficiency of its production process along with
the sub-processes comprising it. In this way, the efficiency of a production process is decomposed into
process-specific efficiencies. This decomposition approach is challenged if the resource allocation of
the series network production process is not optimal. As Zeleny has pointed out, in many practical
application areas, there is a need to design an optimal production process rather than optimizing the
given production system [31]. Following this, Wei and Chang in [28] proposed an optimal system de-
sign (OSD) model for the series network via DEA for a production firm to help designing its optimal
portfolios of inputs and outputs through maximizing its profit, given its total available budget. Besides
determining the optimal budget, their model also helps the firm to identify a situation when budget con-
gestion (an increase in budget yielding lower profits) occurs. Then, Wei and Chang in [29] indicated that
the presented model in [28] was not appropriate for the network OSD via DEA models; since this model
neither yields correct results in deriving the optimal budget nor in verifying budget congestion. In this
regard, Wei and Chang proposed a new method that can help a firm to determine its optimal budget and
identify budget congestion [29]. Also, Fang developed a new approach to derive DMUs corresponding
optimal budgets also; it checks the existence of budget congestion for the OSD series network DEA
models [9]. Note that their proposed method is not applicable to parallel network OSD via DEA models;
since their sub-processes are independent and have no intermediate process.

Several researches have also been conducted to determine the efficiency of parallel and hybrid net-
works. Among these investigations, Gong et al. proposed a new parallel DEA model to determine the
performance of an organization where each input/output of the system is not the total of all its compo-
nents [15]. Such a situation arises from a need for auditing firms or enterprises in Chinese manufacturing
industries. The presented model by Liu et al. [18], makes two main contributions: it advances im-
provements to the methods used in the DEA technique and provides governments with a practical and
easy-to-adopt perspective to aid administrators in the process of decision-making. In their research, Bi
et al. [4], treat the production unit as a black box; given this, it is not clear, how to arrange the production
at the production unit level. Their paper serves to generate resource allocation and target-setting plans
for each production unit by opening the black box. The latter proposed model exploits the production
information of production lines in generating production plans. Finally, the real data of a production
system extracted from extant literature are used to demonstrate the proposed method by Li et al. [17].
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A new model for allocating the optimal budget to a company with a dynamic network system is
presented by Fakharzadeh Jahromi and Mojtabaei [13]. Moreover, Fakharzadeh Jahromi et al. did opti-
mal budgeting by using a generalized optimal system design DEA model [14]. The presented model by
them can meet several secondary goals including optimal budgeting and maximum revenue of the whole
organization when the optimal budget is determined.

A survey of the literature reveals that vast amount of research is carried out on the efficiency of
parallel networks using the DEA technique. There are also numerous studies on optimal budgeting of
the series networks, even though there is no research conducted on their budgeting plans. Considering
the importance of budgeting in such parallel networks developing a model for budgeting via DEA can
be worthwhile. Accordingly, in our contributed paper, we have presented an OSD-DEA model for a firm
in a parallel network system (POSD DEA) so as to determine its optimal budget and identify its budget
congestion. The strengths and weaknesses of our proposed method are then discussed and compared
with those of conventional DEA methods and series DEA methods. The rest of the paper proceeds as
follows: Section 2 presents the parallel network OSD via the DEA model. Section 3 discusses how the
optimal budgeting and budget congestion for DMUs operating in the parallel network production system.
Finally, two real examples are considered to illustrate the applicability of our proposed method in Section
4. Some concluding remarks in Section 5, is ended this research work.

2 Parallel network optimal system design in DEA models

To present our proposed model, let us assume a production system consists of n decision-making units
(DMUs) where each DMU j( j = 1,2, ...,n) with X j = (x1 j,x2 j, ...,xm j)

t input and output
Yj = (y1 j,y2 j, ...,ys j)

t , has a parallel system comprising the number of D j subdecision making units,
denoted by subDMU jd(d = 1,2, ...,D j), which are operated independently. Figure 1 depicts such a case
in which the total inputs consumed and outputs produced of DMU j( j = 1,2, ...,n), are xi j = ∑

D j
d=1 xd

i j

and yr j = ∑
D j
d=1 yd

r j respectively, where Xd
j = (xd

1 j,x
d
2 j, ...,x

d
m j)

t and Y d
j = (yd

1 j,y
d
2 j, ...,y

d
s j)

t represent the
independent input and output of the subDMU jd of DMU j respectively (if the number of inputs or outputs
of the sub-units is not equal, we make them equal by considering the zero component). Without loss of
generality, in the proposed model (PNOSD-DEA), the number of sub-processes related to each DMU j

is considered as D = max{D j, j = 1,2, ...,n}; since, if the number of DMU j sub-processes is less than
D, D−D j number of virtual parallel sub-processes with zero inputs and zero outputs (or it is possible
to have zero weights) are added. Note that the parallel systems do not have intermediate products for
connecting different processes. In such a case, let the vector λ = (λ 1,λ 2, ...,λ D) be nD× 1 dimen-
sion where each vector λ d = (λ d

1 ,λ
d
2 , ...,λ

d
n ) is of dimension n× 1 and matrixes X̂ and Ŷ with m× nD

and s×nD dimensions are the input and output matrixes, respectively such that X̂t = (X t
1,X

t
2, ...,X

t
n) and

Ŷt = (Y t
1 ,Y

t
2 , ...,Y

t
n)(t = 1,2, ...,D). In this regard, the production possibility set is:

T = {(X ,Y )|X ≥ X̂λ ,Y ≤ Ŷ λ ,X ∈ Rm,Y ∈ Rs}, (1)

where it is a semi-positive vector in Rn. By substituting vector quantities (X̂tŶt) we have:

T = {(X ,Y )|X ≥ ∑
n
j=1 ∑

D
d=1 λ d

j Xd
j , Y ≤ ∑

n
j=1 ∑

D
d=1 λ d

j Y d
j ,

X ∈ Rm, Y ∈ Rs, λ d
j ≥ 0, d = 1,2, ...,D, j = 1,2, ...,n}. (2)

Some studies (e.g., [3, 12] investigated that the best possible way for allocating inputs of a DMU j to its different sub−
DMUs, is to optimize the system.
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Figure 1: An example of a parallel system of DMU j.

Let C = (c1,c2, ...,cm)
t > 0 and P = (p1, p2, ..., pm)

t > 0 be, respectively, the unit price vector of inputs
and outputs of DMU j. Also, the vector Cd = (cd

1 ,c
d
2 , ...,c

d
m)(d = 1,2, ...,D) and Pd = (pd

1 , pd
2 , ..., pd

s )
(d = 1,2, ...,D) are the price vector of inputs and the price vector of outputs of sub−DMU j respectively,
such that ∑

D
d=1(C

d)tXd
j = CtX j > 0 and ∑

D
d=1(P

d)tY d
j = PtYj > 0 for j = 1,2, ...,n. According to the

above definitions, if D = 1, the presented OSD-DEA model by Wei and Chang [29] is as following:

f (B) = max ∑
n
j=1 ∑

s
r=1 pryr jλ j

S.t. ∑
n
j=1 λ j ≤ 1;

∑
n
j=1 ∑

m
i=1 cixi jλ j ≤ B;

λ j ≥ 0, j = 1,2, . . . ,n,

(3)

where the DMUs total available budget by B, which is known.

Wei and Chang expanded model (3) to determine optimal budget for firms operating in a series
network system. But this model is, however, not suitable for the firms operating in a parallel network
system [29]. Therefore, we develop the OSD parallel network production model to determine optimal
budgets. Although, many network DEA models are developed in literature to deal with parallel network
systems, such as [21], but no model is provided for a firm in a parallel network system so as to determine
its optimal budget and identify its budget congestion.

Based on model (3) and with regarding the parallel network structure, if the DMU’s total available
budget is known to be B, one can then set up the following parallel network system OSD via DEA model
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by maximizing the revenue:

f (B) = max ∑
n
j=1 ∑

D
d=1 ∑

s
r=1 pd

r yd
r jλ

d
j

S.t. ∑
n
j=1 λ d

j ≤ 1, d = 1,2, ...,D;
∑

n
j=1 ∑

D
d=1 ∑

m
i=1 cd

i xd
i jλ

d
j ≤ B;

λ d
j ≥ 0, j = 1,2, ...,n, d = 1,2, ...,D.

(4)

Since 0≤ eλ ≤ 1 (e = (1,1, ...,1)t), model (4) is NIRS based on [7].

Definition 1. If the optimal solution of (4) is λ ∗, the system associated with optimal design (X̂λ ∗, X̂λ ∗)
given total available budget B is referred to as the optimal system.

3 Determining the optimal budget

In the previous section, the system efficiency was determined by assuming the total available budget
(B) is given. However, in case that the decision-maker wants to determine the optimal budget while
evaluating the system efficiency, it is necessary for him/her to know the way of optimizing values of
revenue and profit. The conventional OSD-DEA model (4) is a parametric linear programming model
taking B as a parameter; thus the solution methods of parametric linear programming can be applied to
determine the optimal budget for the target DMU.

3.1 Validating the optimal budget

Let us denote the objective function of (4) as Z = f (B), interpreted as revenue. Since revenue depends
on the optimal values of the budget, we express Z as a function of B, i.e., Z = f (B). Over the domain,
Ω = {B|B≥ 0,B ∈ R}, f (B) inherits exactly the shape of the production function, as seen from Theorem
1 below.

Theorem 1. Over the domain Ω, f (B) is a monotonically increasing or a constant concave function of
B. Moreover, f (0) = 0.

Proof. It is obvious that f (B) is a monotonically increasing or a constant function and f (0) = 0. The
only concept that to be proved is the concavity of f (B). Consider the dual of model (4) as below:

f (B) = min (uB+∑
D
d=1 vd)

S.t. u(∑m
i=1 cd

i xd
i j)+ vd ≥ ∑

s
r=1 pd

r yd
r j, j = 1,2, ...,n, d = 1,2...,D;

u≥ 0, vd ≥ 0, d = 1,2, ...,D,

(5)

where u ∈ R and vd ∈ R for all d. For any B1 ≥ 0, B2 ≥ 0 and α ∈ [0,1],

f (αB1 +(1−α)B2) = min[u(αB1 +(1−α)B2)+α

D

∑
d=1

vd +(1−α)
D

∑
d=1

vd ]

= min[α(uB1 +
D

∑
d=1

vd)+(1−α)(uB2 +
D

∑
d=1

vd)]

≥min[α(uB1 +
D

∑
d=1

vd)]+min[(1−α)(uB2 +
D

∑
d=1

vd)]

= α f (B1)+(1−α) f (B2).

(6)
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Therefore, the concavity of f (B) is proved.

Definition 2. Suppose B∗ is the optimal solution of (4), then we call B∗∗ = min{B∗} the optimal budget.

3.2 Optimal budget derivation

The following theorems and the lemma are presented to derive the optimal budget. The proofs are similar
to those in [29].

Theorem 2. Assume that max
1≤ j≤n

PtYj = PtYk and B∗ =CtXk. Model (4) is then expressed as:

f (B∗) = max ∑
n
j=1 ∑

D
d=1 ∑

s
r=1 pd

r yd
r jλ

d
j

S. to : ∑
n
j=1 λ d

j ≤ 1, d = 1,2, ...,D;
∑

n
j=1 ∑

D
d=1 ∑

m
i=1 cd

i xd
i jλ

d
j ≤ B∗;

λ d
j ≥ 0, j = 1,2, ...,n, d = 1,2, ...,D.

(7)

Then,
(i) f (B) = f (B∗) for any B≥ B∗;
(ii) f (B)≤ f (B∗) for any 0≤ B≤ B∗.

Proof. The method of parametric linear programming with a parametric right-hand side is utilized here
in order to simplify the proof. Problem (8) which is equivalent to (4) (where B≥ B∗) is considered as:

f (B) = max ∑
n
j=1 ∑

D
d=1 ∑

s
r=1(pd

r yd
r j)λ

d
j +0S1 +0S2 + ...+0SD +0SD+1

S. to : ∑
n
j=1 λ d

j +Sd = 1, d = 1,2, ...,D;
∑

n
j=1 ∑

D
d=1 ∑

m
i=1 cd

i xd
i jλ

d
j +SD+1 = B;

λ d
j ≥ 0, j = 1,2, ...,n, d = 1,2, ...,D, Sd ≥ 0, d = 1,2, ...,D+1.

(8)

Model (8) has n×D variable λ d
j , j = 1,2, ...,n,d = 1,2, ...,D and D+1 slack variable Sd , d = 1,2, ...,D+

1. This model has D+1 constraints in which D is the number of the parallel constraint, and another one
is related to the budget constraint. The initial feasible simplex table of the problem has (n×D)+D+1
variables and D+ 1 constraint. In order to solve (8), the dual to simplex method, is utilized, where
PtYj > 0, j = 1,2, ...,n. In this regard, the number of basic variables in the possible initial solution is
D+1 which are slack variables. Suppose λ d

k is chosen as the entering variable and Sd as the leaving one,
then, by noting that max

1≤ j≤n
PtYj = PtYk and B∗ = CtXk, the inequality PtYj−PtYk ≤ 0, j = 1,2, ...,n will

be obtained, also by paying attention to B≥CtXk = B∗, the optimal solution of problem (8) will be

λ
d
k = 1, Sd = 0, d = 1,2, ..,D,

SD+1 = B−B∗ = B−CtXk,

λ
d
j = 0, j 6= k, d = 1,2, ...,D.

(9)

Hence,

f (B) = max
n

∑
j=1

D

∑
d=1

s

∑
r=1

(pd
r yd

r j)λ
d
j =

D

∑
d=1

s

∑
r=1

(pd
r yd

rk)

=
D

∑
d=1

(Pd)tY d
k = PtYk = f (B∗);

(10)
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i.e., (i) will be true. On the other hand, if B≥ B∗, then f (B)≥ f (B∗) (according to Theorem 1); i.e., (ii)
will be true.

Theorem 3. If K = {k| max
1≤ j≤n

PtYj = PtYk} and B≥ B∗, then the set of optimal solutions for model (4) will

be λ ∗ = {λ d
k |k ∈ K, ∑k∈K λ d

k = 1, λ d
k ≥ 0, d = 1,2, ...,D}, and B∗ = ∑k∈K ∑

D
d=1 ∑

m
i=1 cd

i xd
ikλ d

k .

Proof. For B ≥ B∗, the equation f (B) = f (B∗) holds according to Theorem 2. It is clear that λ ∗ is a
feasible solution of (4), also with regarding the constraints of (4), for j /∈ K, λ d

j = 0. For all k ∈ K,
∑

D
d=1 ∑

s
r=1(pd

r yd
rk) = f (B∗) and ∑k∈K λ d

k = 1, also max
1≤ j≤n

PtYj = PtYk(k ∈ K), then

∑
n
j=1 ∑

D
d=1 ∑

s
r=1(pd

r yd
r j)λ

d
j ≤ ∑k∈K λ d

k (∑
D
d=1 ∑

s
r=1(pd

r yd
rk)). (11)

Consequently
f (B) = max∑

n
j=1 ∑

D
d=1 ∑

s
r=1(pd

r yd
r j)λ

d
j = f (B∗). (12)

According to the constraints of problem (4), it is clear that B∗ = ∑k∈K ∑
D
d=1 ∑

m
i=1 cd

i xd
ikλ d

k .

Theorem 4. If K = {k| max
1≤ j≤n

PtYj = PtYk} and min
k∈K

CtXk =CtXk0∈K , then B∗∗ =CtXk0∈K (note that B∗∗ is

the optimal budget).

Proof. Since, B∗∗ = min{B∗| f (B) = f (B∗)} and according to Theorem 3, B∗ = ∑k∈K ∑
D
d=1(C

d)tXd
k λ d

k ,
therefore

B∗∗ = min{∑
k∈K

D

∑
d=1

(Cd)tXd
k λ

d
k |∑

k∈K
λ

d
k = 1,λ d

k ≥ 0,d = 1,2, ...,D}.

= min
k∈K

D

∑
d=1

(Cd)tXd
k

=
D

∑
d=1

(Cd)tXd
k0 =CtXk0∈K = B∗∗.

(13)

According to the Definition 2 which presents the definition of the optimal budget, B∗∗ will be the precise
amount of the optimal budget.

3.3 Budget inefficiency of resulted from congestion

In the preceding discussions, the budget constraint ∑
n
j=1 ∑

D
d=1(C

d)tXd
j λ d

j ≤ B was made by the suggested
POSD-DEA models. If the condition ∑

n
j=1 ∑

D
d=1(C

d)tXd
j λ d

j = B is considered, it means that the budget
B has to be used in full. In this regard, the following linear programming problem is obtained:

f̂ (B) = max ∑
n
j=1 ∑

D
d=1 ∑

s
r=1 pd

r yd
r jλ

d
j

S. to : ∑
n
j=1 λ d

j ≤ 1, d = 1,2, ...,D;
∑

n
j=1 ∑

D
d=1 ∑

m
i=1 cd

i xd
i jλ

d
j = B;

λ d
j ≥ 0, j = 1,2, ...,n, d = 1,2, ...,D.

(14)

Suppose that λ is the optimal solution to (4) and there is a possible solution for (14) with B ≥ 0.
Also a possible scenario in which B∗ = ∑

n
j=1 ∑

D
d=1(C

d)tXd
j λ

d
j < B is considered. Then, f̂ (B) ≤ f (B),
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i.e., the amount of the optimal objective function of (14) is lower than that of (4). This phenomenon
which seems not to be natural is actually deduced from congestion which means that when the condition
B∗ = ∑

n
j=1 ∑

D
d=1(C

d)tXd
j λ

d
j < B holds, congestion will happen. This fact is demonstrated in Theorem 5:

Theorem 5. If the optimal solution of problem (4) is denoted by λ and B∗ = ∑
n
j=1 ∑

D
d=1(C

d)tXd
j λ

d
j < B,

then f̂ (B)≤ f (B) = f (B∗).

Proof. f̂ (B) ≤ f (B) because {λ |∑n
j=1 ∑

D
d=1(C

d)tXd
j λ d

j = B} ⊂ {λ |∑n
j=1 ∑

D
d=1(C

d)tXd
j λ d

j ≤ B}. More-
over, from Theorem 2, f (B) = f (B∗). Therefore, f̂ (B)≤ f (B) = f (B∗).

4 Empirical illustration

In this section, two real numerical examples from [20] and [19] are taken to illustrate the applica-
bility of both the conventional OSD model (3) and OSD parallel network DEA model (4). To execute the
computations, we have used Lingo 11 software on a PC with Intel Core i5−7200U CPU, 12GB RAM,
and a double precision format.

4.1 Example 1

Table 1 exhibits the data set for a parallel system comprising five DMUs with each having three processes.
For the computation of optimal budgets in both models, we have assumed the unit price vectors for inputs
and outputs as Ct = (1,1,1,1) and Pt = (1,1,1,1), respectively, and the total available budget (B) as 60.
The OSD model (3) is solved to compute the conventional budgets, and Table 3 exhibits the results
where one finds three DMUs E, C, and D exhibiting the optimal budgets. The optimal budgeting results
based on the OSD parallel network DEA model (4) are presented in Table 2 where one finds no DMUs
exhibiting optimal budget. However, it can still rank from best to worst, as can be seen by the first
(λ 3

4 ,λ
1
5 ,λ

2
5 ), second (λ 2

2 ,λ
1
3 ,λ

3
5 ) and third (λ 2

3 ,λ
3
3 ,λ

1
4 ) rows of Table 4. The three inefficient processes

(the first process of DMU A, the third process of DMU B, and the second process of DMU D) identified
by the parallel network model (4) are still evaluated as the worst by the conventional model (3). Indeed,
Table 4 presents the comparative results of optimal budgeting by the parallel and conventional models.

We now present below a list of advantages of the parallel network budgeting model over its conven-
tional counterpart:

1. The most important advantage lies in its ability to distribute the available budget at the DMU
levels.

2. As can be observed from Table 4, in the parallel network DEA model, in the first budget allocation,
only the first and second processes of DMU E are prioritized, and instead of allocating the budget
to its third process, it is allocated to the third process of DMU D. In the conventional model,
however, the full budget is allocated to the whole DMU E itself (with regarding its processes).

3. In the parallel network model, in the case of a budget deficit, it is quite possible to select the most
efficient processes, which is, however, not possible in the conventional model. This can be easily
verified from the example of the budget allocation of DMU E. With the optimal budget of 12,
unlike in the case of the conventional model where the full budget is allocated to the DMU E itself,
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Table 1: Data for the parallel system [20].
Process 1 Process 2 Process 3

DMU X1
1 Y 1

1 X2
1 X2

2 Y 2
1 Y 2

2 X3
1 Y 3

1
A 3 2 1 2 2 3 2 2
B 2 3 1 4 2 4 2 1
C 4 3 3 2 2 4 3 2
D 3 3 3 3 3 2 3 3
E 3 4 4 3 4 3 2 3

in the parallel network model, however, the budget is allocated to the first and the second processes
of DMU E and the third process of DMU D. This example reveals the priority of budget allocation
of DMU E by shifting the budget from its third process to the third process of DMU D.

4. When the DMU’s internal processes are more detailed, the parallel network model becomes more
important and efficient by the ability to distribute the limited available budgets effectively among
various processes of the DMUs.

5. While the parallel network model enables one to identify various processes of the DMUs that are
not profitable, the conventional model is unable to do so and declares rather the whole DMU as
unprofitable. Table 5 exhibits such comparative optimal budgeting results in which one finds that
the first three priorities are profitable and are, hence, chosen for budget allocation; in this manner,
no budget is allocated to the fourth and fifth priorities as they are incurring losses.

6. Contrary to the previous situation, due to the structure of the conventional model (which not con-
siders the sub-processes) no budget is allocated to a DMU which is not profitable. The parallel
network model, however, properly identifies the unprofitable sub-processes of the above DMU and
then, allocates budgets to other sub-processes which are more efficient in comparison with those
of other DMUs.

4.2 Example 2 (Forest production in Taiwan)

For better efficiency, some organizations allocate their production to several independent units and forest
production is one of them in the nation of Taiwan. In this regard, geographical separation is very impor-
tant. Taiwan is an island with a 36000 sq. km area, half of that is covered by forest. This forestland is
divided into eight districts, and each is further divided into four or five sub-districts called Working Cir-
cles (WCs). Altogether, there are 34 WCs in this country, which are the basic unit in forest management.
The forest production system, indeed, is a common parallel production system kind, where each district
consists of several subordinate divisions that work independently. In organizational terms, each district
is an independent unit whereas each WC is not, since it has no administrator. Rather, Taiwan Forestry
Bureau (which presides over Taiwan’s national forests) is interested in the efficiency of all districts in the
efficiency of subordinated WCs as well. The administrator of each distinct can reallocate the resources to
working circles for improving productivity. The parallel network model developed by Kao [19] discusses
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Table 2: The optimal budgeting results with OSD parallel network DEA model.
Row λ ∗ f (B) B∗∗ B−B∗∗

1 λ 3
4 , λ 1

5 , λ 2
5 14 13 47

2 λ 2
2 , λ 1

3 , λ 3
5 12 11 36

3 λ 2
3 , λ 3

3 , λ 1
4 11 11 25

4 λ 2
1 ,λ

3
1 ,λ

1
2 10 7 18

5 λ 1
1 ,λ

3
2 ,λ

2
4 8 10 8

Table 3: The optimal budgeting results with conventional OSD DEA model
Row λ ∗ DMU f (B) B∗∗ B−B∗∗

1 λ5 DMU5 14 12 48
2 λ3 DMU3 11 12 36
3 λ4 DMU4 11 12 24
4 λ1 DMU1 10 9 15
5 λ2 DMU2 10 9 6

Table 4: Comparing results on optimal budgeting.
Parallel network with B = 60 Conventional model with B = 60

ROW Solution f (B) B∗∗ B−B∗∗ Solution f (B) B∗∗ B−B∗∗

1 λ 3
4 ,λ

1
5 ,λ

2
5 14 13 47 λ5 14 12 48

2 λ 2
2 ,λ

1
3 ,λ

3
5 12 11 36 λ3 11 12 36

3 λ 2
3 ,λ

3
3 ,λ

1
4 11 11 25 λ4 11 12 24

4 λ 2
1 ,λ

3
1 ,λ

1
2 10 7 18 λ1 10 9 15

5 λ 1
1 ,λ

3
2 ,λ

2
4 8 10 8 λ2 10 9 6

55 52 56 54

Table 5: Comparing results on optimal budgeting based on Profit.
Parallel network with B = 60 Conventional model with B = 60

ROW Solution f (B) B∗∗ B−B∗∗ Solution f (B) B∗∗ B−B∗∗

1 λ 2
1 , λ 1

5 , λ 3
5 4 8 52 λ5 2 12 48

2 λ 1
2 , λ 9

2 2 7 45 λ1 1 8 40
3 λ 2

3 1 5 40 λ2 1 9 31
7 20 40 4 29 31

efficiency determination without considering the allocated budget; however, no model has yet been of-
fered for the determination of parallel network budgets. In this paper, the parallel DEA model (4) is used
to measure the optimal budget both for the eight forest districts and the 34 WCs. Tables 6 and 7 display
the input and output data of Taiwan forests taken from [19] respectively; the mentioned four inputs are
as follow:

• Land: area in thousand hectares;
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• Labor: number of employees in person;

• Expenditures: money spent each year in ten thousand New Taiwan dollars (1000 NTD' 30 USD);

• Initial stocks: volume of forest stock before the period of evaluation in 10,000 m3.

The considered outputs of the model are also as follows:

• Timber production: timber harvested each year in cubic meters;

• Soil conservation: volume of forest stock in 10,000 m3, as higher stock level leads to less soil
erosion;

• Recreation: visitors serviced by forests every year in thousands of visits.

For each input/output, the amount of a district is the sum of its subordinated WCs. For the computation
of optimal budgets in both models, we have assumed the unit price vectors for inputs and outputs as
Cd = (1,1,1,1) and Pd = (1,1,1,1),(d = 1,2,3,4,5) respectively, and the total available budget (B)
as 50000. The OSD model (3) is solved to compute the conventional budgets, and Table 8 section (a)
exhibits such results where three DMUs 2, 4, and 7 are found to exhibit the optimal budgets. The results
of optimal budgeting based on the OSD parallel network DEA model (4) are indicated in section (b) of
Table 8. The first row indicates the priority in optimal budgeting distribution in which the WCs 9, 16,
24, 27, and 5 should get the optimal budget as predicted. Then these WCs are omitted and the amount
of budget is reduced to 43780.21 and again model (4) is applied to get the second-row results. In this
regard, we had done 8 iterations to reach the final results. The amounts in the last row of the Table 8 show
the total revenue, the consumed optimal budget, and the remaining budget respectively in each section.
Table 8 also displays the results of comparing the parallel network budgeting model and the conventional
model. The following presents the advantages of the results of the parallel network budgeting model:

1. As can be observed from Table 8, in the parallel network DEA model, in the first apportioning,
the budget is allocated to working circles Ho-ping, Ta-hu, Pu-li, Chao-chou, and Kuan-shan from
forest districts of Lotung , Hsinchu, Nantou, Pingtung, and Taitung in the mentioned respective
order. The requisite optimal budget is 33786.04 which has a revenue of 33786.4. However, in the
conventional model, Hsinchu District is entirely selected in the priority, which by allocating the
optimal budget of 3939 has a revenue portion of 19736. As is revealed from the results indicated
in Table 8, using a parallel network model which considers the budget effect within the network
causes the budget to be allocated exclusively to the working circles with higher efficiencies; while
in the conventional model, the budget is allocated to the entirety of a district.

2. In the parallel network model, in case of a budget deficit, the facility of selecting more efficient
processes is provided, whereas it is not provided in the conventional model. This is readily con-
firmed by the example of allocating 33786.04 to working circles Ho-ping, Ta-hu, Pu-li, Chao-chou,
and Kuan-shan from forest districts of Lotung , Hsinchu, Nantou , Pingtung, and Taitung in the
first priority. This is totally unlike the conventional model which has allocated the entire budget to
the first order, Hsinchu districts.
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Table 6: Input data of Taiwan forests.
Labor(1000ha) Inputs

land labor Expenditures Initialstocks
(person) (10000NT ) (10000m3)

Lotung Distric 175.73 248.33 1581.60 1604.38
1 Taipei 18.23 45.33 608.32 125.46
2 Tai-ping-shan 55.49 98.00 336.33 584.85
3 Chao-chi 31.44 51.00 263.99 147.76
4 Nan-au 28.94 27.33 166.78 263.02
5 Ho-ping 41.63 26.67 206.18 483.29
Hsinchu District 162.81 316.67 850.05 2609.79
6 Guay-shan 41.48 86.33 158.49 386.03
7 Ta-chi 29.72 58.00 260.02 638.87
8 Chu-tung 59.28 77.67 220.97 1218.07
9 Ta-hu 32.33 94.67 210.57 366.82
Tungshi District 138.42 310.34 864.42 2348.03
10 Shan-chi 10.40 50.67 218.55 103.86
11 An-ma-shan 33.64 111.33 153.07 731.43
12 Li-yang 38.01 97.67 272.32 421.41
13 Li-shan 56.37 50.67 220.48 1091.33
Nantou District 211.82 287.32 1835.20 2352.10
14 Tai-chung 10.57 64.33 319.51 39.12
15 Tan-ta 52.69 49.00 340.54 688.60
16 Pu-li 77.22 68.33 652.53 966.44
17 Shui-li 54.29 59.33 348.33 602.24
18 Chu-shan 17.05 46.33 174.29 55.70
Chiayi District 139.65 203.00 215.77 1316.48
19 A-li-shan 42.81 69.33 62.51 527.44
20 Fan-chi-hu 19.28 35.33 54.71 96.00
21 Ta-pu 32.86 44.67 60.41 196.30
22 Tai-nan 44.70 53.67 38.14 496.74
Pingtung District 196.06 250.33 1230.56 1588.02
23 Chih-shan 35.64 61.33 37.92 150.90
24 Chao-chou 70.19 62.00 188.12 624.80
25 Liu-guay 70.96 55.67 461.42 722.46
26 Heng-chun 19.27 71.33 543.10 89.86
Taitung District 226.54 141.67 755.20 2679.98
27 Kuan-shan 113.42 54.67 272.35 1607.90
28 Chi-ben 44.54 41.00 184.65 552.13
29 Ta-wu 44.03 20.33 100.70 394.03
30 Chan-kong 24.55 25.67 197.50 125.92
Hualien District 320.43 284.00 1092.92 401.21
31 Shin-chan 85.95 64.00 314.71 1074.86
32 Nan-hua 51.60 76.00 228.40 886.07
33 Wan-yong 59.53 74.00 282.01 829.11
34 Yu-li 123.35 70.00 267.80 1611.17
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Table 7: Output data of Taiwan forests.
Labor(1000ha) Outputs

Timer Soidcons Recreation
(m3) (10000m3) (1000vis)

Lotung Distric 746.04 1604.01 207.59
1 Taipei 19.59 125.46 0.00
2 Tai-ping-shan 17.70 584.85 207.59
3 Chao-chi 0.00 147.39 0.00
4 Nan-au 38.00 263.02 0.00
5 Ho-ping 670.75 483.29 0.00
Hsinchu District 16823.42 2603.99 308.97
6 Guay-shan 26.37 386.03 114.16
7 Ta-chi 42.53 638.87 181.01
8 Chu-tung 1350.65 1214.48 13.80
9 Ta-hu 15403.87 364.61 0.00
Tungshi District 4778.32 2819.48 264.92
10 Shan-chi 2842.34 165.63 0.00
11 An-ma-shan 0.00 728.19 38.98
12 Li-yang 1935.98 558.17 111.26
13 Li-shan 0.00 1367.49 114.68
Nantou District 11429.54 2343.86 0.00
14 Tai-chung 3330.16 39.12 0.00
15 Tan-ta 1242.50 688.60 0.00
16 Pu-li 4134.43 966.44 0.00
17 Shui-li 2574.87 602.24 0.00
18 Chu-shan 147.58 47.46 0.00
Chiayi District 1086.00 1330.10 845.05
19 A-li-shan 0.00 527.40 845.05
20 Fan-chi-hu 1086.00 95.97 0.00
21 Ta-pu 0.00 195.85 0.00
22 Tai-nan 0.00 510.88 0.00
Pingtung District 7236.45 1588.02 939.69
23 Chih-shan 1405.76 150.90 0.00
24 Chao-chou 1802.85 624.80 0.00
25 Liu-guay 4027.84 722.46 8.08
26 Heng-chun 0.00 89.86 931.61
Taitung District 8086.47 2679.98 161.38
27 Kuan-shan 7669.57 1607.90 57.87
28 Chi-ben 416.90 552.13 103.51
29 Ta-wu 0.00 394.03 0.00
30 Chan-kong 0.00 125.92 0.00
Hualien District 2263.01 4410.58 53.19
31 Shin-chan 17.77 1085.88 0.00
32 Nan-hua 110.28 882.20 16.50
33 Wan-yong 339.91 819.16 0.00
34 Yu-li 1795.05 1623.34 36.69
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Table 8: Optimal budgeting results with OSD parallel and conventional DEA model.
(a) Parallel model B = 50000

ROW Solution WCs f (B) B∗∗ B−B∗∗

1 λ 1
7 ,λ

2
6 ,λ

3
4 ,λ

4
2 ,λ

5
1 λ27,λ24,λ16,λ9,λ5 33786.04 33786.04 43780.21

2 λ 1
4 ,λ

2
4 ,λ

3
6 ,λ

4
8 ,λ

5
4 λ14,λ15,λ25,λ34,λ18 13708.6 5241.03 38539.18

3 λ 1
3 ,λ

2
5 ,λ

3
3 ,λ

4
4 λ10,λ20,λ12,λ17 9972.49 2481.92 36057.26

4 λ 1
6 ,λ

2
7 ,λ

3
2 ,λ

4
3 λ23,λ28,λ8,λ13 6690.64 4103.16 31954.1

5 λ 1
5 ,λ

2
8 ,λ

3
8 ,λ

4
6 λ19,λ32,λ33,λ26 4561.52 3912.28 28041.82

6 λ 1
8 ,λ

2
2 ,λ

3
7 ,λ

4
5 λ31,λ7,λ29,λ22 2871.32 3718.95 24322.87

7 λ 1
2 ,λ

2
1 ,λ

3
5 ,λ

4
1 λ6,λ2,λ21,λ4 1834.01 2566.98 21755.89

8 λ 1
1 ,λ

2
3 ,λ

3
1 ,λ

4
7 λ1,λ11,λ3,λ30 1185.48 2694.3 19061.59

...... ..... 74610.1 30938.41 1961.59

(b) Conventional model B =50000.
ROW Solution f (B) B∗∗ B−B∗∗

1 λ2 19736 3939 46061
2 λ4 13773 4686 41375
3 λ7 10928 3803 37572
4 λ3 9764 3265 34307
5 λ6 9764 3265 31042
6 λ8 6727 2099 28943
7 λ5 3261 1875 27068
8 λ1 2558 3610 23458

..... 76511 26542 23458

5 Concluding remarks

The optimal budgeting models for series networks cannot work effectively for parallel networks which
are independent of one another and whose internal mechanisms are essentially different and no model is
provided for a firm in a parallel network system to determine its optimal budget and identify its budget
congestion. Therefore, in this paper, a new model for optimal budgeting of the parallel networks is pre-
sented utilizing the implications of data envelopment analysis. In addition, to provide optimal budgeting
within the network, this model can determine both the budget deficit and the budget waste. Two real
examples from [20] and Taiwan forests are also presented to illustrate the applicability of the model and
its advantages are also discussed in comparison with the conventional model. Developing a new model
whose goal is to evaluate the optimal budgets in dynamic systems, can be considered as future research.
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