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Abstract. This article considers a particular type of fuzzy multi-choice linear programming (FMCLP)
model in which there are several choices for the fuzzy parameters on the right-hand side (RHS) of prob-
lem constraints. We first construct the fuzzy polynomials to solve this model using the fuzzy multi-choice
parameters on the RHS of constraints. We construct the fuzzy polynomials by approximating fuzzy func-
tions, including the binary variable approach, Lagrange, and Newton’s interpolating polynomials. Also,
we use the least squares approach to construct the approximating fuzzy polynomial. Then we solve the
resulting model. Finally, we will examine the above techniques in numerical examples.

Keywords: Fuzzy multi-choice linear programming model, fuzzy binary variable approach, fuzzy interpolation
polynomials, fuzzy least squares method.
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1 Introduction

Linear programming (LP) problem is a system process of finding a maximum or minimum value of a
function which needs to be optimized subject to a set of different constraints. It is helpful in developing
and solving a decision making problem by mathematical techniques.

An LP problem in deterministic state is defined as follows [32]

min/max
n

∑
j=1

c jt j

s.t.
n

∑
j=1

ai jt j ≤ bi, i = 1,2, . . . ,m,

t j ≥ 0, j = 1,2, . . . ,n.
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The parameters we use in the LP problem may be multi-choice, meaning that there are several choices
for the desired parameter. This LP problem is called the multi-choice LP (MCLP) problem [10, 11, 17,
18, 28, 31].

The multi-choice programming (MCP) problems were first introduced, belonging to the class of
combinational programming problems in which only one option is selected from a set of parameters to
optimize the objective function. In [18, 28], the authors have devised a mathematical model in which
they use binary variables to solve the problem of MCLP. Chang [11, 26] presented a solution to the
problems of multi-choice goal programming (MCGP) problems. In another article by Chang [12], multi-
choice constraints are replaced by a continuous function for various multi-choice parameters. In [10],
the interpolating polynomials were used to solve the MCLP; the authors converted the MCLP into a non-
linear programming problem by replacing the multi-choice parameters with interpolating polynomials.

Fuzzy MCLP (FMCLP) is an MCLP in which some parameters, or all of them also decision variables,
can be fuzzy numbers. Fuzzy MCGP, fuzzy multi-objective programming problem, multi-choice random
transportation problem, multi-choice transportation problem with multi-choice cost and demand and
random supply, multi-choice multi-objective transportation problem, and fuzzy MCLP in a fuzzy random
hybrid uncertainty case have been studied by researchers [2, 4, 6, 11, 13, 15, 19, 21, 23–25, 29, 30, 35].

Here, we investigate the fuzzy MCLP in which the parameters on the RHS of constraints are fuzzy
numbers. Without loss of generality, we investigate the triangular fuzzy numbers. In [27], FMCLP with
some fuzzy parameters has been solved. At first, the fuzzy numbers are converted to crisp numbers using
the ranking functions. Then the crisp MCLP, using the Lagrange polynomial, is converted to a nonlinear
programming model. We intend to use fuzzy approximating functions in solving FMCLP. An important
class of approximating functions is polynomials [5]; as polynomials are computationally simple. There
are many types of fuzzy approximating polynomials. In our work, we use the approximating polynomials
based on a binary variable approach [9], an interpolation-based including NDD, NBD, and NFD methods
[3, 16]. Also, we apply the least-squares method. Our method converts the FMCLP to a classical fuzzy
programming problem by approximating the fuzzy multi-choice parameters on the RHS of constraints
with a fuzzy approximate function. Then we use the mathematical software to solve the obtained fuzzy
linear programming problrm [35].

The remainder of the article includes the following subjects. In Section 2, the form of FMCLP that
we consider, and its solution methods are proposed. In Section 3, we present the contents of solving
FMCLP using fuzzy linear least squares method. In Section 4, examples, including two FMCLP, are
solved using the proposed method. Finally, the conclusion is given.

2 FMCLP and its solution methods

In problems caused by real phenomena, we often encounter fuzzy data and problems. Fuzzy program-
ming problems occur in many practical cases, [7], and they have different types. If all the problem’s
variables and their parameters are fuzzy, it is called a fully fuzzy problem [14], which is not discussed
here. The FMCLP is a fuzzy programming problem where its parameters may be multi-choice. In
this paper, we examine FMCLP, in which only the multi-choice parameters on the RHS of the problem
constraints are fuzzy numbers.
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We consider FMCLP as follows

max y =
n

∑
j=1

c jt j

s.t.
n

∑
j=1

ai jt j ≤
{

b̃(0)i , b̃(1)i , . . . , b̃(ni−1)
i

}
, i = 1, . . . ,m,

t j ≥ 0, j = 1,2, . . . ,n,

(1)

where b̃(k)i =
(

l(k)i ,m(k)
i ,r(k)i

)
, i = 1,2, . . . ,m, k = 0,1, . . . ,ni−1 are triangular fuzzy numbers. To solve

problem (1), we make a fuzzy approximating polynomial, p̃, based on the multi-choice data associated
with the i-th constraint in model (1). In this way, FMCLP is transformed into a fuzzy LP problem as
follows

max y =
n

∑
j=1

c jt j,

s.t.
n

∑
j=1

ai jt j ≤ p̃(i)(z), i = 1, . . . ,m,

t j ≥ 0, j = 1,2, . . . ,n.

(2)

To make p̃(i)(z), we use different type of the approximating methods that are proposed in the next sub-
sections.

2.1 Solving FMCLP using binary method

Using the mathematical model provided by Chang in which binary polynomials are defined according
to the number of multi-choice parameters [8, 9]; for fuzzy mode we also need the same polynomials.
The only difference between this case and the crisp case is that the polynomial’s coefficients are fuzzy
triangles numbers so the resulting binary polynomial is a fuzzy polynomial. In this method, the RHS of
constraints in (1) is replaced with a continuous, binary fuzzy function. The RHS of the i-th constraint
has ni number of known fuzzy parameters where only one of them should be selected. The model is
transformed into an equivalent model that can be solved by standard mathematical programming tools.
We investigate the cases of ni = 2mi and ni 6= 2mi , where ni = 1,2,3,4. We will check some of the modes
of this issue.

Case 1: ni = 2.
In this case, we have two known parameters, b̃(0)i and b̃(1)i , where we select one of them. Since the total
number of parameters is 2, we need only one binary variable z(1). By using z(1), the following model is
obtained [9]

max y =
n

∑
j=1

c jt j,

s.t.
n

∑
j=1

ai jt j ≤ z(1)b̃(0)i +
(

1− z(1)
)

b̃(1)i , i = 1,2, . . . ,m,

t j ≥ 0, j = 1,2, . . . ,n,
z(1) = 0,1.
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Case 2: ni = 3.
By selecting ni = 3, we have three known parameters, b̃(0)i , b̃(1)i and b̃(2)i , where one of them is selected.
Since the number of elements of the set is three and 21 < 3 < 22, only two binary variables z(1), and z(2),
are needed. We consider three as

(2
2

)
+
(2

1

)
or
(2

1

)
+
(2

0

)
. Then we introduce an additional constraint in

the model so we can obtain two following different models [9]

Model 1:

max y =
n

∑
j=1

c jt j,

s.t.
n

∑
j=1

ai jt j ≤
(

1− z(1)
)(

1− z(2)
)

b̃(0)i +
(

1− z(1)
)

z(2)b̃(1)i + z(1)
(

1− z(2)
)

b̃(2)i , i = 1,2, . . . ,m,

t j ≥ 0, j = 1,2, . . . ,n,
z(1)+ z(2) ≤ 1,
z(1),z(2) = 0,1.

Model 2:

max y =
n

∑
j=1

c jt j,

s.t.
n

∑
j=1

ai jt j ≤
(

1− z(1)
)

z(2)b̃(0)i +
(

1− z(2)
)

z(1)b̃(1)i + z(1)z(2)b̃(2)i , i = 1,2, . . . ,m,

t j ≥ 0, j = 1,2, . . . ,n,
z(1)+ z(2) ≥ 1,
z(1),z(2) = 0,1.

Case 3: ni = 22.
In this case, one of the four known parameters, b̃(k)i , k = 0,1,2,3, is considered. The total number of
choices is 22, so two binary variables, z(1) and z(2)are needed. Using them, we can obtain the following
model [9]:

max y =
m

∑
j=1

c jt j,

s.t.
n

∑
j=1

ai jt j ≤ z(1)z(2)b̃(0)i +
(

1− z(1)
)

z(2)b(1)i +
(

1− z(2)
)

z(1)b̃(2)i

+
(
1+ z(1)

)(
1− z(2)

)
b̃(3)i , i = 1,2, . . . ,m,

t j ≥ 0, j = 1,2, . . . ,m
z(1),z(2) = 0,1.

The procedure for ni = 5,6,7, . . . ,16 is similar to the above cases. More details on these cases for
deterministic case have been represented in [8, 9].

2.2 Solving FMCLP using fuzzy interpolation method

For solving FMCLP (1) by interpolation approach, we consider ni disjoint numbers 0,1, . . . ,ni− 1 as
node points where b̃(0)i , b̃(1)i , . . . , b̃(ni−1)

i , are the associate fuzzy values of the data points. So, we have the



Fuzzy approximating functions to solve FMCLP 653

following points {(
0, ũ0 = b̃(0)i

)
,
(

1, ũ1 = b̃(1)i

)
, . . . ,

(
ni−1, ũni−1 = b̃(ni−1)

i

)}
, (3)

where, b̃(k)i =
(

l(k)i ,m(k)
i ,r(k)i

)
, i = 1,2, . . . ,m, k = 0,1, . . . ,ni−1. We make the interpolating polynomial

p̃(i)(z) = (li (z) ,mi (z) ,ri (z)), i = 1,2, . . . ,m, such that p̃(i) (k) = b̃(k)i , i = 1,2, . . . ,m, k = 0,1, . . . ,ni−1.
In this way, problem (1) converts to

max y =
n

∑
j=1

c jt j,

s.t.
n

∑
j=1

ai jt j ≤ p̃(i)(z), i = 1,2, . . . ,m,

z = 0,1, . . . ,ni−1, i = 1,2, . . . ,m,
t j ≥ 0, j = 1,2, . . . ,n.

The fuzzy interpolating polynomial p̃(i)(z) is formulated by several methods below.

2.2.1 Fuzzy Lagrange polynomial

The fuzzy Lagrange polynomial for the support points in (3) is defined as follow [20, 22]:

p̃(i)(z) = (li (z) ,mi (z) ,ri (z)) =
ni−1

∑
k=0

Lk (z) ũk =
ni−1

∑
k=0

Lk (z)(l
(k)
i ,m(k)

i ,r(k)i )

= ∑
Lk(z)≥0

(Lk (z)l
(k)
i ,Lk (z)m(k)

i ,Lk (z)r(k)i )+ ∑
Lk(z)<0

(Lk (z)r
(k)
i ,Lk (z)m(k)

i ,Lk (z) l(k)i ),

where Lk (z) =
ni−1

∏
k=0
k 6=i

z− k
i− k

, i = 1, . . . ,m are basic functions, and

li (z) = ∑
Lk(z)≥0

Li (z)l
(k)
i + ∑

Lk(z)<0
Lk (z)r

(k)
i ,

mi (z) =
ni−1

∑
k=0

Lk (z)m(k)
i ,

ri (z) = ∑
Lk(z)≥0

Lk (z)r
(k)
i + ∑

Lk(z)<0
Lk (z)l

(k)
i .

2.2.2 Fuzzy Newton’s interpolating polynomial

Consider (k, ũk), k = 0, . . . ,ni− 1, where ũk is a fuzzy number. If we want to get the fuzzy Newton’s
interpolating polynomials for this data, we need the difference between two fuzzy numbers as follows.

Definition 1. [34] Let ã = (a1,a2,a3) and b̃ = (b1,b2,b3) be two triangular fuzzy numbers. Then the
difference between them is defined as follows ã− b̃ = (a1−b3,a2−b2,a3−b1) .



654 Z. Arami, M. Arabameri, H. Mishmast Nehi

The problem is that the difference between two fuzzy numbers changes the interpolation data, to
solve this obstacle, we use the Hukuhara difference.

Definition 2. (Hukuhara difference [33]). Suppose ã = (a1,a2,a3), b̃ = (b1,b2,b3) are triangular fuzzy
numbers. The Hukuhara difference b̃, ã, b̃�H ã , is defined as b̃�H ã= c̃⇒ b̃= ã⊕ c̃, where c̃=(c1,c2,c3)
is triangular fuzzy number and we have

(b1,b2,b3) = (a1 + c1,a2 + c2,a3 + c3)⇒ c̃ = (b1−a1,b2−a2,b3−a3) .

However, the Hukuhara difference between two fuzzy numbers will not necessarily be a fuzzy number.
For example, consider ã = (15,19,22) , b̃ = (17,18,20), then b̃�H ã = (2,1,−2) , is not a fuzzy number.
We use the generalized Hukuhara difference to solve this issue.

Definition 3. (Generalized Hukuhara difference). The generalized Hukuhara difference between b̃ =
(b1,b2,b3), ã = (a1,a2,a3) is denoted by b̃�GH ã and defined as follows [33]:

b̃�GH ã = c̃⇒


b̃ = ã⊕ c̃,
or
ã = b̃⊕ (−c̃) .

In other words,

(b1,b2,b3)− (a1,a2,a3) = (c1,c2,c3) ⇒


c̃ = (b1−a1,b2−a2,b3−a3) ,
or
(b3−a3,b2−a2,b1−a1) ,

⇒ c̃ = (min{b1−a1,b3−a3} ,b2−a2,max{b3−a3,b1−a1}) .

In some cases, using the generalized Hukuhara difference does not solve the above mentioned issue. For
example, consider two fuzzy numbers ã = (15,19,20) , b̃ = (17,18,20), then

c̃ = b̃�GH ã = (min{17−15,20−20 } ,18−19,max{17−15,20−20 }) = (2,−1,2) .

It is evident c̃ is not a fuzzy number. In these cases, the generalized fuzzy number is used.

Definition 4. (Generalized fuzzy number). The fuzzy number ã = (m,α,β )LR is called a generalized
fuzzy number (GLR-fuzzy number) if it has one of the following forms [14]

I. if α < 0,β > 0⇒ ã= (m,0,max{−α,β} )GLR,
II. if α > 0,β < 0⇒ ã = (m,max{α,−β} ,0)GLR,
III. if α < 0,β < 0⇒ ã= (m,−β ,−α)GLR,
IV. if α > 0,β > 0⇒ ã = (m,α,β )GLR.

Using Definition 3, for two fuzzy numbers ã=(15,19,20), b̃=(17,18,20), where c̃= b̃�GH ã=(2,−1,2)
is not a fuzzy number, using Definition 4 we can write c̃ = (2,−1,2) = (−1− (−3) ,−1,−1+3), i.e.

α =−3,β = 3⇒ Ã= (m,0,max{−α,β} )GLR = (−1,0,3)GLR= (−1,−1,2)GLR.

Therefore, based on the above, we use the generalized Hukuhara difference to obtain the difference of
two fuzzy numbers. If the obtained number is not a fuzzy number, we use the generalized fuzzy numbers
definition.
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Now, we can obtain fuzzy Newton’s interpolating polynomial. The fuzzy NDD interpolating poly-
nomial is defined as follows

p̃(z) = ũ0 + zũ [0,1]+ z(z−1) ũ [0,1,2]+ · · ·+ z(z−1) . . .(z−ni +2) ũ [0,1, , . . . ,ni−1] ,

where

ũ [0,1] = ũ1− ũ0 = b̃(1)i − b̃(0)i ,

ũ [0,1,2] =
ũ [1,2]− ũ [0,1]

2
,

...

ũ [0,1, . . . , j] =
ũ [1,2, . . . , j]− ũ [0,1, . . . , j−1]

j
.

Because the nodes in (3) are arranged with equal spacing h = 1, the fuzzy NFD interpolating polynomial
is formulated as follows:

p̃(z) = ũ0 + z∆ũ0 +
(z)(z−1)

2!
∆

2ũ0 + · · ·+
(z)(z−1) . . .(z−ni +2)

(ni−1)!
∆

ni−1ũ0,

where for k = 0,1, . . . ,ni−2, we have

∆ũk = ũk+1− ũk,

∆
2ũk = ∆ũk+1−∆ũk,

...

∆
pũk = ∆

p−1ũk+1−∆
p−1ũk.

Because the nodes in (3) are arranged with equal spacing h = 1, the fuzzy NBD interpolating polynomial
is formulated as follows:

p̃(z) = ũni−1 + z∇ũni−1 +
(z)(z+1)

2!
∇

2ũni−1 + · · ·+
(z)(z+1) . . .(z+ni−2)

(ni−1)!
∇

ni ũni−1,

where for k = 1, . . . ,ni−1, we have

∇ũk = ũk− ũk−1,

∇
2ũk = ∇ũk−∇ũk−1,

...

∇
pũk = ∇

p−1ũk−∇
p−1ũk−1.

Now, in problem (1), we approximate the RHS of the problem constraints using fuzzy Newton’s interpo-
lating polynomial. In this way, problem (1) is converted to (2). This problem is a fuzzy LP in the RHS
we have a fuzzy polynomial with integer variables. We solve this problem according to the degree of
necessity that the decision maker determines.



656 Z. Arami, M. Arabameri, H. Mishmast Nehi

3 Solving FMCLP using fuzzy linear least squares method

Consider the fuzzy function ũ(z) in the points 0,1, . . . ,ni− 1. The goal is to find the fuzzy linear least
squares method so that the sum of the squares of the vertical distance (k, ũk), k = 0, . . . .,ni− 1 of the
points of line p̃(z) = ã0 + ã1z is the minimum value, where ã0, and ã1 are the triangular fuzzy numbers
are as follows: ã0 = (a1

0,a
2
0,a

3
0), ã1 = (a1

1,a
2
1,a

3
1), ũk = (u1

k ,u
2
k ,u

3
k) and p̃ is a triangular fuzzy linear

polynomial.
If we denote the fuzzy least-squares error by Ẽ, then

Ẽ =
ni−1

∑
k=0

(ũk− ã0− ã1zk)
2 =

ni−1

∑
k=0

(ũk− ã0− ã1k)2.

For being Ẽ minimum, it is necessary and sufficient that its fuzzy derivatives respect to ã0 and ã1 is equal
to zero, in which case the following conditions are obtained:

ã0(
ni−1

∑
k=0

k)+ ã1(
ni−1

∑
k=0

k2) =
ni−1

∑
k=0

kũk,

ã0 (ni)+ ã1(
ni−1

∑
k=0

k) =
ni−1

∑
k=0

ũk.

In other words 
(a1

0,a
2
0,a

3
0) (

ni−1

∑
k=0

k)+(a1
1,a

2
1,a

3
1)(

ni−1

∑
k=0

k2) =
ni−1

∑
k=0

k(u1
k ,u

2
k ,u

3
k),

(a1
0,a

2
0,a

3
0)(ni)+(a1

1,a
2
1,a

3
1)

(
ni−1

∑
k=0

k

)
=

ni−1

∑
k=0

(
u1

k ,u
2
k ,u

3
k
)
.

(4)

By comparing the two sides of (4), the following system is obtained:

a1
0

(
ni−1

∑
k=0

k

)
+a1

1

(
ni−1

∑
k=0

k2

)
=

ni−1

∑
k=0

ku1
k ,

a2
0

(
ni−1

∑
k=0

k

)
+a2

1

(
ni−1

∑
k=0

k2

)
=

ni−1

∑
k=0

ku2
k ,

a3
0

(
ni−1

∑
k=0

k

)
+a3

1

(
ni−1

∑
k=0

k2

)
=

ni−1

∑
k=0

ku3
k ,

a1
0ni +a1

1

(
ni−1

∑
k=0

k

)
=

ni−1

∑
k=0

u1
k ,

a2
0ni +a2

1

(
ni−1

∑
k=0

k

)
=

ni−1

∑
k=0

u2
k ,a

3
0ni +a3

1

(
ni−1

∑
k=0

k

)
=

ni−1

∑
k=0

u3
k .

(5)
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The unknown values a1
0,a

2
0,a

3
0, a1

1,a
2
1, and a3

1 will be obtained by solving system (5). In this case, we get
the line p̃ as p̃(z) = (l (z) ,m(z) ,r(z)) = (a1

0 +a1
1z,a2

0 +a2
1z,a3

0 +a3
1z).

4 Numerical examples

In this section, two FMCLPs are considered to investigate the efficiency of the presented approach. As
we said earlier, we consider FMCLPs in which there are several choices for the fuzzy parameters on
the RHS of problem constraints. We first construct the fuzzy polynomials to solve this model using the
fuzzy multi-choice parameters on the RHS of constraints. Then we solve the resulting fuzzy model by
Lingo with the degree of necessity of 0.8. The polynomials we used are constructed based on the binary
variable approach, Lagrange, NDD, NBD, and NFD interpolating polynomials and linear least squares
approach.

Example 1. Consider the following FMCLP

min
7

∑
j=1

c jt j

s.t. t1 + t4 + t5 + t6 + t7 ≥ {(13,14,16)(12,16,17)(15,17,20)} ,
t1 + t2 + t5 + t6 + t7 ≥ {(10,12,15) ,(12,13,14)} ,
t1 + t2 + t3 + t6 + t7 ≥ {(12,14,15) ,(13,15,18)(16,17,18) ,(17,19,21)} ,
t1 + t2 + t3 + t4 + t7 ≥ {(13,15,18) ,(14,16,18) ,(16,18,20) ,(17,19,21) ,(20,21,22)} ,
t1 + t2 + t3 + t4 + t5 ≥ {(12,14,15)} ,
t2 + t3 + t4 + t5 + t6 ≥ {(14,15,16) ,(15,17,20)} ,
t3 + t4 + t5 + t6 + t7 ≥ {(10,11,12) ,(12,14,15)(13,15,16)} ,
t j = 1,2, . . .n, j = 1,2, . . . ,7.

The mathematical model based on the binary polynomials is defined as follows

min
7

∑
j=1

c jt j,

s.t t1 + t4 + t5 + t6 + t7 ≥
(
13−14z(1)z(2)+2z(1)− z(2),14−19z(1)z(2)+3z(1)

+2z(2),16−21z(1)z(2)+4z(1)+ z(2)
)
,

t1 + t2 + t5 + t6 + t7 ≥ (12−2z(3),13− z(3),14+ z(3)),
t1 + t2 + t3 + t4 + t7 ≥

(
−4z(5)− z(4)+17,z(4)z(5)−4z(5)−3z(4)+19,−3z(5)−3z(4)+21

)
,

t1 + t2 + t3 + t4 + t7 ≥ (13z(6)+14z(7)+16z(8)−10z(6)z(7)−29z(6)z(8)

−13z(7)z(8)+6z(6)z(7)z(8),
15z(6)+16z(7)+18z(8)−12z(6)z(7)−33z(6)z(8)

−13z(7)z(8)+9z(6)z(7)z(8),
18z(6)+18z(7)+20z(8)−15z(6)z(7)−38z(6)z(8)

−16z(7)z(8)+9z(6)z(7)z(8)),
t1 + t2 + t3 + t4 + t5 ≥ (12,14,15),
t2 + t3 + t4 + t5 + t6 ≥

(
15− z(9),17−2z(9),20−4z(9)

)
,

t3 + t4 + t5 + t6 + t7 ≥ (10+3z(10)+2z(11)−15z(10)z(11),12+4z(10)+3z(11)−19z(10)z(11)),

z(1)+z(2) ≤ 1, z(6)+ z(7)+ z(8) ≥ 1, z(6)+ z(7)+ z(8) ≤ 2
z(6)+ z(8) ≤ 1, z(10)+ z(11) ≤ 1,z(1), z(2), z(3),z(4),z(5),z(6),z(7),z(8),z(9),z(10),z(11) = 0,1.
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The mathematical model based on the Lagrange polynomials is defined as follows

min
7

∑
j=1

c jt j,

s.t. t1 + t4 + t5 + t6 + t7 ≥ (13−3z1 +2z2
1,14+2.5z1−0.5z2

1,16+ z2
1)

t1 + t2 + t5 + t6 + t7 ≥ (10− z2,12+ z2,15− z2),
t1 + t2 + t3 + t6 + t7 ≥

(
12−4.3z3 +5.5z2

3 +1.7z3
3,14+0.17z3 + z2

3
−0.17z3

3,15−6.5z3−4.5z2
3 + z3

3

)
,

t1 + t2 + t3 + t4 + t7 ≥ (13−2.17z4 +3.79z2
4−1.5z3

4 +0.21z4
4,15

−1.17z4 +3.3z2
4−2.3z3

4 +0.18z4
4,18−3z4 +5.8z2

4
−1.5z3

4−0.16z4
4),

t1 + t2 + t3 + t4 + t5 ≥ (12,14,15),
t2 + t3 + t4 + t5 + t6 ≥ (14+ z6,15+2z6,16+4z6),
t3 + t4 + t5 + t6 + t7 ≥ (10+2.5z7−0.5z2

7,11+4z7− z2
7,12+4z7− z2

7),
z1= 0,1,2,z2= 0,1,z3= 0,1,2,3,z4= 0,1,2,3,4,z6= 0,1, z7= 0,1,2.

By using fuzzy NDD interpolating polynomial, we obtain the following model

min
7

∑
j=1

c jt j,

s.t. t1 + t4 + t5 + t6 + t7 ≥ (13−0.5z1−0.5z2
1,14+2.5z1−0.5z2

1,16+ z1 + z2
1),

t1 + t2 + t5 + t6 + t7 ≥ (10+2z2,12+ z2,15− z2),
t1 + t2 + t3 + t6 + t7 ≥

(
12+1.16z3−0.16z3

3,14+0.16z3 + z2
3−0.16z3

3,15
+2.83z3 +0.16z3

3−2.5z3
3

)
,

t1 + t2 + t3 + t4 + t7 ≥ (13−2.5z4 +3.83z2
4−1.5z3

4 +0.16z4
4,15−1.16z4

+3.33z2
4−1.33z3

4 +0.16z4
4,18−1.916z4 +4.291z2

4
−1.583z3

4 +0.208z4
4),

t1 + t2 + t3 + t4 + t5 ≥ (12,14,15),
t2 + t3 + t4 + t5 + t6 ≥ (14+ z6,15+2z6,16+4z6) ,
t3 + t4 + t5 + t6 + t7 ≥ (10+3z7− z2

7,11+4z7− z2
7,12+3.5z7−0.5z2

7),
z1 = 0,1,2, z2 = 0,1, z3 = 0,1,2,3,
z4 = 0,1,2,3,4, z6 = 0,1, z7 = 0,1,2.

Also, by using the fuzzy linear least squares method, we obtain the following model

min
7

∑
j=1

c jt j

s.t. t1 + t4 + t5 + t6 + t7 ≥ (12.33+ z1,14.16+1.5z1,17.33+ z1),
t1 + t2 + t5 + t6 + t7 ≥ (10+2z2,12+ z2,15− z2),
t1 + t2 + t3 + t6 + t7 ≥ (11.8+1.8z3,13.7+1.7z3,15.3+1.8z3) ,
t1 + t2 + t3 + t4 + t7 ≥ (12.6+1.7z4,14.8+1.5z4,17.6+1.1z4),
t1 + t2 + t3 + t4 + t5 ≥ (12,14,15)
t2 + t3 + t4 + t5 + t6 ≥ (14+ z6,15+2z6,16+4z6),
t3 + t4 + t5 + t6 + t7 ≥ (9.16+2.5z7,11.33+2z7,12.33+2z7),
z1= 0,1,2, z2= 0,1, z3= 0,1,2,3,
z4= 0,1,2,3,4, z6= 0,1, z7= 0,1,2.
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Table 1 shows the solution of Example 1 by the binary method. Also, the results of interpolation and
least squares methods are shown in Table 2.

Table 1: Solution of Example 1 by the binary method.

Method y t1 t2 t3 t4 t5 t6 t7 z(1) z(2) z(3) z(4) z(5) z(6) z(7) z(8) z(9) z(10) z(11)

Fuzzy
binary 22 5 5 1 6 0 4 1 0 0 0 1 1 0 1 0 1 0 0

polynomial

Table 2: Solution of Example 1 by the interpolation and least square schemes.

Method y t1 t2 t3 t4 t5 t6 t7 z1 z2 z3 z4 z6 z7
Fuzzy Lagrange 21 2 7 0 6 0 3 3 2 1 0 0 0 0

interpolating
Fuzzy Newton 22 3 4 2 6 0 4 3 0 1 0 0 0 0
interpolating
polynomial

Fuzzy linear least 22 4 2 0 7 0 4 2 0 1 0 0 0 0
square method

Since the problem is a minimization problem, from Tables 1, and 2, we can conclude that the solution
obtained in all methods are consistent.

Example 2. Consider the following FMCLP [1]

max y = 15t1 +16t2 +17t3 +12t4,
s.t. 10t1 +11t2 +12t3 +15t4 ≤ {(270,271,280) ,(410,411,425) ,(570,573,578)} ,

14t1 +18t2 +17t3 +14t4 ≤ {(380,385,390) ,(535,539,540)} .
(6)

To solve this model, we first make the fuzzy approximating polynomial based on the RHS of the con-
straints and then solve the resulting model.

The mathematical model based on the binary polynomials is defined as follows

max 15t1 +16t2 +17t3 +12t4,
s.t. 10t1 +11t2 +12t3 +15t4 ≤ (270+300z(1),+140z(2)−710z(1)z(2),271+302z(1),

+140z(2)−713z(1)z(2),280+298z(1),+140z(2)−718z1z2)

14t1 +18t2 +17t3 +14t4 ≤ (535−155z(3),539−154z(3),540+150z(3)),
z1 + z2 ≤ 1, z(1),z(2),z(3) = 0,1.

By using introduced fuzzy Lagrange interpolating polynomials, model (6) is converted to the following
model

max 15t1 +16t2 +17t3 +12t4,
s.t. 10t1 +11t2 +12t3 +15t4 ≤ (10z1

2 +130z+270,11z1
2 +129z1 +271,9z1

2 +131z1 +280),
14t1 +18t2 +17t3 +14t4 ≤ (155z2 +380,154z2 +385,150z2 +390),
t j ≥ 0, j = 1,2,3,4,
z1 = 0,1,2, z2 = 0,1.
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By using fuzzy NDD interpolating polynomial, we obtain the following model

max 15t1 +16t2 +17t3 +12t4,
s.t. 10t1 +11t2 +12t3 +15t4 ≤ (270+133.5z1 +6.5z2

1,271+129z1 +11z2
1,280+133z1 +11z2

1),
14t1 +18t2 +17t3 +14t4 ≤ (155z2 +380,154z2 +385,150z2 +390),
z1 = 0,1,2, z2 = 0,1.

Also, by using fuzzy linear least squares method, we obtain the following model

max y = 15t1 +16t2 +17t3 +12t4,
s.t. 10t1 +11t2 +12t3 +15t4 ≤ (150z1 +266.6,151z1 +277.3,149z1 +277),

14t1 +18t2 +17t3 +14t4 ≤ (155z2 +380,154z2 +385,150z2 +390),
t j ≥ 0, j = 1,2,3,4,
z1 = 0,1,2, z2 = 0,1.

Tables 3, and 4 show the solution of Example 2 by different methods.

Table 3: Solution of Example 2 by the binary method.

Method y t1 t2 t3 t4 z(1) z(2) z(3)

Fuzzy binary polynomial 578.55 38.57 0 0 0 0 1 0

Table 4: Solution of Example 2 by the interpolation and least squares schemes.

Method y t1 t2 t3 t4 z1 z2
Fuzzy Lagrange interpolating 512.7 34.18 0 0 0 2 1

polynomial
Fuzzy Newton interpolating polynomial 577.5 38.5 0 0 0 1 1

Fuzzy linear least-squares 578.35 38.55 0 0 0 1 1

Since the problem is a maximization problem, Tables 3, and 4 show that the objective values obtained
from the least-squares and binary methods are almost the same and better than the other method.

5 Conclusions

In this paper, first we introduced the MCLP problems, in which there are several choices for the parame-
ter on the RHS of the constraints. To solve these models, we replaced a multi-choice fuzzy parameter in
the RHS of the constraints with a fuzzy polynomial. This polynomial is made by different approaches,
including the binary variable approach, Lagrange, Newton interpolating polynomials, and the linear
least-squares method. Then, we solved the resulting model with the degree of necessity 0.8 by Lingo
software. By comparing the obtained solutions, we observed that the solution obtained in all methods
are consistent. The Lagrange form of the fuzzy interpolating polynomial is not very convenient com-
putationally. Instead, the Newton form of the interpolating polynomials is characterized by a cheaper
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computational cost. Also, using the fuzzy Newton interpolating polynomials increases the flexibility of
the solution method, and if there is a change in the number of choices, for example some choices are
added or deleted, the previous problem can be easily re-solved with a little change, and this is very ef-
fective in reducing computational costs. The fuzzy linear least squares method is easier to use than the
fuzzy interpolation polynomials, but it ignores some choices, while in the interpolation, all the choices
are taken into account. Using the fuzzy binary polynomial also takes into account all the choices, but
using of these polynomials has many complexities and it is difficult to express and analyze the results
using it.

This article examined the FMCLP problems in which only the RHS of the constraints is multi-choice
fuzzy parameters. We intend to consider a case that all the problem variables and their coefficients are
fuzzy numbers, and the RHS of the constraints are fuzzy multi-choice parameters for future research.
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