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Abstract. This article aims at proposing and developing a three-component mathematical model for
susceptible, infected and recovered (SIR) population, under the control of vaccination of the suscepti-
ble population and drug therapy (antivirus) of the infected population (patient) in case of an infectious
disease. The infectious disease under study can be transmitted through direct contact with an infected
person (horizontal transmission) and from parent to child (vertical transmission). We investigate the ba-
sic reproduction number of the mathematical model, the existence and local asymptotic stability of both
the disease free and endemic equilibrium. Using Pontryagin’s minimum principle, we investigate the
conditions of reducing the susceptible and infected population and increasing the recovered population
based on the use of these two controllers in society. A numerical simulation of the optimal control prob-
lem shows, using both controllers is much more effective and leads to a rapid increase in the recovered
population and prevents the disease from spreading and becoming an epidemic in the society.
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1 Introduction

Generally, human diseases are divided into two categories: Infectious diseases and Non-infectious dis-
eases. Nowadays, the spread of infectious diseases in different parts of the world is considered as one
of the main concerns of global health. Infectious diseases ignore geographical and political boundaries
and are a global threat that puts every nation and individual at risk and is one of the main causes of death
worldwide, especially in developing countries. Infectious diseases are among the health problems that
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are transmitted from one infected individual to another and they put a part or the whole body under their
negative influence by disrupting its functions. The methods of transmission of infectious diseases are as
follows:

(i) Horizontal transmission: Transmission of the disease through direct contact with an infected per-
son, for example, by physical contact and inhalation or ingestion of infectious materials such as
Covid-19, flu, etc.

(ii) Vertical transmission: Transmission of infection or other diseases from parents to children (trans-
mission of infection from mother to fetus during the pre-partum, intra-partum, or post-partum
periods) such as AIDS, hepatitis B, and hepatitis C.

The following items can be mentioned for preventing the incidence and controlling infectious diseases
in society:

(a) Eradicating the reservoir of the disease.

(b) Cutting the transmission lines off.

(c) Protecting the susceptible individuals.

In addition, new vaccines and new treatment technologies, as well as infrastructure improvements can
help overcome the combat against infectious diseases.

Expressing disease behaviors through mathematical models is a tool for studying and investigating
ways to control and prevent the spread of disease in society. Mathematical models are the most impor-
tant tools in analyzing the spread of infectious diseases. The main reason for studying the mathematical
modeling of disease transmission is to understand the transmission mechanism and the need for more ef-
fective control strategies. We can have a better and more comprehensible picture of the transmission and
incidence of the disease in society and evaluate and investigate the effects of different control strategies
by means of a good mathematical model. Recently, mathematical models of infectious diseases have
attracted the attention of many researchers [4, 8, 9, 16–18, 20–24].

The optimal control theory is another branch of mathematics that is widely used to study and control
the incidence of infectious diseases and is a powerful tool for decision-making in complex biological
situations [5]. One of the methods of controlling infectious diseases that can protect society against these
diseases is vaccination of the susceptible population [2,3,5,6,14,15,25]. Historically, vaccines have been
very useful in preventing the diseases or death of millions of people. Also, (anti-viruses) drug therapy is
another developed control method that can prevent the incidence of disease in society. However, it is not
applicable to all viruses including HIV/AIDS, hepatitis B, hepatitis C, and influenza.

In this article, we divided the population into three separate categories:
(a) The population susceptible to infectious diseases.

(b) The infected population to infectious diseases.

(c) The population recovered from infectious disease.

Accordingly, we propose and develop a three-component mathematical model [6], including susceptible,
infected and recovered (SIR) population, to investigate and control infectious disease. This infectious
disease is transmitted in horizontal and vertical ways in society and can be controlled by vaccination and
drug therapy (antivirus). The vaccination of the susceptible population will reduce the horizontal trans-
mission of the disease and drug therapy of the infected population will reduce the vertical transmission
in society.
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The article includes the following sections. In Section 2 , we will introduce the (SIR) mathematical
model for the transmission of the infectious disease. In Section 3, we will examine the equilibrium points
and base reproduction rate as well as local asymptotic stability. In Section 4, the optimal control problem
will be defined and studied. In Section 5, we will show the numerical results with a numerical example.
We conclude the paper in Section 6.

2 Mathematical model of infectious disease transmission

In this section, we propose and develop an (SIR) model with vaccine and antiviral drug. In this model,
the population N(t) is divided into three sub-populations: the susceptible (S(t)), infected (I(t)), recov-
ered (R(t)). Thus, N(t) = S(t)+ I(t)+R(t). In this model, the infectious disease under study can be
transmitted through direct contact with an infected person (horizontal transmission) and from parents to
child, transmission of infection from mother to fetus during the prepartum, intrapartum or postpartum
periods (vertical transmission). Thus, the (SIR) model describing the infectious disease transmission
dynamics is given by the following system differential equations:

Ṡ(t) = Λ− pΛI−qΛR−ϕS−ρSI−mu1S+θR,
İ(t) = ρSI + pΛI− (ϕ +ϕ1)I−ξ I−nu2I,
Ṙ(t) = qΛR+mu1S+nu2I−ϕR−θR+ξ I,

(1)

S(0)> 0, I(0)> 0, R(0)> 0.

In these equations, all parameters are nonnegative, and their definitions are given in Table 1.

Lemma 1. The solutions of system (1) are bounded.

Proof. Since N(t) = S(t)+ I(t)+R(t), we have

Ṅ(t) = Ṡ(t)+ İ(t)+ Ṙ(t) = Λ−ϕN−ϕ1I 6 Λ−ϕN(t).

Now integrating both sides of the above inequality and using the theory of differential inequality due
to [7], we get

0 6 N(t)6
ϕ

Λ
+N0e−Λt ,

where N0 is the initial value of the total population system (1). Now by taking t −→+∞, we have

0 6 N(t)6
ϕ

Λ
.

Therefore, every solution of model (1) initiating in R3
+0 are confined in the region

Y = {(S, I,R) ∈ R3
+0| 0 6 S(t)+ I(t)+R(t)6

ϕ

Λ
}

for all t > 0.

The region Y is a positive invariant set, thus it is sufficient to focus our attention only in this region
as the model is epidemiologically and mathematically well posed in the sense of [12].
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3 Analysis of the system

Throughout this section, we assume that the control parameters are constant.

3.1 Basic reproduction number and equilibria

For epidemic models, the basic reproduction number R0, is the expected number of secondary cases
produced, in a completely susceptible population, by a typical infective individual. According to the
notation in [10], we have

R0 =
ρΛ(θ +ϕ−qΛ)

ϕ(θ +ϕ +mu1−qΛ)(ϕ +ϕ1 +ξ +nu2− pΛ)
.

By simple calculation, it’s easy to see that system (1) has two equilibria

(i) The disease-free equilibria (DFE), is given as follows:

P f = (S f , I f ,E f ) = (
Λ(−qΛ+ϕ +θ)

ϕ(−qΛ+ϕ +θ +mu1)
,0,

mu1S f

−qΛ+ϕ +θ
),

and it exists if θ > qΛ.

(ii) The endemic equilibrium (EE) is Pe = (Se, Ie,Re), where

Se =
ϕ +ϕ1 +ξ +nu2− pΛ

ρ
,

Ie =
Λβ (θ +ϕ−qΛ)−ϕ(θ +ϕ +mu1−qΛ)(ϕ +ϕ1 +ξ +nu2− pΛ)

ρ[(ϕ +ϕ1)(θ +ϕ−qΛ)+ϕ(nu2 +ξ )]
,

Re =
mu1Se

θ +ϕ−qΛ
+

(nu2 +ξ )Ie

θ +ϕ−qΛ
.

So, Pe = (Se, Ie,Re) exists if R0 > 1.

According to Figure 1, the following can be stated.

(a) If there is no control in society, (u1 = 0 , u2 = 0), then R0 > 1. That is, the disease has turned into
an epidemic and some control measures should be taken to prevent the spread and epidemic of it.

(b) If we only use drug to control the spread of the disease (controlling only the infected population),
(u1 = 0 , u2 6= 0), then R0 will significantly decrease but still R0 > 1. That is, the disease has
become endemic in society.

(c) If we only use vaccination to control the spread of the disease (vaccination of the susceptible
population of society), (u1 6= 0 , u2 = 0), then the basic reproduction rate will become downward
and the control of susceptible population will lead to R0 < 1. That is, the disease will disappear
and will not spread in society. Therefore, the presence of control in society will reduce to R0.

(d) If we use both vaccination control and drug therapy to control the spread of the disease, (u1 6=
0 , u2 6= 0), then the basic reproduction rate will become downward and the control of susceptible
and infected populations will lead to R0 < 1. That is, the disease will disappear and will not spread
in society.

Therefore, it is concluded that the simultaneous application of two controllers, vaccination and drug
therapy, in society will cause a rapid and large reduction of R0.
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Figure 1: The behavior of R0 both with control and without control

3.2 Stability of equilibria

In this section, we discuss the local stability of equilibria whose existence have been stated in the previous
analysis. The following lemma is used to demonstrate the local stability of equilibria.

Lemma 2. (Lemma 3, [17]). Let M be a 3× 3 real matrix. If tr(M), det(M) and det(M[2]) are all
negative, then all eigenvalues of M have negative real part.

Theorem 1. (i) If R0 < 1, then DFE of (1) is locally asymptotically stable.

(ii) If R0 > 1, then EE of (1) is locally asymptotically stable.

Proof. (i) If R0 < 1, then

ρΛ(θ +ϕ−qΛ)−ϕ(θ +ϕ +mu1−qΛ)(ϕ +ϕ1 +ξ +nu2− pΛ)< 0.

The Jacobian matrix evaluated at P f is

JP f =

 −ϕ−mu1 −pΛ−ρS f −qΛ+θ

0 pΛ−ϕ−ϕ1−ξ −nu2 +ρS f 0
mu1 nu2 +ξ qΛ−θ −ϕ

 .

Also the second compound of the Jacobian matrix is

J[2]P f
=


J[2]P f1,1

0 qΛ−θ

nu2 +ξ J[2]P f2,2
−pΛ−S f

−mu1 0 J[2]P f3,3

 ,

where

J[2]P f1,1
=−ϕ−mu1 + pΛ−ϕ−ϕ1−ξ −nu2 +ρS f ,

J[2]P f2,2
=−2ϕ−mu1 +qΛ−θ ,

J[2]P f3,3
= pΛ−2ϕ−ϕ1−ξ −nu2 +ρS f +qΛ−θ .
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Therefore

tr(JP f ) =
−ϕ(θ +ϕ +mu1−qΛ)2−ϕ2(θ +ϕ +mu1−qΛ)−θ(JP f )

ϕ(θ +ϕ +mu1−qΛ)
< 0,

det(JP f ) = ρΛ(θ +ϕ−qΛ)−ϕ(θ +ϕ +mu1−qΛ)(ϕ +ϕ1 +ξ +nu2− pΛ)< 0,

det(J[2]P f
) =−(ϕ +mu1 +θ +ϕ−qΛ)(J[2]P f1,1

J[2]P f3,3
+(qΛ−θ)(mu1))< 0.

(ii) If R0 > 1, then

Λρ(θ +ϕ−qΛ)−ϕ(θ +ϕ +mu1−qΛ)(ϕ +ϕ1 +ξ +nu2− pΛ)> 0.

The Jacobian matrix evaluated at Pe is

JPe =

 −ϕ−mu1−ρIe −pΛ−ρSe −qΛ+θ

ρIe 0 0
mu1 nu2 +ξ qΛ−θ −ϕ

 ,

and

J[2]Pe
=

 −ϕ−mu1−ρIe 0 qΛ−θ

nu2 +ξ J[2]Pe2,2
−pΛ−Se

−mu1 ρIe qΛ−θ −ϕ

 ,

where

J[2]Pe2,2
=−d−mu1−ρIe +qΛ−δ −d.

Therefore

tr(JPe) =−2ϕ−mu1−ρIe +qΛ−θ < 0,

det(JPe) =−ρIe

[
(ϕ +ϕ1)(−qΛ+θ +ϕ)+(ξ +nu2)(−qΛ+θ +ϕ−qΛ+θ)+

(ϕ +ϕ1)(−qΛ+θ +ϕ)+ϕ(ξ +m2u2)
]
< 0,

det(J[2]Pe
) =−(ϕ +mu1 +ρIe−qΛ+θ +ϕ)

[
(ϕ +ρIe)(−qΛ+θ +ϕ)+mu1ϕ

]
−ρIe

[
(ϕ +mu1 +ρIe)(pΛ+ρSe)+(θ −qΛ)(nu2 +ξ )

]
< 0.

Therefore, by Lemma 2 the eigenvalues of JP f and JPe all have negative real parts and hence

(i) If R0 < 1, then DFE of (1) is locally asymptotically stable.

(ii) If R0 > 1, then EE of (1) is locally asymptotically stable.
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4 Optimal control problem

In the previous section, we studied the asymptotic stability of DFE and EE equilibrium points under the
conditions for system (1) parameters. Applying the controllers of vaccination and drug therapy to control
the disease in society would impose some costs on society. These costs can be either material or moral.
The vaccination costs include the cost of purchasing and maintaining it as well as the negative effects
of the vaccine, and drug therapy costs are the cost of medicine, hospital, testing and negative effects of
treatment. Our duty is to optimize these costs. The best and most useful tool to achieve this goal is an
optimal control problem, which will create limitations for the parameters of the problem. Hence, we
define a control set as follows:

U =
{
(u1(t),u2(t))| 0 6 ui 6 uimax 6 1 , i = 1,2 , t ∈ [0, t f ]

}
,

which is Lebesgue measurable.
Based on these considerations, we define the following optimal control problem:

min
u1,u2∈U

J(u1,u2) =
∫ t f

0
[A1S(t)+A2I(t)+

1
2
(C1u2

1 +C2u2
2)]dt (2)

s.t :
Ṡ(t) = Λ− pΛI−qΛR−ϕS−ρSI−mu1S+θR,
İ(t) = ρSI + pΛI− (ϕ +ϕ1)I−ξ I−nu2I,
Ṙ(t) = qΛR+mu1S+nu2I−ϕR−θR+ξ I,

S(0)> 0, I(0)> 0, R(0)> 0.

Here, t f is the final time and A1,A2 are positive weights to keep a balance in the size of susceptible and
infected population, C1 and C2 are the costs associated with vaccination and treatment respectively. The
square of the disease control parameter is taken to remove some unwanted side effects of the disease as
well as to consider the overdoses of the control [13]. Our goal is to minimize the objective function (2),
that is, we need to seek the optimal control function (u∗1(t),u

∗
2(t)) ∈U satisfying

J(u∗1,u
∗
2) = min

u1,u2∈U
J(u1,u2).

The existence of an optimal control pair is guaranteed by the compactness of the control and the states
spaces, and the convexity in the problem based on Theorem 4.1 in [11].

For optimality conditions, first we find the Lagrangian and Hamiltonian for problem (2) [13, 15, 19]:

L(S(t), I(t),u) = A1S(t)+A2I(t)+
1
2

C1u2
1 +

1
2

C2u2
2,

and

H(S, I,R,u1,u2,λ1,λ2,λ3, t) = L(S(t), I(t),u1,u2)+λ1Ṡ(t)+λ2İ(t)+λ3Ṙ(t)

= A1S(t)+A2I(t)+
1
2

C1u2
1 +

1
2

C2u2
2

+λ1(Λ− pΛI−qΛR−ϕS−ρSI−mu1S+θR)

+λ2(ρSI + pΛI− (ϕ +ϕ1)I−ξ I−nu2I)

+λ3(qΛR+mu1S+nu2I−dR−θR+ξ I),
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where λi, i = 1,2,3 are the adjoint variables, which are determined by solving the following equations:

dλ1(t)
dt

=− ∂H
∂S

=−A1 +λ1(ϕ +ρI +mu1)−λ2ρI−λ3mu1,

dλ2(t)
dt

=− ∂H
∂ I

=−A2 +λ1(ρS+ pΛ)−λ2(ρS+ pΛ−ξ −ϕ−ϕ1−nu2)−λ3(ξ +nu2),

dλ3(t)
dt

=− ∂H
∂R

=−λ1θ −λ3(qΛ−θ −ϕ),

and the transversal conditions, λi(t f ) = 0 i = 1,2,3. By using Pontryagin minimum principle, we can
obtain the optimal conditions as follows:

∂H
∂ui

= 0, i = 0,1.

Then

u∗1 = min{max{0, (λ1−λ3)mS∗

C1
},u1max},

u∗2 = min{max{0, (λ2−λ3)nI∗

C2
},u2max}.

The above analysis can be expressed as the following theorem

Theorem 2. Let (S∗, I∗,R∗) be the optimal state solution related to optimal controls (u∗1,u
∗
2) for the

optimal control problem (2). Then there exist adjoint variables λi (i = 1,2,3) such that

dλ1(t)
dt

=−A1 +λ1(ϕ +ρI +mu1)−λ2ρI−λ3mu1,

dλ2(t)
dt

=−A2 +λ1(ρS+ pΛ)−λ2(ρS+ pΛ−ξ −ϕ−ϕ1−nu2)−λ3(ξ +nu2),

dλ3(t)
dt

=−λ1θ −λ3(qΛ−θ −ϕ),

with transversally conditions, λi(t f ) = 0, i = 1,2,3. Moreover, the optimal controls (u∗1,u
∗
2) which mini-

mizes problem (2) over the region U can be shown as following:

u∗1 = min{max{0, (λ1−λ3)mS∗

C1
},u1max},

u∗2 = min{max{0, (λ2−λ3)nI∗

C2
},u2max}.

5 Numerical simulations

In this section, we discuss control problem (2) numerically where parameters, values are as in Table 1,
and we consider the initial values as in [2]:

S0 = 0.493 I0 = 0.035 R0 = 0.0035.

To investigate the problem, we will consider two different situations including with and without
control. The RK4 method will be used to solve the problem. The results are as follows:
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Table 1: Definitions of parameters used in model (1)

.

Symbol Description Values range Reference

p Fraction of newborns are infected 0.11 [2]

q Fraction of newborns are immune 0.1 [2]

ϕ Rate of death population 0.002 [1]

ϕ1 Rate of death population by infectious disease 0.0008 [1]

Λ Rate of birth population 0.0121 [2]

θ Loss of immunity rate 0.1 [1]

ρ Transmission coefficient 0.125 [1]

ξ Rate moving from I to R 0.025 [1]

u1 Rate of vaccination per year 0≤ u1 ≤ 1 -

u2 Rate of antiviral drug per year 0≤ u2 ≤ 1 -

m Efficacy of vaccine 0.81 [6]

n Efficacy of antiviral drug 0.71 [6]

(a) According to Figure 2, the susceptible population will increase if it is not vaccinated in order to
control the incidence of the disease in society, which will increase the horizontal transmission and
spread and epidemic of the disease in society. In this case, the disease will turn into an epidemic.
But the susceptible population will decrease if the control and vaccination increase and as a result,
the infected population will also decrease, and with the passage of time and the continuation of
vaccination, the horizontal transmission will decrease and the disease will disappear.

(b) According to Figure 3, the infected population will increase if it is not treated in order to control
the incidence of the disease in society, and disease will turn into an epidemic, which will increase
the vertical transmission in society. But the infected population will decrease if the control and
drug therapy increase, and with the passage of time and the continuation of drug therapy, vertical
transmission will decrease and the disease will disappear.

(c) According to Figure 4:

(i) If we only use drug therapy to control the infected population and vaccination is at zero,
the number of recovered population will increase in a certain period of time, but after a
while, the number of recovered population will decrease and the more control we increase,
the population will increase. The improvement will be more downward, and the control and
drug therapy will give the opposite result from time to time.

(ii) If we only use the vaccination of the susceptible population to control the disease and drug
therapy is at zero, with the increase of vaccination and the continuation of it at the social
level, the number of recovered population will increase.

(iii) If we simultaneously use both vaccination and drug therapy to control and prevent the in-
cidence of the disease at the social level, the speed in the increase of recovered population
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Figure 2: Dynamical behavior of the susceptible populations for different values of u1 and u2.

Figure 3: Dynamical behavior of the infected populations for different values of u1 and u2.

increase will be very high compared to the previous two cases and this method of controlling
infectious diseases at the social level will have good results.

6 Conclusions

This article presented and explained a model for the horizontal and vertical transmission as well as
control of an infectious disease in society. Initially, we investigated the dynamic behavior of system and
calculated the equilibrium points and reproduction rate of this system which includes two equilibrium
points, disease-free and endemic. We proved that based on (R0 < 1) and (R0 > 1), the equilibrium
points are locally asymptotically stable. With a numerical example, we showed that base multiplication
rate will decrease if the vaccination and drug therapy increase in society which will be a reason for the
disappearance of the disease in society. Then, we formulated the optimal control problem and solved the
problem using Pontryagin’s minimum principle. With a numerical example, we showed that increasing
vaccination in society will lead to the decrease in horizontal transmission and increasing drug treatment
causes a decrease in the infected population and vertical transmission. The simultaneous use of these two
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Figure 4: Dynamical behavior of the recovered populations for different values of u1 and u2.

controllers will be the best way to control the disease in society, which will cause a sharp reduction in
the horizontal and vertical transmission of the disease and a rapid increase in the recovered population.
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