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Abstract. In this work, a Semi-Algebraic Mode Analysis (SAMA) technique for multigrid waveform
relaxation method applied to the finite element discretization on rectangular and regular triangular grids
in two dimensions and cubic and triangular prism elements in three dimensions for the heat equation is
proposed. For all the studied cases especially for the general triangular prism element, both the stiffness
and mass stencils are introduced comprehensively. Moreover, several numerical examples are included to
illustrate the efficiency of the convergence estimates. Studying this analysis for the finite element method
is more involved and more general than that finite-difference discretization since the mass matrix must
be considered. The proposed analysis results are a very useful tool to study the behavior of the multigrid
waveform relaxation method depending on the parameters of the problem.
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1 Introduction

Let us consider as a model problem, the heat equation with homogeneous Dirichlet boundary conditions
[12, 14]

Dtu(x, t)−∆u(x, t)) = f (x, t), x ∈Ω, t > 0,

u(x, t) = 0, on ∂Ω, t > 0,

u(x,0) = g(x), x ∈Ω,

(1)

where Ω ⊂ Rd , for d = 2 (or d = 3) is a bounded domain with boundary ∂Ω. To establish the finite
element approximation of our problem, let Ωh be a triangulation of Ω, satisfying the usual admissibility
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Figure 1: Time-stepping (left) versus waveform relaxation (right). In this figure νi, for i = 1,2, . . .
indicates to the iterations of two methods.

assumption, i.e., the intersection of two different elements is either empty, a vertex, or a whole edge. Let
Vh be the finite element space of continuous piecewise polynomials (of degree ≤ 3) associated with Ωh
vanishing on the boundary ∂Ω. The discrete approximation uh ∈Vh solves the following problem

(Dtuh,vh)+a(uh,vh) = ( f ,vh), vh ∈Vh,

where

(Dtuh,vh) =
∫

Ω

(Dtuh)vh dx, ( f ,vh) =
∫

Ω

f vh dx,

a(uh,vh) =
∫

Ω

∇uh ·∇vh dx.

Let {φ1, . . . ,φN} be the nodal basis of Vh, i.e., φi(x j) = δi j, with x j an interior node of the mesh Ωh. The
approximation uh = ∑

N
i=1 ui(t)φi(x), is found by solving the following set of equations,

(Dtuh,φ j)+a(uh,φ j) = ( f ,φ j), for j = 1,2, . . . ,N.

We rewrite these equations in terms of the mass matrix Bh = {(φi,φ j)} and the stiffness matrix Ah =
{a(φi,φ j)}, in a more standard form, as a system of ordinary differential equations (ODEs)

Bhu̇h(t)+Ahuh(t) = Fh(t), uh(0) = gh, t > 0, (2)

where uh(t) = [u1(t),u2(t), . . . ,uN(t)]t ∈ RN and the coefficient matrices Ah,Bh ∈ RN×N and the right
hand side Fh(t) = [( f ,φ1),( f ,φ2), . . . ,( f ,φN)]

t ∈ RN are considered.
We have many choices to pick a suitable method for solving the obtained ODE system (2). In

general, we can divide all the well-known methods into two classes: time-marching approaches and,
time-parallel techniques. In a time marching approach, we solve in each time step a time-independent
problem and we then go to the next time step. Indeed, as we can get out from its name, each time
step will be solved after the other in a sequential manner, see Figure 1 (left). Although this approach is
simple when we need multiprocessing capability or parallelization of the temporal variable we have to
seek another approach. So we consider a full space-time method. The time parallel class itself can be
classified into four groups of methods, see [10]: multiple shooting; domain decomposition and waveform
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relaxation; space-time multigrid method; and direct time parallel methods. Here, we only concentrate on
the waveform relaxation method and in particular, on its multigrid extension.

The waveform relaxation method (WR) is a technique for solving ordinary differential equations.
It can be also applied to time-dependent PDEs where their spatial derivative is replaced by a discrete
formula (obtained by the finite element method in our particular case) as a viewpoint of the method
of lines scheme. The WR method is based on splitting matrices Ah and Bh as Bh = MBh −NBh and
Ah = MAh−NAh , leading to the following iteration

MBh u̇k
h(t)+MAhuk

h(t) = NBh u̇k−1
h (t)+NAhuk−1

h (t)+Fh(t), (3)

where uk
h(0) = gh, for k ≥ 1 and uk

h(t) indicates the approximation of u(t) at iteration k. It is natural to
define u0

h(t) along the whole time interval equal to the initial condition, i.e u0
h(t) = gh, t > 0. Considering

the decomposition of matrices Ah and Bh as Ah =−LAh +DAh−UAh and Bh =−LBh +DBh−UBh , where
LAh , LBh are strictly lower triangular matrices, DAh , DBh are diagonal matrices, and UAh , UBh are strictly
upper triangular matrices, for the Gauss-Seidel waveform relaxation method, which is considered in this
work, the splittings in (3) are as follows

MAh =−LAh +DAh , NAh =UAh ,
MBh =−LBh +DBh , NBh =UBh .

We use the multigrid technique to accelerate the convergence of the Gauss-Seidel waveform re-
laxation method. A multigrid acceleration of this method was firstly studied in [8] and independently
developed in [13].

In order to apply a geometric multigrid waveform relaxation procedure, the coarsening applies only
in the spatial domain (semi-coarsening in space) and we consider a hierarchy of grids like Ω2lh ⊂
. . .⊂Ω2h⊂Ωh. We obtain a new iterate uk

h from the former waveform uk−1
h in three steps: Pre-smoothing,

coarse grid correction, and post smoothing. In Algorithm 1 we present the multigrid waveform relaxation
algorithm (WRMG) depending on the defined waveform relaxation method as smoother and the rest of
the operators involved in the multigrid procedure. We consider standard coarsening for constructing the
coarse meshes and discretization coarse grid approximation (DCA) in coarser grids. Regarding intergrid
transfer operators, the interpolation operators, are the nine points and seven points stencil operators cor-
responding to the bilinear and linear interpolations, respectively for two-dimensional problems. Their
generalization for three-dimensional problems respectively are the trilinear and non-symmetric bilinear
interpolation operators defined on corresponding cubic and triangular prism elements. The restriction
operators are considered as the adjoint of the prolongation operators.

In Algorithm 1, using the Crank-Nicolson approach for time discretization we obtain a space-time
multigrid method with coarsening only in space. Thus, we have time-line Gauss-Seidel waveform relax-
ation, with standard full weighting restriction and linear interpolation in space for data transfer between
the levels in the multigrid hierarchy.

We analyze the convergence factor of the multigrid waveform relaxation method by Semi-Algebraic
Mode Analysis (SAMA). This analysis was introduced by [2] for predicting the convergence factor of
time-dependent Partial Differential Equations (PDEs) which is a generalization for Local Fourier Anal-
ysis (LFA). The LFA is the most powerful technique for predicting the convergence of multigrid meth-
ods, [12, 14]. This method analyzes the behavior of the local components involved in multigrid methods
on a basis of complex exponential functions. LFA, however, has not been successful in predicting the
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Algorithm 1 Multigrid waveform relaxation based on Gauss-Seidel smoother uk
h(t)→ uk+1

h (t).

if we are on the coarsest grid (given by spatial grid size 2lh = h0), then solve
the following equation by a direct or fast solver then

Bh0 u̇k+1
h0

(t)+Ah0uk+1
h0

(t) = Fh0(t).
else

(Coarse grid correction)
Compute the defect d̄k

h(t) = Fh(t)−Bhv̇k
h(t)−Ahvk

h(t).
Restrict the defect d̄k

2h(t) = I2h
h d̄k

h(t).
Perform γ ≥ 1 cycles of WRMG on Ω2h to solve the following defect equation,
B2hėk

2h(t)+A2hek
2h(t) = d̄k

2h(t), ek
2h(0) = 0.

Interpolate the correction ek
h(t) = Ih

2hek
2h(t).

Correct the current approximation with the interpolation of the correction,
vk+1

h (t) = vk
h(t)+ ek

h(t).
(Postsmoothing)

Perform k2 steps of Gauss-Seidel waveform relaxation, uk+1
h (t) = Sk2

(
vk+1

h (t)
)
.

end if

convergence factor for time-dependent PDE problems, [2, 3]. So, we utilize SAMA to analyze the con-
vergence factor of multigrid waveform relaxation on the considered heat equation, in this work. The
main idea of SAMA is a combination of LFA with algebraic computation for the non-local part, which
is the time variable here.

The remainder of this paper is organized as follows. First, in Subsections 2.3-2.5, we explain the two-
grid SAMA analysis in two dimensions on the rectangular and triangular meshes where the Gauss-Seidel
waveform relaxation with multigrid acceleration is considered. In the rest of section 2, Subsections 2.6
and 2.7, we will present our analysis for the model problem (1) on the two different domains, a square,
and a parallelogram, obtaining all required stencils involved in the finite element method with linear and
bilinear basis functions. The extension of SAMA analysis to three dimensions is performed assuming
cubic and triangular prism meshes. Again in this section, The required stencils are computed especially
on the general triangular prism element that is new. After that, we illustrate the efficiency of the two-grid
SAMA analysis as a prediction of a W-cycle multigrid waveform relaxation, in Section 3. Conclusions
are drawn in Section 4.

2 Semi-algebraic mode analysis in two dimension

Now, we describe the convergence analysis of the multigrid waveform relaxation method by SAMA
based on the finite element method considering bilinear and linear basis functions. First, we explain gen-
eral components corresponding to each case, and then we follow the analysis with the same consideration
for both rectangular and triangular grids. All that we need to do are depicted in the following steps:

1. First, we present some primary definitions for both rectangular and triangular grids,

2. Next, we explain SAMA smoothing analysis for the Gauss-Seidel relaxation procedure,

3. Then, we investigate the analysis for the coarse-grid correction operator,
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4. Finally, we combine the two last steps to perform a complete two-grid analysis.

2.1 General definitions for rectangular elements.

We define the rectangular infinite grid

Qh = {x = kh = (k1h1,k2h2), k ∈ Z2},

and the so-called Fourier modes as ϕh(θ,x) = eiθ·x = eiθ1x1eθ2x2 where h is the spatial discretization step
and θ ∈ Θh = (−π/h,π/h]2. Now, we can define any discrete grid function for a fixed t on a formal
linear combination of the Fourier modes by

uh(x, t) = ∑
θ∈Θh

cθ(t)ϕ(θ,x), x ∈Qh, (4)

where coefficients cθ(t) depend on the time variable. The Fourier modes yield the so-called Fourier space
F (Qh) = {ϕh(θ,x), θ ∈Θh}, and they are formal eigenfunctions of any discrete operator Lh, e.g. for the
standard discrete Laplace operator, Lh =−∆h =

1
h2 [−1 2 −1], the expression Lhϕh(θ,x) = L̂h(θ)ϕh(θ,x)

holds where

L̂h(θ) =
2
h2 (1− cos(θh)) ,

is the Fourier representation of Lh on the Fourier space, also called formal eigenvalue or the Fourier
symbol of Lh.

We consider Θ2h = (−π/2h,π/2h]2 and Θh rΘ2h as the low- and high-frequency spaces, respec-
tively. Here, we have used the standard coarsening which means that the step size is double on the coarse
grid, denoted by Q2h.

2.2 General definitions for triangular elements.

LFA has been extended to multigrid methods for discretization on regular nonrectangular grids, see [4].
Here, we present some definitions to extend LFA to SAMA for PDE problems on regular triangular grids.
The key issue is introducing the two-dimensional Fourier transform using coordinates in nonorthogonal
bases.

Let {e′1,e′2} be a unitary basis of R2, 0< γ < π the angle between the vectors of the basis, and {e′′1,e′′2}
its reciprocal basis; i.e., e′i · e′′j = δi j, i, j = 1,2, where δi j is Kronecker’s delta, see Figure 2. We denote
by y = (y1,y2), y′ = (y′1,y

′
2) and y′′ = (y′′1,y

′′
2) the coordinates of a point in the bases {e1,e2}, {e′1,e′2}

and {e′′1,e′′2}, respectively where {e1,e2} is the canonical basis. Since the new bases are reciprocal bases,
by considering variable changes x = F(x′) and θ = G(θ′′) and applying them on usual Fourier transform
and Fourier inversion formula, we can obtain the following expression for inner product in the new bases

G(θ′′) ·F(x′) = θ ·x = θ
′′
1 x′1 +θ

′′
2 x′2 = θ

′′ ·x′.

A uniform triangular infinite grid oriented in the directions e′1 and e′2 is defined as

Gh = {x′ = (x′1,x
′
2)|x′i = kihi,ki ∈ Z, i = 1,2},
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Figure 2: Reciprocal bases in R2.

where h = (h1,h2). A typical point in Gh is given by x′1e′1 + x′2e′2, where e′1 and e′2 are unit vectors
indicating the direction of two edges of the coarsest triangle, T . Neglecting the boundary conditions of
the discretized domain, Th, the discrete problem can be extended to the whole grid Gh.

By considering the discrete Fourier transform of a grid function, we can define the Fourier modes
ϕh(θ

′′,x′) = eiθ ′′1 x′1eiθ ′′2 x′2 and Fourier space F (Gh) = {ϕh(θ
′′, ·), θ′′ ∈ Θ′′h}, where θ′′ = (θ ′′1 ,θ

′′
2 ) ∈ Θ′′h =

(−π/h1,π/h1]× (−π/h2,π/h2]. As the rectangular grid case, any discrete grid function defined on Gh
for a fixed t can be written as a formal linear combination of the Fourier modes, that is

uh(x, t) = ∑
θ′′∈Θ′′h

dθ′′(t)ϕ(θ′′,x′), x′ ∈ Gh, (5)

where coefficients dθ(t) depend on the time variable.
Considering standard coarsening, the infinite coarse grid is

G2h = {x′ = (x′1,x
′
2)|x′i = 2kihi,ki ∈ Z, i = 1,2}.

Moreover, Θ′′2h = (−π/2h1,π/2h1]× (−π/2h2,π/2h2] and Θ′′h rΘ′′2h indicate respectively to the low-
and high-frequency spaces.

We notice that SAMA on rectangular and nonrectangular grids can be performed similarly due to
the fact that in the nonrectangular grid the grids and the frequency space are referred to as reciprocal
bases, and the Fourier modes are in terms of θ′′ and x′. So in the rest of this part, we consider the unique
notations x = (x1,x2) and θ = (θ1,θ2). Furthermore, to perform a complete analysis on the triangular
mesh one can substitute Qh, Θh and cθ respectively by Gh, Θ′′h , and dθ′′ .

2.3 Smoothing analysis

We describe the semi-algebraic smoothing analysis for the Gauss-Seidel waveform relaxation consider-
ing the spatial discrete operators Bh and Ah as Bh = MBh −NBh and Ah = MAh −NAh , respectively that
have been defined in section 1. We can write an iteration of the waveform relaxation method for the error
grid function as

MBh ėk
h(x, t)+MAhek

h(x, t) = NBh ėk−1
h (x, t)+NAhek−1

h (x, t), (6)

for k ≥ 1, x ∈Qh and t > 0, where, ek−1
h (·, t) and ek

h(·, t) are the error grid functions at the k− 1 and k
iterations and ek

h(x,0) = 0.
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Following Eq. (4), we can write ei
h(x, t) in the ith iteration as

ei
h(x, t) = ∑

θ∈Θh

ci
θ(t)ϕ(θ,x), x ∈Qh, t > 0. (7)

We denote as M̂Ah(θ), M̂Bh(θ), N̂Ah(θ) and N̂Bh(θ) the symbols of MAh , MBh , NAh and NBh , respectively.
So, for each frequency θ ∈Θh we have

M̂Bh(θ)ċ
k
θ(t)+ M̂Ah(θ)c

k
θ(t) = N̂Bh(θ)ċ

k−1
θ (t)+ N̂Ah(θ)c

k−1
θ (t), (8)

for k≥ 1, t > 0. Now, we apply the Crank-Nicolson time discretization to Eq. (8), obtaining a system of
equations for i = 1,2, . . . ,M,

M̂Bh(θ)
ck
θ,i− ck

θ,i−1

τ
− N̂Bh(θ)

ck−1
θ,i − ck−1

θ,i−1

τ

=
1
2

(
−M̂Ah(θ)c

k
θ,i + N̂Ah(θ)c

k−1
θ,i

)
+

1
2

(
−M̂Ah(θ)c

k
θ,i−1 + N̂Ah(θ)c

k−1
θ,i−1

)
.

(9)

where ck
θ,0,c

0
θ,i represents the initial condition g(x). Thus, we can obtain its matrix form immediately,


ck
θ,1

ck
θ,2
...

ck
θ,M

= M̃−1
h,τ (θ)Ñh,τ(θ)


ck−1
θ,1

ck−1
θ,2
...

ck−1
θ,M

 ,
where

M̃h,τ(θ) =


1
τ

M̂Bh(θ)+
1
2 M̂Ah(θ) 0 · · · 0

− 1
τ

M̂Bh(θ)+
1
2 M̂Ah(θ)

1
τ

M̂Bh(θ)+
1
2 M̂Ah(θ) · · · 0

...
. . . . . .

...
· · · − 1

τ
M̂Bh(θ)+

1
2 M̂Ah(θ)

1
τ

M̂Bh(θ)+
1
2 M̂Ah(θ)

 .

We can obtain Ñh,τ(θ) as M̃h,τ(θ) by only substituting M̂Bh(θ),M̂Ah(θ) with N̂Bh(θ), N̂Ah(θ) in the
above matrices We can immediately define the smoothing factor of the Gauss-Seidel relaxation operator
by considering its symbol S̃h,τ(θ) = M̃−1

h,τ (θ)Ñh,τ(θ), that is

µ = sup
ΘhrΘ2h

(
ρ

(
S̃h,τ(θ)

))
. (10)

2.4 Coarse-grid correction analysis

Now, we present the analysis of the coarse-grid correction method. As before, we investigate the effect
of the coarse-grid correction, C2h

h , on Fourier modes. The coarse-grid correction operator is given by:

C2h
h = Ih− Ih

2h(B2hDt +ΣtA2h)
−1I2h

h (BhDt +ΣtAh), (11)
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where Dt and Σt are operators corresponding to the Crank-Nicolson approach and Ih, Ih
2h, I2h

h are the
identity operators, and the transfer operators from coarse to fine grids and vice versa. Also, (B2hDt +
ΣA2h) and (BhDt +ΣAh) are the coarse- and fine-grid operators, respectively.

Our analysis has to take into account the fact that some of the Fourier modes ϕ(θ, ·) on the fine
grid coincide on Q2h. For any low frequency θ00 = (θ1,θ2) ∈ Θ2h, we consider the frequencies θα =
θ00− (α1sign(θ1),α2sign(θ2))

π

h , where, α = {(α1,α2)|α j ∈ {0,1}, j = 1,2}. The corresponding four
Fourier modes ϕh(θ

α , ·) are called harmonics of each other and they form the space of 2h− harmonics
for θ00 ∈Θ2h, as follows

F2h(θ) = span{ϕ(θ00, ·),ϕ(θ11, ·),ϕ(θ10, ·),ϕ(θ01, ·)}.

The space of 2h−harmonics is invariant under the coarse-grid correction operator. Then, the repre-
sentation of C2h

h on space F2h is a 4× 4 matrix Ĉ2h
h (θ). To be more precise, we define two vectors:

ϕ(θ, ·) = (ϕ(θ00, ·),ϕ(θ11, ·),ϕ(θ10, ·), ϕ(θ01, ·)) and ck
θ(t) = (ck

θ00(t),ck
θ11(t), ck

θ10(t), ck
θ01(t)), and

then, the error at the k-th iteration will be ek
h(x, t) = ∑θ∈Θ2h

ck
θ(t)ϕ(θ,x)

T . After applying the coarse-grid
correction operator on this error, we obtain ∑θ∈Θ2h

Ĉ2h
h (θ)ck

θ(t) ·ϕ(θ, ·), where Ĉ2h
h (bt) is the following

4×4 matrix

Ĉ2h
h (θ) = I4− Îh

2h(θ)(B̂2h(θ)Dt +ΣÂ2h(θ))
−1Î2h

h (B̂h(θ)Dt +ΣÂh(θ)),

where, I4 is the 4×4 identity matrix, Â2h(θ) and B̂2h(θ) are 1×1 symbols of the discrete operators on
the coarse grid, and the rest of involved Fourier symbols are given by:

Âh(θ) = diag
(

Âh(θ
00), Âh(θ

11), Âh(θ
10), Âh(θ

01)
)
,

B̂h(θ) = diag
(

B̂h(θ
00), B̂h(θ

11), B̂h(θ
10), B̂h(θ

01)
)
,

Îh
2h(θ) =

(
Îh
2h(θ

00), Îh
2h(θ

11), Îh
2h(θ

10), Îh
2h(θ

01)
)T

,

Î2h
h (θ) =

(
Î2h
h (θ00), Î2h

h (θ11), Î2h
h (θ10), Î2h

h (θ01)
)
.

Now, by considering the time discretization of operators Dt and Σt , we obtain the following M×M
matrices:

Dt =
1
τ


1 0 · · · 0
−1 1 · · · 0

...
. . . . . .

...
0 · · · −1 1

 , Σt =
1
2


1 0 · · · 0
1 1 · · · 0
...

. . . . . .
...

0 · · · 1 1

 .
Then, by substituting them the error after application of the coarse grid correction is given by C̃ 2h

h,τ(θ)c
k
θ(t)·

ϕ(θ, ·)T , where the 4M×4M matrix C̃ 2h
h,τ(θ) is:

C̃ 2h
h,τ(θ) = I4M− Ĩ h

2h(θ)
(
K̃2h,τ(θ)

)−1
Ĩ 2h

h (θ)K̃h,τ(θ),
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such that I4M is the identity matrix of order 4M and K̃h,τ(θ) is a 4M×4M matrix defined as:

K̃h,τ(θ) =


K̃h,τ(θ

00) 0 0 0
0 K̃h,τ(θ

11) 0 0
0 0 K̃h,τ(θ

10) 0
0 0 0 K̃h,τ(θ

01)

 ,
with the following blocks in the diagonal:

K̃h,τ(θ
α) =

1
2τ


2B̂h(θ

α)+ τÂh(θ
α) · · · 0

−2B̂h(θ
α)+ τÂh(θ

α) 2B̂h(θ
α)+ τÂh(θ

α) · · · 0
...

. . . . . .
...

0 · · · −2B̂h(θ
α)+ τÂh(θ

α) 2B̂h(θ
α)+ τÂh(θ

α)

 ,
where α = {(α1,α2)|α j ∈ {0,1}, j = 1,2}. In a similar way, we can obtain the Fourier representation

of the prolongation and restriction operators, that are 4M×M and M×4M matrices, respectively,

Ĩ h
2h(θ) =

(
Îh
2h(θ

00)IM, Îh
2h(θ

11)IM, Îh
2h(θ

10)IM, Îh
2h(θ

01)IM

)T
,

Ĩ 2h
h (θ) =

(
Î2h
h (θ00)IM, Î2h

h (θ11)IM, Î2h
h (θ10)IM, Î2h

h (θ01)IM

)
.

2.5 Two-grid analysis

Now, we are ready to perform the semi-algebraic two-grid analysis. We do this by combining the pre-
sented Fourier smoothing analysis and the Fourier analysis for the coarse-grid correction operator. The
two-grid operator is defined as T 2h

h,τ = S ν2
h,τC

2h
h,τS

ν1
h,τ , where, Sh,τ is the smoothing operator such that

the number of pre- and post-smoothing iterations are defined by ν1 and ν2, respectively and C 2h
h,τ is the

coarse-grid correction operator.
The invariant property of the two-grid method comes from the invariant property of both compo-

nents of this method. To be more precise, the coarse-grid correction operator, C 2h
h,τ , and the considered

Gauss-Seidel smoothing operator, Sh,τ , both leave the space of 2h−harmonics F2h(θ
00) invariant for an

arbitrary Fourier frequency θ00 ∈Θ2h.
Let us assume again that the error at the kth iteration is unique as ck

θ(t) ·ϕ(θ, ·)T . By using the
discretization of operators Dt and Σt we can obtain the relation T̃ 2h

h,τ (θ)c
k
θ(t) ·ϕ(θ, ·)T that is the error

after the application of the two-grid method, with T̃ 2h
h,τ (θ) a 4M×4M matrix, given by

T̃ 2h
h,τ (θ) = S̃ ν2

h,τ(θ)

(
I4M− Ĩ h

2h(θ)
(
K̃2h,τ(θ)

)−1
Ĩ 2h

h (θ)K̃h,τ(θ)

)
S̃ ν1

h,τ(θ).

By considering the Gauss-Seidel smoothing operator, the structure of matrix S̃h,τ(θ) is as follows

S̃h,τ(θ) =


S̃h,τ(θ

00) 0 0 0
0 S̃h,τ(θ

11) 0 0
0 0 S̃h,τ(θ

10) 0
0 0 0 S̃h,τ(θ

01)

 ,
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where the matrix S̃h,τ(θ
α), for α = {(α1,α2)|α j ∈ {0,1}, j = 1,2} has been previously described in

detail. Finally, we can define the estimation of the two-grid convergence factor by the following

ρ = sup
θ∈Θ2h

(
ρ

(
T̃ 2h

h,τ (θ)
))

. (12)

2.6 Results in two dimensions

In this section, we consider two numerical examples to compare the two-grid convergence factor pre-
dicted by SAMA with the asymptotic convergence factor of W-cycle experimentally computed.

When dealing with finite element discretizations of PDEs, the large sparse stiffness and mass matrices
are typically built by the standard assembly procedure, [6]. In the case of dealing with a structured grid,
however, it suffices to represent the discrete operators by means of stencils, see [1]. We distinguish
the stencil form of the rectangular and triangular mesh in presenting stiffness and mass matrices since
triangular mesh has the property that their representation in stencil form is different due to the changes
in the basis {e′1,e′2}. In both cases, we will start with obtaining stencil forms of matrices Bh, Ah, and
transfer operators. We will then present the numerical results that are performed by Matlab.

2.6.1 Case 1: rectangular mesh

The first numerical experiment deals with the solution of the two-dimensional heat equation (1) consider-
ing Ω = [0,2]2 where Dirichlet boundary and initial conditions are chosen in such a way that the analytic
solution equals

u(x1,x2, t) = t2 sin(
πx1

2
)sin(

πx2

2
).

We consider the bilinear basis function, a+ bx+ cydxy, to obtain stiffness and mass matrices Ah =
{a(φi,φ j)}, Bh = {(φi,φ j)}, introduced in introduction part. It leads to the following ODE system,

Bhu̇h(t)+Ahuh(t) = Fh(t), uh(0) = gh, t > 0.

Which the stencil forms of Ah, and Bh are as follows:

Bh =
h2

36

1 4 1
4 16 4
1 4 1

 , Ah =
1
3

−1 −1 −1
−1 8 −1
−1 −1 −1

 .
We pick the waveform relaxation (WR) method to solve this equation. The WR method is based on
splitting matrices Ah, Bh as Ah = MhA−NhA , Bh = MhB−NhB , leading to the following iteration:

MBh u̇k
h(t)+MAhuk

h(t) = NBh u̇k−1
h (t)+NAhuk−1

h (t)+Fh(t). (13)

If we consider decomposition of matrices Ah and Bh as Ah =−LAh +DAh−UAh and Bh =−LBh +DBh−
UBh , we can define the Gauss-Seidel waveform relaxation as bellow:

MAh =−LAh +DAh , NAh =UAh ,
MBh =−LBh +DBh , NBh =UBh .
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Figure 3: Two-grid convergence factor predicted by analysis and experimentally convergence factor
computed by W(1,1)-cycle for various parameter λ = τ/h2 and with bilinear basis functions.

where also uk
h(0) = gh, for k≥ 1 and uk

h(t) indicates the approximation of u(t) at iteration k. It is natural
to define u0

h(t) along the whole time interval equal to the initial condition, i.e u0
h(t) = gh, t > 0.

As you can see it is a semi-discretization only in space. Now, using the Crank-Nicolson approach for
the time discretization we obtain a space-time multigrid method with coarsening only in space. Indeed,
we have time-line Gauss-Seidel waveform relaxation, with standard full weighting restriction and linear
interpolation in space for data transfer between the levels in the multigrid hierarchy.

To apply the presented analysis we also need to define the components of the multigrid waveform
relaxation method. As we stated in the previous sections a Gauss-Seidel waveform relaxation is con-
sidered. Regarding the intergrid transfer operators, the stencil of the restriction operator, I2h

h , is given
by

I2h
h =

1
16

1 2 1
2 4 2
1 2 1

 ,
The prolongation operator Ih

2h, is obtained according to the relation I2h
h = 1

4 Ih
2h, see Algorithm 1 and [12],

[14] for more details.
In Figure 3, we show the comparative results, where the two-grid convergence factors predicted

by SAMA are illustrated together with the asymptotic convergence rates obtained by using a W-cycle
multigrid waveform relaxation depending on the parameter λ = τ/h2, which represents the anisotropy in
the operator ranging from 2−12 to 212. In this Figure, two smoothing steps are considered and the number
of time steps is set to 32 (M = 32). Moreover, the multigrid waveform relaxation results are calculated
by considering a random initial guess and a zero right-hand side. As we can see, the analysis results of
SAMA and the rates experimentally computed match very accurately.

Also in the first row of Table 1, the asymptotic convergence factor computed by W(1,1)-cycle to-
gether with their predicted results by SAMA (in parentheses) are displayed for different values of τ and
a fixed grid size 64× 64× 32. Through these considerations, we can also observe an accurate match
between the experimental and the predicted results. In the second row of Table 1 we substitute the matrix
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Table 1: Two-grid convergence factor predicted by SAMA and the asymptotic convergence factor (be-
tween paranteces) for several values of τ when M = 32 and h = 2−5 in two dimensions with linear and
bilinear basis functions. The matrices Bh =mass and Bh =Identity are corresponding to the finite element
and finite differences methods, respectively.

B

τ
0.04 0.02 0.01 0.005 0.0025 0.001

bi
lin

ea
rb

as
is Mass

0.0710 0.0702 0.0681 0.0646 0.0576 0.0425

(0.0704) (0.0730) (0.0761) (0.0776) (0.0729) (0.0583)

Identity
0.0724 0.0728 0.0743 0.0776 0.0779 0.0624

(0.0711) (0.0732) (0.0765) (0.0782) (0.0721) 0.0549

lin
ea

rb
as

is Mass
0.2697 0.2670 0.2616 0.2510 0.2283 0.1752

(0.2439) (0.2506) (0.2548) (0.2596) (0.2445) (0.1853)

Identity
0.2704 0.2682 0.2637 0.2549 0.2348 0.1818

(0.2368) (0.2412) (0.2483) (0.2503) (0.2391) (0.1863)

Bh by the identity matrix. One can see that the results when choosing Bh as the identity matrix match
with the case in which the applied discretization method is the finite difference scheme [5].

2.6.2 Case 2: triangular mesh

In this case, we consider the two-dimensional heat equation (1) on a parallelogram domain that is con-
structed from two identical triangles. To specify the triangle, we consider the geometric parameters using
two angles of a triangle, denoted by α and β . Such that, these angles satisfy the relation β = π− γ and
α < γ , see Figure 4. Dirichlet boundary and initial conditions are chosen such that the analytic solution
is

u(x1,x2, t) = t2x2(x2− x1 tanα)(x2− x1 tanα + tanα)

(
x2−

1
cotα + cotβ

)
.

Applying a linear finite element discretization on a regular triangular mesh, in such a way that each
triangle of Figure 4 is divided into four congruent triangles connecting the midpoints of their edges and
this is repeated until a regular triangular mesh is obtained, we can easily find

Bhu̇h(t)+Ahuh(t) = Fh(t), uh(0) = gh, t > 0.

As presented in the previous case we need to define the mass and stiffness stencils. First, we explain
briefly the stiffness stencil, presented in [11], then we construct the mass stencil.

Let H be a hexagon composed of six congruent triangles Ti such that it is the support of the basis
function φn,m associated with the node xn,m where xn,m is the center node of the hexagon H and also an
interior node of a triangle of the coarsest grid. The vertices of this hexagon are xn+1,m, xn−1,m, xn,m+1,
xn,m−1, xn+1,m+1,xn−1,m−1, see Figure 5 (right).
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Figure 4: Considered domain for example 2 by the coarsest grid.

Figure 5: Hexagon around an interior point of a general triangle, with angles α and β , together with its
affine mapping HH and corresponding coordinates.

The stiffness stencil associated to node xn,m is

A =

[ 0
∫

T2∪T3
∇φn,m+1·∇φn,m dx

∫
T1∪T2

∇φn+1,m+1·∇φn,m dx∫
T3∪T4

∇φn−1,m·∇φn,m dx
∫
∪6

i=1
∇φn,m·∇φn,m dx

∫
T1∪T6

∇φn+1,m·∇φn,m dx∫
T4∪T5

∇φn−1,m−1·∇φn,m dx
∫

T5∪T6
∇φn,m−1·∇φn,m dx 0

]
.

We use hexagon Ĥ with center x0,0 and vertices x̂1,0, x̂−1,0, x̂0,1, x̂0,−1, x̂1,1, x̂−1,−1 as the reference
grid for computational purpose, see Figure 5 (left). Mapping hexagon Ĥ to H is given by an affine
transformation HH such that x = HH(x̂) = DH x̂+dH , yielding HH(x̂k,l) = xn+k,m+l . This affine trans-
formation can be simply defined as follows:

DH =

[
xn+1,m− xn,m xn+1,m+1− xn+1,m
yn+1,m− yn,m yn+1,m+1− yn+1,m

]
, dH =

[
xn,m

yn,m

]
.

where (xk,l,yk,l) are the coordinates of the node xk,l . Using defined transformation the degrees of freedom
and basis functions on the reference hexagon Ĥ, φ̂ , can be transformed to the degrees of freedom and
basis functions on the arbitrary hexagon H, φ , given by φ̂k,l = φn+k,m+l ◦H . By these consideration
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after applying the change of variable associated with the affine map H , the stiffness stencil satisfys the
following expression

Ah = |detDH |

 0 a0,1 a1,1
a−1,0 a0,0 a1,0

a−1,−1 a0,−1 0

 ,
where

a0,1 =
∫

T̂2

(D−1
H )t

∇φ̂0,1 · (D−1
H )t

∇φ̂0,0dx̂+
∫

T̂3

(D−1
H )t

∇φ̂0,1 · (D−1
H )t

∇φ̂0,0dx̂,

a1,1 =
∫

T̂1

(D−1
H )t

∇φ̂1,1 · (D−1
H )t

∇φ̂0,0dx̂+
∫

T̂2

(D−1
H )t

∇φ̂1,1 · (D−1
H )t

∇φ̂0,0dx̂,

a−1,0 =
∫

T̂3

(D−1
H )t

∇φ̂−1,0 · (D−1
H )t

∇φ̂0,0dx̂+
∫

T̂4

(D−1
H )t

∇φ̂−1,0 · (D−1
H )t

∇φ̂0,0dx̂,

a0,0 =
6

∑
i=1

∫
T̂i

(D−1
H )t

∇φ̂0,0 · (D−1
H )t

∇φ̂0,0dx̂,

a1,0 =
∫

T̂1

(D−1
H )t

∇φ̂1,0 · (D−1
H )t

∇φ̂0,0dx̂+
∫

T̂6

(D−1
H )t

∇φ̂1,0 · (D−1
H )t

∇φ̂0,0dx̂,

a−1,−1 =
∫

T̂4

(D−1
H )t

∇φ̂−1,−1 · (D−1
H )t

∇φ̂0,0dx̂+
∫

T̂5

(D−1
H )t

∇φ̂−1,−1 · (D−1
H )t

∇φ̂0,0dx̂,

a0,−1 =
∫

T̂5

(D−1
H )t

∇φ̂0,−1 · (D−1
H )t

∇φ̂0,0dx̂+
∫

T̂6

(D−1
H )t

∇φ̂0,−1 · (D−1
H )t

∇φ̂0,0dx̂.

Considering

CH = D−1
H (D−1

H )t =

[
cH

11 cH
12

cH
21 cH

22

]
,

we can obtain Ah = |detDH |
(
cH

11Âxx +(cH
12 + cH

21)Âxy + cH
22Âyy

)
, where

Âxx =

 0 0 0
−1 2 −1
0 0 0

 , Âxy =

 0 1 −1
−1 2 −1
−1 1 0

 , Âxx =

0 −1 0
0 2 0
0 −1 0

 ,
are the stencils respectively related to the operators −∂xx, −∂xy and −∂yy in the reference hexagon. In
the special limit case β = π/2 (or in the opposite direction α = π/2, [4]), the stiffness stencil will be
obtained as the same as the classical five points finite difference discretization of the Laplace operator
for rectangular grids,

Ah =
1
h2

 −1
−1 4 −1

−1

 .
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The coefficients of stencil Bh on hexagon H can be presented by the following equations

s0,1 =| detDH |
(
∫

T̂1
φ̂0,1φ̂0,0 dx̂+
∫

T̂2
φ̂0,1φ̂0,0 dx̂

)
,

s−1,0 =| detDH |
(
∫

T̂3
φ̂−1,0φ̂0,0 dx̂+
∫

T̂4
φ̂−1,0φ̂0,0 dx̂

)
,

s1,1 =| detDH |
(
∫

T̂2
φ̂1,1φ̂0,0 dx̂+
∫

T̂3
φ̂1,1φ̂0,0 dx̂

)
,

s1,0 =| detDH |
(
∫

T̂1
φ̂1,0φ̂0,0 dx̂+
∫

T̂6
φ̂1,0φ̂0,0 dx̂

)
,

s0,0 =| detDH |
(

∑
6
i=1
∫

T̂i
φ̂0,0φ̂0,0 dx̂

)
,

s0,−1 =| detDH |
(
∫

T̂5
φ̂0,−1φ̂0,0 dx̂+
∫

T̂6
φ̂0,−1φ̂0,0 dx̂

)
,

s−1,−1 =| detDH |
(
∫

T̂4
φ̂−1,−1φ̂0,0 dx̂+
∫

T̂5
φ̂−1,−1φ̂0,0 dx̂

)
,

normalizing the coefficients by | detDH |, we obtain a fixed mass stencil for every triangulation,

Bh =
1
12

 1 1
1 6 1
1 1

 .
Regarding the intergrid transfer operators, the stencil of the restriction operator, I2h

h , is given by

I2h
h =

1
8

 1 1
1 2 1
1 1

 .
We can obtain immediately the prolongation operator by the expression I2h

h = 1
4 Ih

2h.
In Figure 6, we show the comparative results in the special case β = π/2, where the two-grid conver-

gence factors predicted by SAMA are illustrated together with the asymptotic convergence rates obtained
by using a W-cycle multigrid waveform relaxation depending on the parameter λ = τ/h2 ranging from
2−12 to 212. Here, two smoothing steps, a random initial guess, and a zero right-hand side are considered
where the number of time steps is set at 32 (M = 32). As we can see, the analysis results of SAMA and
the rates experimentally computed match very accurately.

Also in the third row of Table 1 , the asymptotic convergence factor computed by W(1,1)-cycle
together with their predicted results by SAMA (in parentheses) are displayed for different values of τ

and a fixed grid size 64×64×32. We can observe an accurate match between the experimental and the
predicted results. In the 4th row of Table 1 we substitute the matrix Bh by the identity matrix. One can
see that the results when choosing Bh as the identity matrix match with the case in which the applied
discretization method is the finite difference scheme, [5].

3 Semi-algebraic mode analysis in three dimensions

Now, we describe the convergence analysis of the multigrid waveform relaxation method by SAMA
based on the finite element method considering trilinear and nonsymmetric bilinear basis functions re-
spectively on cubic and triangular prism elements. Here, we explain the general components associ-
ated with each case. The rest of the analysis can be obtained in a similar way performed in the two-
dimensional analysis.
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Figure 6: Two-grid convergence factor predicted by analysis and experimentally convergence factor
computed by W(1,1)-cycle for various parameter λ = τ/h2 and with linear basis functions where β = 90.

3.1 General definitions for cubic elements.

We have to perform some changes to the definitions to extend the SAMA from two dimensions to three
dimensions. As we did for the two-dimensional case we need to define the infinite grid Qh,

Qh = {x = kh = (k1h1,k2h2,k3h3), k ∈ Z3}.

In this case, the Fourier modes are ϕ(θ,x) = eiθ·x = eiθ1x1eiθ2x2eiθ3x3 where θ ∈ Θh = (−π/h,π/h]3.
Similar to the two-dimensional case, any discrete grid function for a fixed t can be defined as a formal
linear combination of Fourier modes. Also, we obtain a new 8−dimensional Fourier space generated by
one low-frequency Fourier mode θ = θ000 ∈Θ2h = (−π/2h,π/2h]3 as follows:

F2h(θ) =span{ϕ(θ000, ·),ϕ(θ111, ·),ϕ(θ100, ·),ϕ(θ011, ·),ϕ(θ010, ·),ϕ(θ101, ·),
ϕ(θ001, ·),ϕ(θ110, ·)},

(14)

such that the high-frequencies are given by the following equation

θα = θ000− (α1sign(θ1),α2sign(θ2),α3sign(θ3))
π

h
,

where, θ000 = (θ1,θ2,θ3) and α = {(α1,α2,α3) |α j ∈ {0,1}, j = 1,2,3}.
By the above definitions the resulting Fourier representations of the smoothing, coarse-grid correc-

tion, and two-grid operators are 8M×8M matrices that can be computed following the same idea carried
out in Sections 2.3 -2.5 for the two-dimensional case. So, in fact, SAMA in three dimensions is based on
a three-dimensional spatial LFA combined with an exact analysis of the time variable. The stiffness and
mass stencils together with some numerical results for this case are presented in Section 3.3.1.

3.2 General definitions for triangular prism elements.

In this part, we present some preliminary definitions on a triangular prism element. Prism elements deal
with some columnar region, in this case, a triangular prism region, that is constructed as the product of
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a triangle and an interval. Let {e′1,e′2,e′3} be a unitary basis of R3, 0 < γ < π the angle between e′1 and
e′2 where e′3 is orthogonal to both of them. We consider their reciprocal basis as {e′′1,e′′2,e′′3} such that
e′i ·e′′j = δi j, i, j = 1,2,3, where δi j is Kronecker’s delta. Applying variable changes x = F(x′), θ= G(θ′′)
and using the usual Fourier transform and its inversion formula, we can obtain the following expression
for inner product in the new bases

G(θ′′) ·F(x′) = θ ·x = θ
′′
1 x′1 +θ

′′
2 x′2 +θ

′′
3 x′3 = θ

′′ ·x′.

An infinite grid oriented in the directions e′1,e
′
2 and e′3 can be defined as follows:

Gh = {x′ = (x′1,x
′
2,x
′
3)|x′i = kihi,ki ∈ Z, i = 1,2,3},

where h = (h1,h2,h3) such that a typical point in Gh is given by x′1e′1 + x′2e′2 + x′3e′3. Considering the dis-
crete Fourier transform of a grid function, we can define the Fourier modes ϕh(θ

′′,x′) = eiθ ′′1 x′1eiθ ′′2 x′2eiθ ′′3 x′3

and Fourier space F (Gh) = {ϕh(θ
′′, ·), θ′′ ∈ Θ′′h}, where θ′′ = (θ ′′1 ,θ

′′
2 ,θ

′′
3 ) ∈ Θ′′h = (−π/h1,π/h1]×

(−π/h2,π/h2]× (−π/h3,π/h3]. Similar to the two-dimensional case, any discrete grid function for
a fixed t can be defined as a formal linear combination of Fourier modes. Again here, we obtain
a 8−dimensional Fourier space generated by one low-frequency Fourier mode θ′′ = θ′′000 ∈ Θ′′2h =
(−π/2h1,π/2h1]×(−π/2h2,π/2h2]×(−π/2h3,π/2h3], it can be defined replacing θ by θ′′ in equation
(14).

Due to the fact that in triangular prism mesh the grids and the frequency space are referred to as
reciprocal bases, the Fourier modes are in terms of θ′′ and x′, the analysis for this case also can be
computed following the same idea carried out in Sections 2.3 -2.5.

3.3 Results in three dimensions

In this section, we consider two numerical examples to compare the two-grid convergence factor pre-
dicted by SAMA with the asymptotic convergence factor of W-cycle experimentally computed in three
dimensions. The first example shows numerical results on the cubic mesh and the second one illustrates
the numerical analysis corresponding to the triangular prism elements. Similar to the two-dimensional
case, first we define the stencil forms of the mass and stiffness matrices then, we present the comparative
results for every case. All numerical computations are performed by MATLAB.

3.3.1 Case 1: Cubic Elements (CE)

Consider the three dimensional heat equation (1) where Dirichlet boundary and initial conditions in such
a way that the analytic solution is

u(x1,x2, t) = t2 sin(
πx1

2
)sin(

πx2

2
)sin(

πx3

2
).

We consider cubic elements to obtaining the following discrete problem,

Bhu̇h(t)+Auh(t) = Fh(t), uh(0) = gh, t > 0.

The corresponding stencils computed for the mass and stiffness matrices are respectively as follows:

Bh =
1

216

1 4 1
4 16 4
1 4 1

 4 16 4
16 64 16
4 16 4

1 4 1
4 16 4
1 4 1

 ,
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Figure 7: Two-grid convergence factor predicted by analysis and experimentally convergence factor
computed by W(1,1)-cycle for various parameter λ = τ/h2 computed on the cubic mesh.

and,

Ah =
1

12h2

−1 −2 −1
−2 0 −2
−1 −2 −1

−2 0 −2
0 32 0
−2 0 −2

−1 −2 −1
−2 0 −2
−1 −2 −1

 .
To apply the presented analysis we also need to define the components of the multigrid waveform

relaxation method. As we stated in the previous sections a Gauss-Seidel waveform relaxation is con-
sidered. Regarding the intergrid transfer operators, the stencil of the restriction operator, I2h

h , is given
by

I2h
h =

1
64

1 2 1
2 4 2
1 2 1

2 4 2
4 8 4
2 4 2

1 2 1
2 4 2
1 2 1

 .
The prolongation operator Ih

2h, is obtained according to the relation I2h
h = 1

8 Ih
2h, see [12, 14] for more

details.
In Figure 7, we show the comparative results, where the two-grid convergence factors predicted

by SAMA are illustrated together with the asymptotic convergence rates obtained by using a W-cycle
multigrid waveform relaxation depending on the parameter λ = τ/h2, which represents the anisotropy in
the operator ranging from 2−12 to 212. In this Figure, two smoothing steps are considered and the number
of time steps is set at 32 (M = 32). Moreover, the multigrid waveform relaxation results are calculated
by considering a random initial guess and a zero right-hand side. As we can see, the analysis results of
SAMA and the rates experimentally computed match very accurate.

Also in the first row of Table 2 , the asymptotic convergence factor computed by W(1,1) cycle to-
gether with their predicted results by SAMA (in parentheses) are displayed for different values of τ and
a fixed grid size 64× 64× 32. We can observe an accurate match between the experimental and the
predicted results. In the second row of Table 2 we substitute the matrix Bh by the identity matrix. One
can see that the results when choosing Bh as the identity matrix match with the case in which the applied
discretization method is the finite difference scheme.
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Table 2: Two-grid convergence factor predicted by SAMA and the asymptotic convergence factor (be-
tween paranteces) for several values of τ when M = 32 and N = 64 in three dimensions with triangular
prism Elements (PE) and Cubic Elements (CE). The matrices Bh =mass and Bh =Identity are corre-
sponding to the finite element and finite differences methods, respectively.

B

τ

0.04 0.02 0.01 0.005 0.0025 0.001

C
ub

ic
E

le
m

en
ts

(C
E

)

Mass
0.1084 0.1129 0.1330 0.1539 0.1923 0.2790

(0.1072) (0.1119) (0.1291) (0.1541) (0.1946) (0.2759)

Identity
0.0946 0.0821 0.0691 0.0545 0.0333 0.0107

(0.0995) (0.0888) (0.0574) (0.0527) (0.0312) (0.0109)

Pr
is

m
E

le
m

en
ts

(P
E

)

Mass
0.1628 0.1593 0.1526 0.1407 0.1221 0.0955

(0.1668) (0.1439) (0.1442) (0.1413) (0.1221) (0.1091)

Identity
0.1664 0.1505 0.1268 0.1004 0.0676 0.0303

(0.1671) (0.1635) (0.1378) (0.1049) (0.0710) (0.0308)

3.3.2 Case 2: Triangular Prism Elements (TPE)

In this case, we consider the three dimensional heat equation (1) on a parallelogram prism where the
parallelogram shown in Figure 4 is considered. Dirichlet boundary and initial conditions are chosen such
that the analytic solution is

u(x1,x2,x3, t) = t2x2x3(x3−1)(x2− x1 tanα)(x2− x1 tanα + tanα)

(
x2−

1
cotα + cotβ

)
.

Considering a uniform triangular prism elements the problem reduces to the following discrete form,

Bhu̇h(t)+Ahuh(t) = Fh(t), uh(0) = gh, t > 0.

As presented in the previous cases we need to define the mass and stiffness stencils. To reach to this
goal, let xn,m,k be a central node of a hexagonal prism P, constructed of twelve triangular prism elements,
which is the support of a basis function φn,m,k associated to it. The eighteen vertices of this hexagonal
prism are: xn+1,m,s,xn−1,m,s,xn,m+1,s,xn,m−1,s, xn+1,m+1,s,xn−1,m−1,s where s = k−1,k,k+1.

Using a reference hexagonal prism P̂ with center x̂ = (0,0,0) and vertices x̂1,0,s, x̂−1,0,s, x̂0,1,s, x̂0,−1,s,
x̂1,1,s, x̂−1,−1,s with s =−1,0,1, we define an affine transformation HP such that x =HP(x̂) =DPx̂+dP,
yielding HP(x̂k,l) = xn+k,m+l . This affine transformation can be simply defined as follows:

DP =

xn+1,m,p− xn,m,p xn+1,m+1,p− xn+1,m,p xn+1,m+1,p+1− xn+1,m+1,p
yn+1,m,p− yn,m,p yn+1,m+1,p− yn+1,m,p yn+1,m+1,p+1− yn+1,m+1,p
zn+1,m,p− zn,m,p zn+1,m+1,p− yn+1,m,p zn+1,m+1,p+1− zn+1,m+1,p

 ,
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and dP =
[
xn,m,p yn,m,p zn,m,p

]t
, where (xu,v,s,yu,v,s,zu,v,s) are the coordinates of the nodes xu,v,s. The

degree of freedom and basis functions on the reference hexagonal prism P̂ can be translate to the degree
of freedom and basis functions on the arbitrary hexagonal prism P. In particular, we have

φ̂n,m,k = φn,m,k ◦HP ∇φ̂n,m,k = D t
P∇φn,m,k ◦HP.

consider the following stencil for the stiffness matrix

Ah = |detDP|

 a0,1,−1 a1,1,−1
a−1,0,−1 a0,0,−1 a1,0,−1
a−1,−1,−1 a0,−1,−1

 a0,1,0 a1,1,0
a−1,0,0 a0,0,0 a1,0,0
a−1,−1,0 a0,−1,0

 a0,1,1 a1,1,1
a−1,0,1 a0,0,1 a1,0,1
a−1,−1,1 a0,−1,1

 ,
By using the change of variable associated with the affine mapping HP, we obtain the following expres-
sions for the stiffness stencil elements:

a0,1,−1 =
∫

P̂8

(D−1
P )t

∇φ̂0,1,−1 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂9

(D−1
P )t

∇φ̂0,1,−1 · (D−1
P )t

∇φ̂0,0,0dx̂,

a1,1,−1 =
∫

P̂7

(D−1
P )t

∇φ̂1,1,−1 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂8

(D−1
P )t

∇φ̂1,1,−1 · (D−1
P )t

∇φ̂0,0,0dx̂,

a−1,0,−1 =
∫

P̂9

(D−1
P )t

∇φ̂−1,0,−1 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂10

(D−1
P )t

∇φ̂−1,0,−1 · (D−1
P )t

∇φ̂0,0,0dx̂,

a0,0,−1 =
12

∑
i=5

∫
T̂i

(D−1
P )t

∇φ̂0,0,−1 · (D−1
P )t

∇φ̂0,0,0dx̂,

a1,0,−1 =
∫

P̂5

(D−1
P )t

∇φ̂1,0,−1 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂12

(D−1
P )t

∇φ̂1,0,−1 · (D−1
P )t

∇φ̂0,0,0dx̂,

a−1,−1,−1 =
∫

P̂10

(D−1
P )t

∇φ̂−1,−1,−1 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂11

(D−1
P )t

∇φ̂−1,−1,−1 · (D−1
P )t

∇φ̂0,0,0dx̂,

a0,−1,−1 =
∫

P̂11

(D−1
P )t

∇φ̂0,−1,−1 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂12

(D−1
P )t

∇φ̂0,−1,−1 · (D−1
P )t

∇φ̂0,0,0dx̂,

a0,1,0 =
∫

P̂8

(D−1
P )t

∇φ̂0,1,,0 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂9

(D−1
P )t

∇φ̂0,1,0 · (D−1
P )t

∇φ̂0,0,0dx̂,

a1,1,0 =
∫

P̂7

(D−1
P )t

∇φ̂1,1,0 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂8

(D−1
P )t

∇φ̂1,1,0 · (D−1
P )t

∇φ̂0,0,0dx̂,

a−1,0,0 =
∫

P̂9

(D−1
P )t

∇φ̂−1,0,0 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂10

(D−1
P )t

∇φ̂−1,0,0 · (D−1
P )t

∇φ̂0,0,0dx̂,

a0,0,0 =
12

∑
i=1

∫
T̂i

(D−1
P )t

∇φ̂0,0,0 · (D−1
P )t

∇φ̂0,0,0dx̂,

a1,0,0 =
∫

P̂5

(D−1
P )t

∇φ̂1,0,0 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂12

(D−1
P )t

∇φ̂1,0,0 · (D−1
P )t

∇φ̂0,0,0dx̂,

a−1,−1,0 =
∫

P̂10

(D−1
P )t

∇φ̂−1,−1,0 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂11

(D−1
P )t

∇φ̂−1,−1,0 · (D−1
P )t

∇φ̂0,0,0dx̂,

a0,−1,0 =
∫

P̂11

(D−1
P )t

∇φ̂0,−1,0 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂12

(D−1
P )t

∇φ̂0,−1,0 · (D−1
P )t

∇φ̂0,0,0dx̂,
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a0,1,1 =
∫

P̂8

(D−1
P )t

∇φ̂0,1,1 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂9

(D−1
P )t

∇φ̂0,1,1 · (D−1
P )t

∇φ̂0,0,0dx̂,

a1,1,1 =
∫

P̂7

(D−1
P )t

∇φ̂1,1,1 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂8

(D−1
P )t

∇φ̂1,1,1 · (D−1
P )t

∇φ̂0,0,0dx̂,

a−1,0,1 =
∫

P̂9

(D−1
P )t

∇φ̂−1,0,1 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂10

(D−1
P )t

∇φ̂−1,0,1 · (D−1
P )t

∇φ̂0,0,0dx̂,

a0,0,1 =
12

∑
i=5

∫
T̂i

(D−1
P )t

∇φ̂0,0,1 · (D−1
P )t

∇φ̂0,0,0dx̂,

a1,0,1 =
∫

P̂5

(D−1
P )t

∇φ̂1,0,1 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂12

(D−1
P )t

∇φ̂1,0,1 · (D−1
P )t

∇φ̂0,0,0dx̂,

a−1,−1,1 =
∫

P̂10

(D−1
P )t

∇φ̂−1,−1,1 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂11

(D−1
P )t

∇φ̂−1,−1,1 · (D−1
P )t

∇φ̂0,0,0dx̂,

a0,−1,1 =
∫

P̂11

(D−1
P )t

∇φ̂0,−1,1 · (D−1
P )t

∇φ̂0,0,0dx̂+
∫

P̂12

(D−1
P )t

∇φ̂0,−1,1 · (D−1
P )t

∇φ̂0,0,0dx̂.

Using CH as follows,

CH = D−1
P (D−1

P )T =

c11 c12 c13
c21 c22 c23
c31 c32 c33

 ,
we can simply compute the elements of Ah from the following expression:

Ah = |detDP|= (c11Axx +2c12Axy + c22Ayy + c33Azz).

Here, we have

Axx =

 0 0 0
−2
12

4
12

−2
12

0 0 0

 0 0 0
−4
6

8
6

−4
6

0 0 0

 0 0 0
−2
12

4
12

−2
12

0 0 0

 ,
Ayy =

0 −2
12 0

0 4
12 0

0 −2
12 0

0 −4
6 0

0 8
6 0

0 −4
6 0

0 −2
12 0

0 4
12 0

0 −2
12 0

 ,
Axz =

 0 1
12

−1
12

−2
12 0 −2

12
−1
12

1
12 0

0 0 0
0 0 0
0 0 0

 0 1
12

−1
12

−2
12 0 −2

12
−1
12

1
12 0

 ,
Ayz =

 0 −2
12

−1
12

1
12 0 1

12
−1
12

−2
12 0

0 0 0
0 0 0
0 0 0

 0 −2
12

−1
12

1
12 0 1

12
−1
12

−2
12 0

 ,
Axy =

 0 1
12

−1
12

1
12

−2
12

1
12

−1
12

1
12 0

 0 2
6

−2
6

2
6

−4
6

2
6

−2
6

2
6 0

 0 1
12

−1
12

1
12

−2
12

1
12

−1
12

1
12 0

 ,
Azz =

 0 −1
12

−1
12

−1
12

−6
12

−1
12

−1
12

−1
12 0

 0 2
12

2
12

2
12 1 2

12
2
12

2
12 0

 0 −1
12

−1
12

−1
12

−6
12

−1
12

−1
12

−1
12 0

 ,
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considering the coordinates in terms of the geometric parameters, 0 < α,β < π/2, we can compute the
elements of CH then the Ah stencil as follows:

CH =
1
h2

 1+ cot2 β cotβ cotα + cot2 β 0
cotβ cotα + cot2 β (cotα + cotβ )2 0

0 0 1

 .
Also, we have

a0,1,−1 = a0,−1,−1 = a0,1,1 = a0,−1,1 =
1

12h2

(
−2cot2 α−2cotα cotβ −1

)
,

a1,0,−1 = a−1,0,−1 = a1,0,1 = a−1,0,1 =
1

12h2 (2cotα cotβ −3) ,

a1,1,−1 = a−1,−1,−1 = a1,1,1 = a−1,−1,1 =
1

12h2

(
−2cot2 β −2cotα cotβ −1

)
,

a0,0,−1 = a0,0,1 =
1

12h2

(
4(cotα + cotβ )2−4cotα cotβ −2

)
,

a0,1,0 = a0,−1,0 =
1

6h2

(
1−4cot2 α−4cotα cotβ

)
,

a1,0,0 = a−1,0,0 =
1

6h2 (4cotα cotβ −3) ,

a1,1,0 = a−1,−1,0 =
1

6h2

(
1−4cot2 β −4cotα cotβ

)
,

a0,0,0 =
1

6h2

(
8(cotα + cotβ )2−8cotα cotβ +14

)
,

(15)

where all the above coefficients are normalized by |detDP|.
In the special limit case β = π/2, the stiffness stencil is calculated to be

A =
1

24h2

 −6 −2
−6 4 −6
−2 −6

 −12 4
−12 88 −12

4 −12

 −6 −2
−6 4 −6
−2 −6

 .
Moreover, the stencil form corresponding to the mass matrix, Bh, is fixed on every triangular prism
element that is

Bh =
1
72

 1 1
1 6 1
1 1

 4 4
4 24 4
4 4

 1 1
1 6 1
1 1

 .
To apply the presented analysis we also need to define the components of the multigrid waveform

relaxation method. Regarding the intergrid transfer operators, the stencil of the restriction operator, I2h
h ,

is given by

I2h
h =

1
32

 1 1
1 2 1
1 1

 2 2
2 4 2
2 2

 1 1
1 2 1
1 1

 .
So, we can obtain its fourier representation as follows

Î2h
h (θα) =

1
4
(1+ cos(θ α

1 ))(1+ cos(θ α
2 )) s.t θα = (θ α

1 ,θ α
2 ).
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Figure 8: Two-grid convergence factor predicted by analysis and the experimentally convergence factor
computed by w(1-1)-cycle for various parameters λ ranging from 2−12 to 212 on triangular prism element
with angles α = 45,β = 90.

Figure 9: Two-grid convergence factor predicted by analysis and the experimentally convergence factor
computed by w(1-1)-cycle for various parameters λ ranging from 2−12 to 212 on triangular prism element
with angles α = 40,β = 50.

The prolongation operator Ih
2h, is obtained according to the relation I2h

h = 1
8 Ih

2h.
Numerical results depending on the parameter λ = τ/h2, ranging from 2−12 to 212, comparing

the two-grid convergence factors predicted by SAMA together with the asymptotic convergence rates
obtained by using W-cycle multigrid waveform relaxation considering several values for α and β ,
“α = 45◦β = 90◦”, “α = 40◦β = 50◦”, “α = 50◦β = 70◦”, “α = 60◦β = 60◦” and “α = 80◦β = 40◦”,
are illustrated respectively in Figures 8, 9, 10, 11, 12. In this Figure, two smoothing steps are considered
and the number of time steps is set 32 (M = 32). Moreover, the multigrid waveform relaxation results are
calculated by considering a random initial guess and a zero right-hand side. As we can see, the analysis
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Figure 10: Two-grid convergence factor predicted by analysis and the experimentally convergence factor
computed by w(1-1)-cycle for various parameters λ ranging from 2−12 to 212 on triangular prism element
with angles α = 50,β = 70.

Figure 11: Two-grid convergence factor predicted by analysis and the experimentally convergence factor
computed by w(1-1)-cycle for various parameters λ ranging from 2−12 to 212 on triangular prism element
with angles α = 60,β = 60.

results of SAMA and the rates experimentally computed match very accurate. In Figures 9-12, you can
also see that the convergence factors depend on the angles of the coarsest triangles, i.e. better conver-
gence factors are obtain for equilateral triangle and its values become worse when one of the angles tends
to be small.

Also in the third row of Table 2 , the asymptotic convergence factor computed by W(1,1) cycle
together with their predicted results by SAMA (in parentheses) are displayed for different values of τ

and a fixed grid size 64× 64× 32, where β = 90◦. We can observe an accurate match between the
experimental and the predicted results. In the fourth row of Table 1 we substitute the matrix Bh by the
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Figure 12: Two-grid convergence factor predicted by analysis and the experimentally convergence factor
computed by w(1-1)-cycle for various parameters λ ranging from 2−12 to 212 on triangular prism element
with angles α = 80,β = 40.

identity matrix. One can see that the results when choosing Bh as the identity matrix match with the case
in which the applied discretization method is the finite difference scheme.

4 Conclusions

In this work, we presented the two-grid SAMA analysis for predicting the convergence factor of a multi-
grid waveform relaxation method for finite element discretization in two and three spatial dimensions.
The Crank-Nicolson discretization in time and the rectangular and triangular grid in two dimensions and
their extensions to cubic and general triangular prism meshes in three dimensions, for the spatial dis-
cretization, are considered respectively. The computations corresponding to the general triangular prism
element were new and the influence of angles in a prism element was illustrated by presenting several
examples. The proposed SAMA analysis allows us to systematically study the behavior of the multigrid
waveform relaxation method for finite element discretizations for different spatial meshes. Moreover,
in this work, we showed the finite element discretization is more general than that for finite difference
discretization, since the results when matrix Bh is the identity matrix, are comparable with the case in
which a finite difference discretization method is applied. Our work was a general discussion on some
famous equations. So, the eager reader could refer for example to the works [7, 9] to see more about the
benefits of this analysis.
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