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Abstract. This paper proposes two effective nonmonotone trust-region frameworks for solving nonlin-
ear unconstrained optimization problems while provide a new effective policy to update the trust-region
radius. Conventional nonmonotone trust-region algorithms apply a specific nonmonotone ratio to accept
new trial step and update the trust-region radius. This paper recommends using the nonmonotone ra-
tio only as an acceptance criterion for a new trial step. In contrast, the monotone ratio or a hybrid of
monotone and nonmonotone ratios is proposed as a criterion for updating the trust-region radius. We in-
vestigate the global convergence to first- and second-order stationary points for the proposed approaches
under certain classical assumptions. Initial numerical results indicate that the proposed methods signifi-
cantly enhance the performance of nonmonotone trust-region methods.
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1 Introduction

Trust-region techniques are a common category of iterative procedures for solving optimization prob-
lems. Powell first described them in 1970 in [21] to solve unconstrained optimization problems. In a
sense, the technique of trust-region approaches is analogous to the conventional Levenberg-Marquardt
strategy used to solve nonlinear least-squares and nonlinear equations problems. This procedure was first
introduced by Levenberg in [15] and later proposed by Marquardt in [16]. Trust-region approaches have
had a well-behaved and superior reputation for the past four decades due to their outstanding numerical
reliability and strong theoretical convergence properties. Numerous researchers examined and employed

∗Corresponding author
Received: 11 April 2023 / Revised: 6 June 2023 / Accepted: 8 June 2023
DOI: 10.22124/JMM.2023.24275.2174

c© 2023 University of Guilan http://jmm.guilan.ac.ir

http://jmm.guilan.ac.ir


508 K. Amini, M. Rashidi

the trust-region method to address multimodal problems, optimal control, and optimization branches
(see, for instance, [8, 20]).

Trust-region methods minimize the model within the trust region or the region surrounding the cur-
rent point at each iteration by approximating the objective function with a quadratic or conic model.
Trust-region approaches produce new trial steps by solving a quadratic subproblem subject to the trust
region. If the trial step reduces the model sufficiently within the trust region, the algorithm expands the
trust region. If the model and objective function disagrees, the algorithm reduces the trust region. We
solve the subproblem to find an acceptable step.

The traditional trust-region structure provides strong convergence theories and reliable computational
results, but it also has some significant drawbacks. It generates sequential iterations that yield a monotone
objective function value, resulting in slow convergence in highly nonlinear problems and a narrow, curved
valley; see [1–3, 8, 17]. The nonmonotone technique is one of the most promising iterative optimization
methods to overcome this obstacle. Inspired by the watchdog strategy proposed for the standard line
search condition in [6] to overcome the Marotos effect, Grippo et al. in [12] propose an innovative
nonmonotone line search technique for the Newton method. Based on their results, the new approach
might improve the performance of Armijo-type line search frameworks. Nonmonotone approaches can
also accelerate algorithm convergence and increase the probability of finding the global optimum (see
[8,20]). Numerous researchers are interested in employing nonmonotone methods in various disciplines
of optimization procedures due to their remarkable efficiency; see [1–3, 12–14, 17, 22, 23].

This study investigates the impact of nonmonotone techniques on updating the trust region and ac-
cepting new points. In this research, we believed that the best results might be achieved whenever a
method employs a nonmonotone ratio to take a new trial step. To develop a strategy for updating the
trust-region radius, it uses the traditional monotone trust-region ratio or a hybrid with a nonmonotonic
ratio. According to the trust-region methodology, a larger radius leads to a larger number of subproblems
being solved, increasing computation cost. This observation leads us to conclude that most nonmono-
tone trust-region-based methods extend the trust-region radius beyond what is necessary to attain the best
convergence for real-world problems. Using some nonmonotone ratios as the acceptance criterion and
the standard monotone ratio or its hybrid with a nonmonotone ratio to update the trust-region radius, we
will introduce new trust-region-based algorithms.

According to our analysis, the modified nonmonotone trust-region framework deals with problems
with a narrow curved valley in somewhat the same manner as the traditional trust-region method; thus,
the radius is not sufficiently expanded compared to the traditional nonmonotone trust-region framework.
Thus, the proposed method attempts to identify narrow, curved valleys based on how frequently a very
successful iteration occurs. If the number of very successful iterations exceeds an integer constant, the
algorithm may encounter a narrow, curved valley. In this situation, nonmonotone ratios can be used to
determine the trust region’s radius. In this way, we can state that the proposed method does necessarily
not lead to a smaller trust-region radius compared to the traditional trust-region framework. According to
the analysis, the innovative strategies possess both the reliability of trust-region frameworks and the ef-
fectiveness of nonmonotone approaches. In addition, the global convergence of the proposed techniques,
we demonstrate the efficacy and reliability of the proposed approaches in practice by employing them in
some numerical experiments on an extensive collection of standard, unconstrained test problems.

The remainder of the paper is structured as follows. Section 2 describes two novel trust-region-based
algorithms. The global convergence of the proposed algorithms to first- and second-order stationary
points are the subject of Section 3, which follows a discussion of the algorithms’ features. We provide
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initial numerical results for the approaches described in Section 4. Section 5 represents the conclusion
of the paper.

2 Algorithmic framework

In this section, we begin by discussing how conventional trust-region methods work. Then, taking
into account two well-known nonmonotone trust-region algorithms, we propose two new variant non-
monotone trust-region algorithms with novel approaches to determining radius. Let f : Rn → R be a
twice continuously differentiable function. Traditionally this has been considered as the following un-
constrained optimization problem

Minimize f (x), subject to x ∈ Rn. (1)

As discussed in the preceding section, traditional trust-region algorithms seek a neighborhood near the
current step xk in which a quadratic model should agree with the objective function. We solve the
following quadratic subproblem to produce a trial step dk.

Minimize mk(d) = fk +gT
k d +

1
2

dT Bkd, subject to d ∈ Rn and ‖d‖ ≤ ∆k, (2)

where ‖.‖ is the Euclidean norm, fk = f (xk), gk = ∇ f (xk), Bk is the exact Hessian Gk = ∇2 f (xk) or
its symmetric approximation, and ∆k is a trust-region radius. The method should decide whether or
not it can be accepted after obtaining dk. The conventional monotone trust-region framework uses the
following ratio to achieve this goal:

ρk =
fk− f (xk +dk)

mk(xk)−mk(xk +dk)
, (3)

where the numerator represents the actual reduction, and the denominator represents the predicted re-
duction. The algorithm decides whether to accept or reject a trial step and whether to update the existing
trust-region radius ∆k based on the value of this ratio. Consider the situation where ρk is close to 1 in
the current region. It indicates that the model and the objective function are in accordance. If so, the
algorithm accepts the trial step. In this case, increasing the trust-region radius ∆k for the subsequent
iteration is safe. The approach rejects the trial step and reduces the trust region ∆k if ρk is a tiny positive
or negative number, indicating that the model and the objective are not in satisfactory agreement.

Grippo et al. in [12] developed the earliest nonmonotone strategy for the Newton method, inspired
by the watchdog technique proposed by Chamberlain et al. in [6] to avoid the Maratos effect. Their
proposal suggests that the steplength αk can be accepted whenever

f (xk +αkdk)≤ fl(k)+βαk∇ f (xk)
T dk, (4)

in which β ∈ (0,1) and
fl(k) = max

0≤ j≤m(k)
{ fk− j}, for all k ∈ N∪{0}, (5)

where m(0) = 0, 0≤m(k)≤min{m(k−1)+1,N} and N ≥ 0. In highly nonlinear problems and the pres-
ence of a narrow, curved valley, their conclusions are particularly relevant to the nonmonotone approach.
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Based on the exciting behavior of this nonmonotone technique, numerous researchers have effectively
developed the nonmonotone strategy for other optimization branches. Despite its many benefits, the clas-
sic nonmonotone (5), has several drawbacks; see, for instance, [1, 22]. For instance, Zhang and Hager
in [23] proposed a novel nonmonotone technique together within a line search framework to circumvent
some disadvantages. The approach relaxes the Armijo-type condition (4) by replacing fl(k) with Ck,
which is defined as

Ck =

{
f0, k = 0,
(ηk−1Qk−1Ck−1 + fk)/Qk, k ≥ 1,

(6)

where Qk is specified with

Qk =

{
1, k = 0,
ηk−1Qk−1 +1, k ≥ 1,

and 0≤ ηmin≤ ηk−1≤ ηmax≤ 1. This method, in our opinion, is thriving and promising when addressing
unconstrained optimization problems. Nonmonotonic techniques for line search procedures have yielded
significant results, motivating researchers to examine their influence on trust-region frameworks. see
[1–3, 17]. Therefore, other trust-region ratios have been proposed, with the following ratio being the
most popular nonmonotone trust-region ratio.

ρ̃k =
fl(k)− f (xk +dk)

mk(xk)−mk(xk +dk)
, (7)

where fl(k) is defined by (5) and the numerator is called the nonmonotone reduction. As another example,
Mo, Liu, and Yan in [17] take advantage of the nonmonotone strategy (6) of Zhang and Hager in the trust-
region framework to propose the following ratio

ρ̂k =
Ck− f (xk +dk)

mk(xk)−mk(xk +dk)
. (8)

The theoretical and computational results of this method are noticeably fascinating for unconstrained
optimization problems.

The traditional nonmonotone trust-region framework employs this ratio as a measure of acceptance
for the trial step and as a criterion for updating the radius after calculating the ratio of the nonmonotone
reduction to the predicted one. For example, if dk is a subproblem solution and ρ̂k is the applied ratio,
then the trust-region radius is usually updated by

∆k+1 =


max [∆k,γ2‖dk‖] , ρ̂k ≥ µ2,
∆k, µ1 ≤ ρ̂k < µ2,
γ1‖dk‖, ρ̂k < µ1,

where 0< µ1 < µ2≤ 1 and 0< γ1 < 1< γ2, and the new point is accepted if ρ̂k≥ µ1. As a consequence of
the fact that Ck ≥ fk, it is clear that ρ̂k ≥ ρk, i.e., it seems that if the problem is not highly nonlinear, then
the number of iterates that for which ρ̂k ≥ µ2 is grown, so the procedure increases the trust-region radius
more than needed. To overcome this disadvantage, we believe it is logical to exploit a nonmonotone ratio
for the measure of acceptance and employ the monotone ratio (3) to update the trust-region radius.

Suppose Ak is a nonmonotone term in kth iteration. Based on the considered discussion, we summa-
rize the new nonmonotone trust-region procedure.
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Algorithm 1: Modified nonmonotone trust-region framework 1

Input: An initial point x0 ∈ Rn, a symmetric positive definite matrix B0 ∈ Rn×n, an integer kmax and
parameters 0 < η0 < 1, 0≤ µ1 < µ2 < 1, 0 < γ1 < 1 < γ2 and ∆0 > 0 and ε > 0. Begin

f0← f (x0); A0← f0; g0← g(x0); k← 0;
While (‖gk‖ ≥ ε and k ≤ kmax)

Step 1:
Determine a trial point dk by solving the subproblem (2);
f̂k+1← f (xk +dk);
Step 2:
Âred← Ak− f̂k+1;
Pred← m(xk)−m(x̂k+1);
ρ̂k← Âred/Pred;
Step 3: {Trust-region update}
Ared← fk− f̂k+1;
ρk← Ared/Pred;
If ρk ≥ µ2 Then Enlarge the trust-region radius by choosing

∆k+1 = max [∆k,γ2‖dk‖];
else if µ1 ≤ ρk < µ2 Then

∆k+1 = ∆k;
else Reduce the trust-region radius by selecting

∆k = γ1‖dk‖; Go to Step 1;
end if;
Step 4: {Trust-region acceptance}
If ρ̂k > µ1Then

xk+1 = xk +dk;
fk+1 = f̂k+1;

End if ;
Step 5: {Parameters update}
Update Bk by a quasi-Newton updating formula and compute Bk+1;
Compute gk+1 = g(xk+1);
Generate Ak+1.
k← k+1;

End While
End

Here, the While loop containing Steps 1-5 is called outer cycle and the loop including Steps 1 to
Go to Step 1 in Step 3 is named inner cycle.

Remark 1 There are some choices for Ak. Here, we use two standard choices. The first choice is Ak =Ck
defined by (6) and the second choice is Ak = fl(k) defined by (5). We call Algorithm 1 by NTRM-1 and
NTRG-1 when we use Ak =Ck and Ak = fl(k) respectively.
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Definition 1. We define any iterate of Algorithm 1 satisfying ρ̂k ≥ µ1, causing xk+1 = xk + dk, as a
successful iterate. Furthermore, we identify it as a very successful iterate if this iterate satisfies ρk ≥ µ2.
Example 1. To study the updating process of the nonmonotone trust region framework in depth, we se-
lect two famous test functions from [18] and apply NTRG-1 and NTRM-1 and their traditional versions,
NTRG and NTRM, were proposed by Grippo et al. in [13] and Mo et al. in [17] on these two problems,
to show the various performances of these algorithms. We summarized the corresponding results in the
following table.

Table 1. Results for (Iterates/Function evaluations)

Problem name Dim NTRG NTRG-1 NTRM NTRM-1

Penalty function II 100 491/606 140/149 298/368 139/147
Brown badly scale function 2 17/19 78/78 38/39 78/78

The results for the first problem indicate that the proposed nonmonotone trust-region method is more
effective than the traditional nonmonotone framework. In contrast, the results for the second problem
show the reverse. To comprehend the cause behind these observations, we must closely examine the
functions’ features. Both functions are highly nonlinear, but only the second function has a narrow,
curved valley. According to our analysis, the modified nonmonotone trust-region framework handles this
problem similar to the traditional trust-region method; therefore, the radius is not sufficiently enlarged in
contrast to the conventional nonmonotone framework.

Based on the outcomes given in Example 1, we must adjust the proposed nonmonotone trust-region
structure to have better behavior when confronted with highly nonlinear problems and when a narrow
valley meets. Obviously, in narrow, curved valleys, the actual reduction is significantly more than pre-
dicted, it is apparent that ρk > µ2 in most cases. Hence, we suggest a procedure to identify narrow curved
valleys based on how often the condition ρk > µ2 is consecutively satisfied. As a result, if the number
of observations in this condition is more than an integer constant like I , then one can conclude that the
algorithm encounters a narrow curved valley. So some nonmonotone ratios can be used to determine the
trust-region radius. According to this discussion, by setting Flag as the counter of the condition ρk > µ2,
we introduce the following framework for the nonmonotone trust-region procedures:

Algorithm 2: Modified nonmonotone trust-region framework 2

Keep all the steps of Algorithm 1 , let a constant I ∈ N is given, set Flag = 0. only modify Step 3 by
the following step:
Step 3: {Trust-region update}
if ρk ≥ µ2 Then Enlarge the trust-region radius by choosing ∆k+1 = max [∆k,γ2‖dk‖]; Flag← Flag+1;
else if Flag≥I and ρ̂k ≥ µ2 Then Enlarge the trust-region radius by choosing ∆k+1 =max [∆k,γ2‖dk‖];
else if µ1 ≤ ρk < µ2 Then ∆k+1 = ∆k;
else Reduce the trust-region radius by selecting ∆k = γ1‖dk‖; Flag← 0; Go to Step 1;
end if

In this point, we call Algorithm 2 by NTRM-2 when Ak = Ck and NTRG-2 if Ak = fl(k). Based on
what discussed in Step 3 of Algorithm 2, we require to define a new meaning for the term ”very success-
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ful iterates.” For this purpose, we introduce the following definition:

Definition 2. In Algorithm 2, when ( Flag ≥ I and ρ̂k ≥ µ2) or ρk ≥ µ2, the trust-region radius is
enlarged and iteration is named a very successful iterate.

3 Global convergence properties

This section is devoted to the theoretical analysis including the global convergence to first- and
second-order stationary points of the new algorithms for solving unconstrained nonlinear optimization
problems. First of all, we prove that any limit point x∗ of the sequence {xk} generated by Algorithm 2
satisfies g(x∗) = 0, paying no attention to the choice of the arbitrary starting point x0 and the initial trust-
region radius ∆0. Then the aim of ensuring convergence to second-order stationary points is followed
based on employing the second order information of the objective function. In the rest of this section,
Algorithm 2 means NTRM-2.

Throughout the paper, the following classical assumptions are considered to analyze the strong global
convergence results of the proposed algorithms:
(H1) The objective function f (x) is twice continuously differentiable and has a lower bound on the level
set L(x0) = {x ∈ Rn| f (x) ≤ f (x0)}; that is, there exists a constant κlbf such that f (x) ≥ κlbf, for all
x ∈ L(x0).
(H2) The approximate Hessian matrixs, Bk , are uniformly bounded, i.e. there exists κumh > 0 such that

‖Bk‖ ≤ κumh, for all k ∈ N∪{0}.

(H3) The decrease on the model mk is at least as much as a fraction of that obtained by the Cauchy
point, i.e. there exists a constant κmdc ∈ (0,1) such that

mk(xk)−mk(xk +dk)≥ κmdc ‖gk‖ min
[

∆k,
‖gk‖
‖Bk‖

]
, (9)

for all k ∈ N∪{0}.

As known, we call the condition (9) the sufficient reduction condition throughout trust-region lit-
erature. By solving the trust region subproblem based on specific procedures, this condition is easily
specified. See for example, [8, 19, 20]. This condition implies dk 6= 0 in the case that gk 6= 0.

Pay attention to the fact that the objective function f (x) is twice continuously differentiable and the
level set L(x0) is bounded along with the assumption (H1) imply that ‖Gk‖ is uniformly continuous and
bounded on the open bounded convex set Ω, containing L(x0) and Bk. Therefore, there exists a constant
κufh > 0 such that

‖G(ξk)‖ ≤ κufh, for all ξk ∈Bk, (10)

where Bk = {x ∈ Rn|‖x− xk‖ ≤ ∆k}. This fact together with the mean value theorem directly conclude
that

‖g(x)−g(y)‖ ≤ κufh ‖x− y‖, for all x,y ∈Ω

which means that f (x) is a Lipschitz function.
Providing an error bound for the distance between the objective function and its current quadratic

model (2) at the new iterate xk +dk is the first step of our analysis.
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Lemma 1. Suppose that (H1) and (H2) hold and the sequence {xk} be generated by Algorithm 2. Then
we have

| f (xk +dk)−mk(xk +dk)| ≤ κubh ∆
2
k ,

where κubh = max
[
κufh,κumh

]
.

Proof. Based on the Taylor expansion and the mean value theorem, we obtain that

f (xk +dk) = fk +gT
k dk +

1
2

dT
k G(ζk)dk,

for some ζk in the line segment [xk,xk +dk].
This fact, the definition of mk(d), (H2) and (10) imply that

| f (xk +dk)−mk(xk +dk)|= | fk +gT
k dk +

1
2

dT
k G(ζk)dk− fk−gT

k dk−
1
2

dT
k Bkdk|

≤ 1
2
[
|dT

k G(ζk)dk|+ |dT
k Bkdk|

]
≤ 1

2
(κufh +κumh)‖dk‖2

≤ κubh∆
2
k .

So the proof is completed.

We first prove the following lemma. This lemma is necessary to establish that Algorithm 2 will
finitely terminate and to yield evidence about the convergence of the sequence {Ck}.

Lemma 2. Suppose that (H3) holds and the sequence {xk} be generated by Algorithm 2. Then we have

fk+1 ≤Ck+1 ≤Ck, (11)

for all k ∈ N∪{0}.

Proof. Let iterate k be a successive iterate so that, from ρ̂k ≥ µ1 and (9), we easily get

fk+1 ≤Ck−µ1κmdc ‖gk‖ min
[

∆k,
‖gk‖
‖Bk‖

]
. (12)

This fact together with (6) imply that

Ck+1 =
ηkQkCk + fk+1

Qk+1

≤
ηkQkCk +Ck−µ1κmdc ‖gk‖ min

[
∆k,

‖gk‖
‖Bk‖

]
Qk+1

=Ck−
µ1κmdc ‖gk‖ min

[
∆k,

‖gk‖
‖Bk‖

]
Qk+1

,

which clearly suggests
Ck+1 ≤Ck. (13)
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On the other hand, if ηk 6= 0, from (6), we obtain

Ck+1−Ck =
fk+1−Ck+1

ηkQk
. (14)

Thus, by (13) and (14), we get fk+1≤Ck+1≤Ck, for all k∈N∪{0}. If ηk = 0, then we have Ck+1 = fk+1.
Therefore, in both cases (11) holds, and so the proof is completed.

As a result of Lemma 2, it can be deduced that the sequence {Ck} is non-increasing. This fact along
with (H1) suggest that there exists a real-valued constant κlbf such that

κlbf ≤ fk+n ≤Ck+n ≤ ·· · ≤Ck+1 ≤Ck,

for all n ∈ N∪{0}, i.e., the non-increasing sequence {Ck} has a lower bound. This obviously leads to
the fact that the sequence {Ck} is convergent. This result can be summarized in the following corollary.

Corollary 1. Suppose that (H1)–(H3) hold and the sequence {xk} be generated by Algorithm 2. Then
the sequence {Ck} is convergent.

Lemma 1 states that the objective function will be adequately decreased by minimizing the model
inside a small trust-region radius. The following theorem illustrates that if the current iteration is not
a first-order stationary point and the trust-region radius ∆k is small enough, the next iteration must be
very successful. Considering this result alongside Lemma 2 demonstrates that the inner cycle of the
algorithms terminates finitely.

Lemma 3. Suppose that (H1)–(H3) hold and the sequence {xk} be generated by Algorithm 2. Further-
more, suppose that gk 6= 0 and

∆k ≤
κmdc‖gk‖(1−µ2)

κubh
. (15)

Then the iterate k is very successful, i.e. ∆k+1 ≥ ∆k and the inner cycle of Algorithm 2 is finitely termi-
nated.

Proof. Based on Definition 2, we divide the proof into two following cases:
Case 1. (Flag < I ) Using the fact that µ2,κmdc ∈ (0,1), it is clear that κmdc(1−µ2) < 1. As a conse-
quence of (15), κumh ≤ κubh and (H2) we have

∆k <
‖gk‖
κumh

≤ ‖gk‖
‖Bk‖

.

Using this inequality and (9), we directly obtain

mk(xk)−mk(xk +dk)≥ κmdc ‖gk‖ min
[

∆k,
‖gk‖
‖Bk‖

]
= κmdc ‖gk‖ ∆k. (16)

By applying Lemma 1, (15) and (16), we have

|ρk−1|=
∣∣∣∣ fk− f (xk +dk)

mk(xk)−mk(xk +dk)
−1
∣∣∣∣= ∣∣∣∣ f (xk +dk)−mk(xk +dk)

mk(xk)−mk(xk +dk)

∣∣∣∣≤ κubh

κmdc ‖gk‖
∆k ≤ 1−µ2,
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which means ρk ≥ µ2. Thus, the definition 2 implies that the current iterate is very successful.
Case 2. (Flag ≥ I ) Similar to what has been stated in Case 1, one can conclude that ρk ≥ µ2. As a
result, the relation (11) implies that

ρ̂k =
Ck− f (xk +dk)

mk(xk)−mk(xk +dk)
≥ fk− f (xk +dk)

mk(xk)−mk(xk +dk)
≥ µ2.

Therefore, ρ̂k ≥ µ2 and the current iterate is very successful.
The results of Case 1 and 2 are clearly indicated that ∆k+1 ≥ ∆k. Meanwhile, like Case 1, the fact

that ρk ≥ µ2 joint with µ2 ≥ µ1 and Ck ≥ fk suggest that the condition ρ̂k ≥ µ1 finally holds so that the
inner cycle will be exited in finite steps. Therefore, the proof is completed.

As a result of Lemma 4, the trust-region radius can not become so small until a first-order stationary
point is achieved. It demonstrates how small the trust-region radius ∆k should depend on ‖gk‖ to guar-
antee the iterate’s success. The following lemma ensures this. The detailed proof of this lemma can be
seen in Theorem 6.4.3 of Conn et al. in [8].

Lemma 4. Suppose that (H1)–(H3) hold and the sequence {xk} be generated by Algorithm 2. Also
suppose that there exists a constant ε > 0 such that ‖gk‖ ≥ ε . Then there exists a constant κlbd such that
∆k ≥ κlbd, for all k ∈ N∪{0}.

We know that the best convergence results of nonmonotone methods are obtained by a stronger
nonmonotone strategy when iterates are far from the optimum and by a weaker one when iterates are
close to the optimum (see [1, 22]). It is clear that Algorithm 2, to some extent, starts with the strong
nonmonotone ratio ρ̂k. The following lemma shows that Ck ≈ fk, for sufficiently large k, which means
that the nonmonotone ratio ρ̂k is approximately the same as the monotone ratio ρk, in the sequel, so that
a weaker nonmonotone strategy is employed whenever iterates become close to the local optimum.

Lemma 5. Suppose that (H1)–(H3) hold and the sequence {xk} be generated by Algorithm 2. Then we
have

lim
k→∞

Ck = lim
k→∞

f (xk). (17)

Proof. It should be first noticed that ηmax ∈ [0,1) and ηk ∈ [ηmin,ηmax], for all k ∈ N∪{0}. Thus, the
definition of Qk straightforwardly gives

Qk = 1+
k−1

∑
i=0

i

∏
m=0

ηk−m ≤ 1+
k−1

∑
i=0

η
i+1
max ≤

k

∑
i=0

η
i
max ≤

∞

∑
i=0

η
i
max =

1
1−ηmax

.

This leads to
ηkQk ≤

ηk

1−ηmax
≤ ηmax

1−ηmax
. (18)

Now, if ηk 6= 0, by (6), we get

Ck+1−Ck =
fk+1−Ck+1

ηkQk
. (19)

Using (19) and Corollary 3, as k→ ∞, we finally obtain

lim
k→∞

fk+1−Ck+1

ηkQk
= lim

k→∞

Ck+1−Ck = 0. (20)

Therefore, (18) and (20) give our desired result.
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We are now ready to propose the global convergence property to first-order stationary points of
Algorithm 2.

Theorem 1. Suppose that (H1)–(H3) hold and the sequence {xk} be generated by Algorithm 2. Then we
have

liminf
k→∞

‖gk‖= 0. (21)

Proof. To get a result, we divide the proof into two following cases:
Case 1. Assume that the algorithm has finitely successful iterates. Then there exists a constant k0 ∈ N
which is the index of the last successful iterate. If ‖gk0+1‖ > 0, then it follows from Lemma 4 that
there must be a very successful iterate of index larger than k0, which is impossible. This means that
‖gk0+1‖= 0 and x∗ is a first-order critical point.

Case 2. To drive a contradiction, assume that there exists a constant ε > 0 such that ‖gk‖ ≥ ε , for
all k. We consider a successful iterate with index k. Now, Lemma 5 along with (H1)–(H3) suggest that

Ck− fk+1 ≥ µ1[mk(xk)−mk(xk +dk)]

≥ µ1κmdc ‖gk‖ min
[

∆k,
‖gk‖
‖Bk‖

]
≥ µ1εκmdc min

[
κlbd,

ε

κumh

]
> 0.

As a consequence, Lemma 6, when k→ ∞, immediately gives that

0≥ µ1εκmdc min
[

κlbd,
ε

κumh

]
,

which is an obvious contradiction so that (21) can be held.
Therefore, in both cases, we established that x∗ is a first-order critical point of the sequence {xk} and

the proof is completed.

Theorem 7 clearly implies that if the sequence {xk} has some limit points, then at least one of them
will satisfy the first-order necessary condition, stating that if this point is x∗, then g(x∗) = 0. Now, we
prove the stronger result establishing that any limit point of the sequence {xk} is a first-order stationary
point.

Theorem 2. Suppose that (H1)–(H3) hold and the sequence {xk} be generated by Algorithm 2. Then we
have that

lim
k→∞

‖gk‖= 0. (22)

Proof. To establish a contradiction, it is assumed that limk→∞ ‖gk‖ 6= 0. Hence, there exists ε > 0 and an
infinite subsequence of successful iterates {xk}, indexed by {ti} ⊆ S = { k ≥ 0 | ρ̂k ≥ µ1}, such that

‖gti‖ ≥ 2ε > 0 (23)
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for some ε > 0 and all i∈N. Theorem 7 guarantees that, for each i, there exists the first successful iterate
l(ti)> ti such that ‖gl(ti)‖< ε . Defining li = l(ti), there exists another subsequence in S, indexed by {li},
such that

‖gk‖ ≥ ε for ti ≤ k < li and ‖gli‖< ε. (24)

The full attention is focused on the sequence of successful iterates whose indices are in the set

K = {k ∈ S | ti ≤ k < li, for all i ∈ N}.

From (H3) and (24), for an arbitrary k ∈K , we can write

mk(xk)−mk(xk +dk)≥ κmdc ‖gk‖ min
[

∆k,
‖gk‖
‖Bk‖

]
≥ εκmdc min

[
∆k,

ε

κumh

]
. (25)

Because k ∈K , it is clear that

Ck− fk+1 ≥ µ1[mk(xk)−mk(xk +dk)]≥ εκmdc min
[

∆k,
ε

κumh

]
.

This fact along with Lemma 6 imply that

lim
k∈K ,k→∞

∆k = 0. (26)

Therefore, from (25) and (26), it can conclude

mk(xk)−mk(xk +dk)≥ κmdc ε ∆k.

Now, this inequality and Lemma 1 lead to∣∣∣∣ fk− f (xk +dk)

mk(xk)−mk(xk +dk)
−1
∣∣∣∣≤ κubh

κmdc ε
∆k→ 0, as k→ ∞ and k ∈K .

So, for sufficiently large k ∈K , we have

fk− fk+1 ≥ µ1[mk(xk)−mk(xk +dk)].

This along with (25), (H2) and (H3) imply

fk− fk+1 ≥ µ1κmdc ‖gk‖ min
[

∆k,
‖gk‖
‖Bk‖

]
≥ µ1εκmdc min

[
∆k,

ε

κumh

]
≥ µ1εκmdc ∆k. (27)

As a result of (27), for sufficiently large k ∈K , it can be easily concluded that

∆k ≤
1

µ1εκmdc
( fk− fk+1).

Based on this bound and Lemma 2, for sufficiently large i, it follows that

‖xti− xli‖ ≤
li−1

∑
j∈κ, j=ti

‖x j− x j+1‖ ≤
li−1

∑
j∈κ, j=ti

∆ j ≤
1

µ1εκmdc
( fti− fli) (28)
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Now, Lemma 6 and (28) suggest that the right hand side of this inequality must tend to zero. Therefore,
it is obtained that ‖xti − xli‖ converges to zero, as i tends to infinity. From the continuity of the gradient,
it can be deduced

lim
i→∞
‖gti−gli‖= 0. (29)

On the basis of the definitions of {ti} and {li}, this is impossible implying that ‖gti − gli‖ ≥ ε . Hence,
there is no subsequence satisfying (23) and the proof is completed.

Theorem 3. Suppose that all assumptions of Theorem 8 hold, then there is no limit point of the sequence
{xk} being a local maximum of f (x).

Proof. The proof is similar to that of the theorem in [12]. The details are omitted.

In what follows, there is an intention to explore conditions guaranteeing the convergence to second-
order stationary points, that is, points x∗ at which the second order necessary optimality conditions

g(x∗) = 0 and G(x∗) is positive semidefinite

are satisfied. In order to investigate the global convergence to second-order stationary points, similar
to [4, 8], the following additional assumptions is needed:

(H4) The model is asymptotically second-order coherent with the objective function close to first-order
critical points, i.e.

lim
k→∞

‖Gk−Bk‖= 0, whenever lim
k→∞

‖gk‖= 0.

(H5 ) If the smallest eigenvalue τk of Bk at xk is negative, it may be determined a direction dk provided
that

mk(xk)−mk(xk +dk)≥ κsod|τk| min[τ2
k ,∆

2
k ],

for some constant κsod ∈ (0, 1
2).

Considering some assumptions, the following lemma implies that if the steps tend to zero, the trust-
region radius ∆k is bounded away from zero, for k sufficiently large .

Lemma 6. Suppose that (H1), (H2) and (H4) hold and f (x) be a twice continuously differentiable
function. Suppose furthermore that there exists a subsequence {xki} and a constant κqmd such that

mk(xk)−mk(xk +dki)≥ κqmd‖dki‖> 0,

for all i sufficiently large. Finally, suppose that

lim
i→∞
‖dki‖= 0.

Then we have that the iterate xki is very successful and so ∆ki+1 ≥ ∆ki , for i sufficiently large.

Proof. For Algorithm 2, similar to Lemma 6.5.3 of Conn et al. in [8], we can prove that ρki > µ2. Now,
by using this fact, dividing the proof into the two cases like Lemma 4 and employing Lemma 2, one
can conclude that the current iterate is very successful, for i sufficiently large. Therefore, Step 3 of the
algorithm indicates the results.
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Theorem 4. Suppose that (H1)–(H4) hold and that {xki} is a subsequence of the iterates generated by
Algorithm 2 converging to a first-order critical point x∗ where the Hessian of the objective function G(x∗)
is positive definite. Consider also that sk 6= 0 for all k sufficiently large. Then the complete sequence of
iterates converges to x∗, all iterates are eventually very successful, and the trust-region radius ∆k is
bounded away from zero.

Proof. In the case of Algorithm 2, the proof is held by following Theorem 6.5.5 of Conn et al. in [8] and
regarding very successful iterates in Lemma 10.

Theorem 5. Suppose that (H1)–(H5) hold and all iterates lie within a close, bounded domain Ψ. Then
there exists at least one limit point x∗ of the sequence {xk} produced by Algorithm 2, which is a second-
order stationary point.

Proof. See Theorem 6.6.5 of Conn et al. in [8]. The details are omitted.

Theorem 6. Suppose that (H1)–(H5) hold and let x∗ be any limit point of the sequence of iterates {xk}.
Then x∗ is a second-order stationary point.

Proof. The conclusion can be obtained similar to Theorem 6.6.8 of Conn et al. in [8].

Here, similar to the theorem from Grippo et al. in [12], one can conclude that there is no limit point of
the sequence {xk} being a local maximum of f (x). Furthermore, superlinear and quadratic convergence
rates of the proposed algorithms can be established like what is described in [2].

Remark 1. As we mentioned, the results of this section have established for NTRM-2, but this results
can be satisfied for NTRM-1 similar to that cases concern with (Flag < I ) and also for NTRG-1 and
NTRG-2 by just attending to this fact that { fl(k)} is decreasing sequence and substituting lemma 6 with
Lemma 7 from Ahookhosh and Amini in [1].

4 Numerical experiments

In this section, we evaluate the efficacy and robustness of the paper’s fundamental idea by reporting
the computational outcomes of the proposed approach. In particular, we provide numerical results for the
traditional trust-region, TTR, and the traditional nonmonotone trust-region method using the nonmono-
tone term (5), NTRG, as well as its variations resulting from Algorithms 1 and 2, NTRG-1 and NTRG-2.
Similarly, we exploit the nonmonotone term [17], NTRM, and our modified variants of this method,
NTRM-1, and NTRM-2, for the nonmonotone trust-region algorithm of Mo et al. Almost 90 standard
test functions from the CUTEst libraries [5], and [10] are utilized to evaluate the effectiveness of these
techniques. The dimensions of examination tasks range from 2 to 5625. All problems are unconstrained,
with some of them being highly nonlinear. These problems have proved to be reasonably hard in the
past. Table 2 displays their names and sizes.

All presented codes are written in MATLAB 8.01 programming environment in double precision
arithmetic format on an ASUS laptop (2.20 GHz CPU ,8GB RAM) with a Linux operation system . We
employ the Steihaug-Toint procedure, see [8], to solve trust-region subproblems. As denoted by Bastin
et al. in [4], the Steihaug-Toint algorithm terminates at xk +d whenever

‖∇ f (xk +d)‖ ≤min
[

1
10

,‖gk‖
1
2

]
‖gk‖ or ‖d‖= ∆k,
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as well holds. Furthermore, we stop the implementations whenever the total number of iterates exceeds
20000, or the condition ‖gk‖ ≤ 10−5 satisfies. We exploit N = 10 for NTRG, NTRG-1, NTRG-2, and
η0 = 0.85 for NTRM, NTRM-1, and NTRM-2 as considered in [17, 23]. Meanwhile, in all algorithms,
µ1 = 0.05 and µ2 = 0.9 and the initial trust-region radius, the same as the literature [7], set to ∆0 =
1
10‖g0‖. We also update the trust-region radius using

∆k+1 =


max [∆k,γ2‖dk‖], rk ≥ µ2,

∆k µ1 ≤ rk < µ2,

γ1‖dk‖, rk < µ1.

Regarded to the applied algorithm, we set rk equal to ρk or ρ̂k. We select the parameters γ1 = 0.25 and
γ2 = 3 similar to the literature [11]. As known, based on the results provided in [11], three categories of
parameters have been analyzed: “worst,” “standard,” and “best” cases. The general conclusions reveal
that the worst-case value for γ2 is 5, which causes increasing the CPU time and the number of iterations
in most of the test problems. The worst-case value of γ2 provides a suitable measure of how large the trust
region should be in each iteration to avoid the algorithm’s poor performance in terms of CPU time and
number of iterations. Algorithm 2 controls this issue, and the only difference between it and Algorithm
1 in Step 3 is whether the radius remains unchanged or expands without going over the trust region’s
maximum radius. Besides, the presented algorithms employ the well-known BFGS formula to update
the matrix Bk as an approximation of the exact Hessian matrix by the following formula

Bk+1 = Bk +
ykyT

k

sT
k yk
−

BksksT
k Bk

sT
k Bksk

,

where sk = xk+1− xk and yk = gk+1− gk. It has been mentioned that the considered algorithms do not
update Bk whenever the curvature condition sT

k yk > 0 does not hold. Additionally, while the algorithms
are running, we ensure that all the codes reach the same optimal points. As a result, we present those
results in which all algorithms reach the same places. The results are summarized in Table 2. In 2002,
Dolan and Moré in [9] introduced an exciting technique that used a statistical process to compare itera-
tive algorithms by illustrating the results in performance profiles. This procedure selects a performance
index to compare the algorithms under consideration, and it graphically depicts the results using perfor-
mance profiles to make a more precise comparison. Here, we use this technique to compare the presented
algorithms in terms of the number of iterations and the number of function evaluations separately. perfor-
mance profiles in Figure 1 show the results of these comparisons. From Figure 1(a), first, we notice that
when the performance measure is the total number of iterates, NTRG-1 and NTRG-2 are so competitive
in the sense of the most wins. The most wins are related to NTRG and NTRG-2, with about 50% of
all test functions. Meanwhile, NTRG-2 solves approximately 93% of all test problems. The diagram
of NTRG-1 and NTRG-2 grow up faster than TTR and NTRG, which certify the effectiveness of these
two algorithms. We observe that the results of NTRG-1 and NTRG-2 are remarkably better than TTR
and NTRG. On the other hand, From Figure 1(b), the total number of function evaluations for NTRG-1
and NTRG-2 are considerably less than for TTR, NTRG, and the most wins are approximately 51% of
all tests functions. While from Figure 1(c), NTRM, NTRM-1, and NTRM-2 compete in the number
of iterations, and 1(d) show that NTRM-1 and NTRM-2 outperform NTRM regarding the number of
function evaluations. Based on our detailed examination, we conclude that the proposed frameworks for
addressing unconstrained optimization problems are more efficient and robust than traditional ones.
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5 Conclusion

Nonmonotonic trust-region algorithms provide a promising iterative method for solving optimization
problems. The theoretical convergence properties of trust-region methods are robust and numerically
reliable. Nonmonotone strategies, on the other hand, can increase the efficacy and robustness of meth-
ods, particularly when dealing with highly nonlinear problems and narrow valleys . Combining these
strategies provides strong and efficient optimization approaches. The standard nonmonotone trust-region
framework accepts new points and updates the trust-region radius using a nonmonotone ratio. Although
this method is effective for highly nonlinear problems, it may significantly enlarge the trust region. This
procedure increases the total number of subproblems and function evaluations. The authors claim that
employing a nonmonotone ratio for accepting new points, as well as the classic monotone ratio or its hy-
brid with nonmonotone ratios, can reduce the total cost of computing for solving optimization problems.
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