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Abstract. The aim of the current paper is to study a partially described inverse eigenvalue problem
of a specific symmetric matrix, and prove some properties of such matrix. The problem includes the
construction of the matrix by the minimal eigenvalue of all leading principal submatrices and eigenpair
(λ

(n)
2 ,x) such that λ

(n)
2 is the maximal eigenvalue of the required matrix. We investigate conditions for

the solvability of the problem, and finally an algorithm and its numerical results are presented.
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1 Introduction

Constructing a matrix with a particular structure from total or a partial eigendata is regarded as inverse
eigenvalue problem arising in some applications. In [1] inverse eigenvalue problems are described with
details. Special types of inverse eigenvalue problems have been studied in [2–4]. The problem in this
paper involves the construction of a specific symmetric matrix. This is carried out through the minimal
eigenvalue of each of its leading principal submatrices and an eigenpair of the matrix. The symmetric
matrix will be of the following form
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An =



a1 b1 . . . bp+1
b1 a2
...

. . .
bp+1 ap+1 bp+2

bp+2 ap+2 bp+3

bp+3
. . . . . .
. . . . . . bp+m

bp+m ap+m bp+m+1 . . . bn−1
bp+m+1 ap+m+1

...
. . .

bn−1 an



(1)

where b j > 0 for j = 1, . . . ,n−1 and n = p+m+q.
In the current paper, we attempt to solve the following IEP, denoted by IEP1, consisting of construct-

ing a matrix of form (1) with partial eigendata.
IEP1: The list of real numbers λ

(n)
2 , λ

( j)
1 , j = 1, . . . ,n, and real vector x = (x1,x2, . . . ,xn) are given. Find

a matrix An of the form (1) such that λ
(n)
2 is the maximal eigenvalue of An, λ

( j)
1 is the minimal eigenvalue

of the leading principal submatrix A j of An and (λ
(n)
2 ,x) is an eigenpair of An.

The paper is organized as follows. Section 2 will provide a brief outline of some lemmas used all over
this paper. In Section 3, IEP1 is discussed and an algorithm is presented. In Section 4, we investigate
conditions for the existence of the nonnegative matrix An. In Section 5, we report a numerical example
to illustrate the solutions of IEP1. Finally, Section 6 concludes the paper.

2 Preliminaries

What follows is necessary lemmas that are used in the paper.

Lemma 1. [5] Let ϕ(λ ) be a monic polynomial of degree n with all real zeroes. If λ
(n)
1 and λ

(n)
n are,

respectively, the minimal and the maximal zero of ϕ(λ ), then

(i) if x < λ
(n)
1 , we have (−1)nϕ(x)> 0;

(ii) if x > λ
(n)
n , we have ϕ(x)> 0.

Lemma 2. [6] (Cauchy’s interlacing theorem) Let λ
(n)
1 ≤ λ

(n)
2 ≤ ·· · ≤ λ

(n)
n be the eigenvalues of a real

symmetric matrix An×n and µ
(n−1)
1 ≤ µ

(n−1)
2 ≤ ·· · ≤ µ

(n−1)
n−1 be the eigenvalues of an (n− 1)× (n− 1)

principal submatrix of An×n. Then, λ
(n)
1 ≤ µ

(n−1)
1 ≤ ·· · ≤ µ

(n−1)
n−1 ≤ λ

(n)
n .
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Lemma 3. [4] Let An be an n× n matrix of the form (1) and λ
( j)
1 , λ

( j)
2 be the minimal and maximal

eigenvalue of the leading principal submatrix A j of An, j = 1,2, . . . ,n. Then

λ
(n)
1 < λ

(n−1)
1 < · · ·< λ

(2)
1 < λ

(1)
1 < λ

(2)
2 < · · ·< λ

(n)
2 , (2)

and
λ
( j)
1 < ak < λ

( j)
2 , k = 1,2, . . . , j, j = 2, . . . ,n. (3)

3 The existence of the solution of the problem IEP1

Let {ϕ j(λ ) = det(λ I j −A j)}n
j=1 be the sequence of characteristic polynomials of An. We obtain the

recurrence relation ϕ j(λ ) of the matrix An in Lemma 4.

Lemma 4. Let An be an n× n matrix of the form (1). Then the sequence of {ϕ j(λ )}n
j=1 satisfies the

following recurrence relations

(i) ϕ1(λ ) = (λ −a1);

(ii) ϕ j(λ ) = (λ −a j)ϕ j−1(λ )−b2
j−1

j−1

∏
k=2

(λ −ak), j = 2, . . . , p+2;

(iii) ϕ j(λ ) = (λ −a j)ϕ j−1(λ )−b2
j−1ϕ j−2(λ ), j = p+3, . . . , p+m+1;

(iv) ϕ j(λ ) = (λ −a j)ϕ j−1(λ )−b2
j−1ϕp+m−1(λ )

j−1

∏
k=p+m+1

(λ −ak), j = p+m+2, . . . ,n,

where ϕ0(λ ) = 1.

Proof. The relations can be verified by expanding the determinant.

In the following lemma, we show how to gain the component x j of x from elements A j−1 and x1.

Lemma 5. If x = (x1,x2, . . . ,xn)
T is eigenvector of An corresponding to maximal eigenvalue λ

(n)
2 , then

x1 6= 0 and components of this eigenvector are given by:

x j =
−b j−1x1

(a j−λ
(n)
2 )

, j = 2, . . . , p+1, (4)

x j =
(−1) jϕ j−1(λ

(n)
2 )x1

∏
j−1
i=p+1 bi ∏

p+1
k=2 (ak−λ

(n)
2 )

, j = p+2, , . . . , p+m, (5)

x j =
−b j−1ϕp+m−1(λ

(n)
2 )x1

(a j−λ
(n)
2 )∏

p+m−1
i=p+1 bi ∏

p+1
k=2 (ak−λ

(n)
2 )

, j = p+m+1 . . . ,n. (6)
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Proof. Since (λ
(n)
2 ,x) is an eigenpair of An, so Anx = λ

(n)
2 x, which can be transformed into the form

(a1−λ
(n)
2 )x1 +

p+2

∑
i=2

bi−1xi = 0, (7)

b j−1x1 +(a j−λ
(n)
2 )x j = 0, j = 2, . . . , p+1, (8)

bp+1x1 +(ap+2−λ
(n)
2 )xp+2 +bp+2xp+3 = 0, (9)

b j−1x j−1 +(a j−λ
(n)
2 )x j +b jx j+1 = 0, j = p+3, . . . , p+m−1, (10)

bp+m−1xp+m−1 +(ap+m−λ
(n)
2 )xp+m−1 +

n

∑
i=p+m+1

bi−1xi = 0, (11)

b j−1xp+m +(a j−λ
(n)
2 )x j = 0, j = p+m+1, . . . ,n. (12)

By Lemma 3 for j = 2, . . . , p+1 we have (a j−λ
(n)
2 ) 6= 0. Therefore, according to (8), x j can be written

as follows

x j =
−b j−1x1

(a j−λ
(n)
2 )

, j = 2, . . . , p+1.

As a result, (4) holds.
For j = p+2, . . . , p+m, it can be shown by induction on j that (5) holds. For the base case by (7)

we have

xp+2 =
(λ

(n)
2 −a1)x1−∑

p+1
i=2 bi−1xi

bp+1
,

by replacing x j, j = 2, . . . , p+1 we get

xp+2 =
∏

p+1
j=1 (a j−λ

(n)
2 )x1−∑

p+1
i=2 (b

2
j−1 ∏

p+1
k=2,k 6= j(ak−λ

(n)
2 )x1)

bp+1 ∏
p+1
k=2 (ak−λ

(n)
2 )

=
(−1)p+2ϕp+1(λ

(n)
2 )x1

bp+1 ∏
p+1
k=2 (ak−λ

(n)
2 )

.

Now suppose the lemma holds for j = p+ 3, . . . , p+m− 1, we prove it for j = p+m. From (10) we
obtain

xp+m =
−bp+m−2xp+m−2 +(λ

(n)
2 −ap+m−1)xp+m−1

bp+m−1
. (13)

By induction we have

xp+m−2 =
(−1)p+m−2ϕp+m−3(λ

(n)
2 )x1

∏
p+m−3
i=p+1 bi ∏

p+1
k=2 (ak−λ

(n)
2 )

, (14)

and

xp+m−1 =
(−1)p+m−1ϕp+m−2(λ

(n)
2 )x1

∏
p+m−2
i=p+1 bi ∏

p+1
k=2 (ak−λ

(n)
2 )

. (15)
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Therefore

xp+m =
−bp+m−2

bp+m−1
×
(

(−1)p+m−2ϕp+m−3(λ
(n)
2 )

∏
p+m−3
i=p+1 bi ∏

p+1
k=2 (ak−λ

(n)
2 )

)
x1

+
(λ

(n)
2 −ap+m−1)

bp+m−1
×
(

(−1)p+m−1ϕp+m−2(λ
(n)
2 )

∏
p+m−2
i=p+1 bi ∏

p+1
k=2 (ak−λ

(n)
2 )

)
x1

=
(−1)p+mϕp+m−1(λ

(n)
2 )x1

∏
p+m−1
i=p+1 bi ∏

p+1
k=2 (ak−λ

(n)
2 )

.

For j = p+m+ 1, . . . ,n by Lemma 3 we have (a j−λ
(n)
2 ) 6= 0. Therefore, according to (12), x j can be

written as follows:

x j =
−b j−1xp+m

(a j−λ
(n)
2 )

,

by replacing xp+m in above equation we get

x j =
−b j−1ϕp+m−1(λ

(n)
2 )x1

(a j−λ
(n)
2 )∏

p+m−1
i=p+1 bi ∏

p+1
k=2 (ak−λ

(n)
2 )

.

Since x is an eigenvector, we have x 6= 0. If x1 = 0 then from (4), (5) and (6) all other entries of x become
zero, hence x1 6= 0.

Theorem 1 presents the solution to the IEP1 and the conditions under which the problem is solvable.

Theorem 1. There are solutions to IPE1 if the following conditions are satisfied

(a) There is a solution α > 0 of the equation

α
2

j−1

∏
i=2

(λ
( j)
1 −ai)−

αx1ϕ j−1(λ
( j)
1 )

x j
+(λ

(n)
2 −λ

( j)
1 )ϕ j−1(λ

( j)
1 ) = 0,

for j = 2, . . . , p+1.

(b) There is a solution β > 0 of the equation

β
2
ϕp+m−1(λ

( j)
1 )

j−1

∏
i=p+m+1

(λ
( j)
1 −ai)−

βx1ϕ j−1(λ
( j)
1 )

x j
+(λ

(n)
2 −λ

( j)
1 )ϕ j−1(λ

( j)
1 ) = 0,

for j = p+m+1, . . . ,n.
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Proof. Solving the IEP1 is equivalent to solving the equations

ϕ j(λ
( j)
1 ) = 0, (16)

Anx = λ
(n)
2 x. (17)

Moreover, b j−1 > 0 for all j. From Lemma 4 and (16) we have

ϕ(λ
(1)
1 ) = 0⇒ a1 = λ

(1)
1 .

Since x j 6= 0, by (8) we get

a j = λ
(n)
2 −b j−1

x1

x j
, j = 2, . . . , p+1. (18)

Substituting a j into (16), we have

b2
j−1

j−1

∏
i=2

(λ
( j)
1 −ai)−

b j−1x1ϕ j−1(λ
( j)
1 )

x j
+(λ

(n)
2 −λ

( j)
1 )ϕ j−1(λ

( j)
1 ) = 0, (19)

condition (a) holds, which implies b j−1 > 0 for j = 2, . . . , p+1.
For j = p+2, . . . , p+m, by (16) we have

ϕ j(λ
( j)
1 ) = 0⇒ (λ

( j)
1 −a j)ϕ j−1(λ

( j)
1 )−b2

j−1ϕ j−2(λ
( j)
1 ) = 0

⇒ a j = λ
( j)
1 −

b2
j−1ϕ j−2(λ

( j)
1 )

ϕ j−1(λ
( j)
1 )

. (20)

By (5 ) we have

b j−1 =
(−1) jϕ j−1(λ

(n)
2 )x1

x j ∏
j−2
i=p+1 bi ∏

p+1
k=2 (ak−λ

(n)
2 )

, j = p+2, , . . . , p+m. (21)

Since x j 6= 0, then by (21), b j−1 6= 0. By successively using (20) and (21) a j and b j−1 are obtained.
Finally by (12) we get

a j = λ
(n)
2 −b j−1

x(p+m)

x j
, j = p+m+1, . . . ,n. (22)

Substituting a j into (16) we have

b2
( j−1)ϕp+m−1(λ

( j)
1 )

j−1

∏
i=p+m+1

(λ
( j)
1 −ai)−

b( j−1)x1ϕ j−1(λ
( j)
1 )

x j
+(λ

(n)
2 −λ

( j))ϕ j−1(λ
( j)
1 ) = 0, (23)

condition (b) holds, which implies b j−1 > 0 for j = p+m+1, . . . ,n.
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The following algorithm solves the IEP1. All recurrent relations involve the square of entries b j−1.
In the algorithm we choose the b j−1 > 0.

Algorithm 1 To solve problem IEP1

1: Input: p,m,q,λ (1)
1 ,λ

(2)
1 ,λ

(2)
2 , . . . ,λ

(n)
1 ,λ

(n)
2 , where p+m+q = n.

2: a1 = λ
(1)
1 .

3: for j = 2 to p+1 do
4: replacing a1,a2, . . . ,a j−1 and b1,b2, . . . ,b j−2 into (19) to f inding the two

solutions α1 and α2.
5: if α1 < 0 and α2 < 0 then
6: ending the algorithm.
7: end if
8: if α1 > 0 then
9: b j−1 = α1, computing a j by (19).

10: end if
11: if α2 > 0 then
12: b′j−1 = α2, computing a′j by (19).
13: end if
14: end for
15: for j = p+2 to p+m do

16: a j = λ
( j)
1 −

b2
j−1ϕ j−2(λ

( j)
1 )

ϕ j−1(λ
( j)
1 )

. b j−1 =
(−1) jϕ j−1(λ

(n)
2 )x1

x j ∏
j−2
i=p+1 bi ∏

p+1
k=2 (ak−λ

(n)
2 )

17: end for
18: for j = p+m+1 to n do
19: replacing ap+m,ap+m+1, . . . ,a j−1 and bp+m−1,bp+m, . . . ,b j−2 into (23) to

f inding the two solutions β1 and β2.
20: if β1 < 0 and β2 < 0 then
21: ending the algorithm.
22: end if
23: if β1 > 0 then
24: b j−1 = β1, computing a j by (23).
25: end if
26: if β2 > 0 then
27: b′j−1 = β2, computing a′j by (23).
28: end if
29: end for

4 The nonnegative case

In this section, we examine the conditions for the existence of nonnegative matrix An of the form (1).
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Theorem 2. Let the list of real numbers λ
(n)
2 , λ

( j)
1 , j = 1, . . . ,n, and real vector x = (x1,x2, . . . ,xn). Then,

there exists a nonnegative matrix An of the form (1), such that λ
(n)
2 is the maximal eigenvalue of An, λ

( j)
1

is the minimal eigenvalue of the leading principal submatrix A j of An and (λ
(n)
2 ,x) is an eigenpair of An

if the following conditions are satisfied

x j > 0, j = 1, . . . ,n; (24)

λ
(1)
1 ≥ 0; (25)

λ
(n)
2

b j−1
≥ x1

x j
, j = 2, . . . , p+2; (26)

λ
( j)
1

b2
j−1
≥

ϕ j−2(λ
( j)
1 )

ϕ j−1(λ
( j)
1 )

, j = p+3, . . . , p+m+1; (27)

λ
(n)
2

b j−1
≥

xp+m

x j
, j = p+m+2, . . . ,n. (28)

Proof. Suppose the conditions (24)-(28) and (2) hold. Theorem 1 confirms the existence of the matrix
of the form (1) with positive value b j−1, for j = 2, . . . ,n. We need to show that the diagonal elements a j

are nonnegative.
From (25) we have λ

(1)
1 ≥ 0, then a1 = λ

(1)
1 ≥ 0, and from (2) we obtain 0≤ λ

(1)
1 < λ

( j)
1 < λ

(n)
2 , for

j = 2, . . . ,n.
We consider the following three cases to discuss the nonnegativity of a j for j = 2, . . . ,n.

(1) For j = 2, . . . , p+2, from (26) we have

m j = λ
(n)
2 x j−b j−1x1 ≥ 0.

Hence, from the Theorem 1 and (24), we obtain

a j =
m j

x j
≥ 0.

(2) For j = p+ 3, . . . , p+m+ 1, by multiplying the denominator and numerator of the right-hand
fraction in inequality (27) by (−1) j−1, we gain

λ
( j)
1

b2
j−1
≥

(−1) j−1ϕ j−2(λ
( j)
1 )

(−1) j−1ϕ j−1(λ
( j)
1 )

.

By Lemma 1 and inequality (2) we have

(−1) j−1
ϕ j−1(λ

( j)
1 )> 0.

Then
(−1) j−1

λ
( j)
1 ϕ j−1(λ

( j)
1 )≥ (−1) j−1b2

j−1ϕ j−2(λ
( j)
1 ),
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or

t j = (−1) j−1
{

λ
( j)
1 ϕ j−1(λ

( j)
1 )−b2

j−1ϕ j−2(λ
( j)
1 )

}
≥ 0.

From the Theorem 1 we obtain

a j =
t j

(−1) j−1ϕ j−1(λ
( j)
1 )
≥ 0.

(3) Finally when j = p+m+2, . . . ,n, from (28) we have

z j = λ
(n)
2 x j−b j−1xp+m ≥ 0.

Hence, from the proof of Theorem 1 and (24), we obtain

a j =
z j

x j
≥ 0.

Therefore, the values of a j ≥ 0 for all j = 1, . . . ,n, and b j−1 > 0 for all j = 2, . . . ,n. This means that the
matrix An is nonnegative. Thus the proof is completed.

5 Numerical example

We test Algorithm 1 for some examples by the MATLAB software. In this section, we provide one of
numerical examples.

Example 1. For given 10 real numbers

λ
(9)
1 , λ

(8)
1 , λ

(7)
1 , λ

(6)
1 , λ

(5)
1 , λ

(4)
1 , λ

(3)
1 λ

(2)
1 , λ

(1)
1 , λ

(9)
2 ,

−9, −7.3, , −6, −3.7, −3, −2.5, −1.1, −0.5, 1, 14.0641,

and a real vector

x = (0.0193, 0.0027, 0.0031, 0.0026, 0.0887, 0.2396, 0.6144, 0.3723, 0.6467 )T .

Find a matrix A9 of the form (1) such that λ
( j)
1 is the minimal of A j, j = 1,2, . . .9, moreover (λ (9)

2 ,x) is
its eigenpair.

By applying Algorithm 1, we gain the following matrix as the solution

A9 =



1.0000 1.7378 1.8400 1.9619 2.6536 0 0 0 0
1.7378 1.5134 0 0 0 0 0 0 0
1.8400 0 2.4851 0 0 0 0 0 0
1.9619 0 0 −0.6390 0 0 0 0 0
2.6536 0 0 0 3.5002 3.6925 0 0 0

0 0 0 0 3.6925 −0.4221 5.1113 0 0
0 0 0 0 0 5.1113 0.6675 6.0407 7.3430
0 0 0 0 0 0 6.0407 4.0824 0
0 0 0 0 0 0 7.3430 0 7.0736


.
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The eigenvalues of all of the leading principal submatrices are

σ(A1) = {1.0000}
σ(A2) = {−0.5000,3.0291}
σ(A3) = {−1.1000,1.9581,4.1838}
σ(A4) = {−2.5000,0.4116,2.0108,4,4980}
σ(A5) = {−3.0000,0.1641,1.8716,2.8758,6.0323}
σ(A6) = {−3.7000,−1.9089,0.3645,1.9753,3.7256,7.0010}
σ(A7) = {−6.0000,−2.8475,0.1808,1.8188,2.4844,4.7692,7.8072}
σ(A8) = {−7.3000,−3.0532,−0.4441,0.5591,1.9924,3.7467,6.6812,10.0506}
σ(A9) = {−9.0000,−3.2112,−0.9780,0.4500,1.9858,3.7445,5.1871,7.0016,14.0641}.

To verify A9x9 = λ
(9)
2 x9, we compute both terms

A9x9 = (0.2679,0.0373,0.0428,0359,1.2383,3.3691,8.6839,5.2341,9.0573)T

and
λ
(9)
2 x9 = (0.2679,0.0373,0.0428,0359,1.2383,3.3691,8.6839,5.2341,9.0573)T .

6 Conclusions

In the current paper, a partially described inverse eigenvalue problem was considered for construction
of specific symmetric matrix. The problem involves the construction of this matrix by one eigenpair
of the required matrix and minimal eigenvalue of all leading principal submatrices. The relation for
gaining the element x j of the given eigenvector x from the elements of leading principal submatrices is
important in gaining the solution. The significance of the IEP1 stems in the fact that it partially describes
inverse eigenvalue problem while it constructs matrices from partial eigendata. Such partially described
problems may be encountered in computations in which obtaining the entire spectrum is difficult.
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