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Abstract. The main purpose of this paper is to study dynamics of stochastic chemostat model. In this
order, Taylor expansions, polar coordinate transformation and stochastic averaging method are our main
tools. The stability and bifurcation of the stochastic chemostat model are considered. Some theorems
provide sufficient conditions to investigate stochastic stability, D-bifurcation and P-bifurcation of the
model. As a final point, to show the effects of the noise intensity and illustrate our theoretical results,
some numerical simulations are presented.
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1 Introduction

Continuous culture is a system that is designed for long-term operation which can be operated over the
long term because it is an open system with a continuous feed of influent solution that contains nutrients
and substrate. Chemostat, as a growth container, is a type of continuous bioreactor that functions for
the cultivation of microalgae and other microorganisms that are usually used in laboratory and industrial
scales [2, 9]. The trivial ways for competition is whenever two or more populations are competing for
unchanged resource. In order to study the modeling of competition in nature, the chemostat is a type
of competition that refers to a laboratory device [15]. It is used in mathematical biology for growing
microorganisms. Because of the possibility of relevant experiments and mathematically tractable, this
device is significant in ecological studies. In the engineering literature, it is known as a continuous stir
tank reactor (CSTR) which considers both substrate utilization and the cell growth. It has played a central
place in mathematical ecology [10, 19, 22]. Firstly, a short outline of deterministic chemostat model is
provided. This simple deterministic chemostat model is based on the two standard assumptions: (a) the
availability of the nutrient and its supply rate are fixed and (b) the tendency of microorganism to adhere
to surfaces is not taken into account. Denoting by x(t) the concentration of the microorganism at any
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specific time t and y(t) the concentration of the growth-limiting nutrient. These assumptions lead to the
following growth model [6] {

ẋ =−qx+ Rxy
K+y ,

ẏ = q(c− y)− Rxy
a(K+y) ,

(1)

where R,K,q,c > 0 and a 6= 0.
Chemostat model has an essential role in ecological theory and often observed as a model of simple

lake or an ocean system, for instance (see [2, 9, 15, 17]). In [13, 14, 22], it is used for studying recom-
binant problems relevant to genetically altered microorganisms. Also in order to analysis of antibiotic
and in some problems of waste water treatment, this model is applicable (see [10, 18, 19]). Some studies
show that at microscopic scale the accumulation of small perturbations in the chemostat could not be
neglected and increasing environmental noise may lead to extinction in scenarios where the determinis-
tic model predicts persistence [7, 16]. To make this model more realistic some authors investigated the
stochastic version of it by influencing white noise (see [7, 23, 26]). Caraballo, etal. consider the chemo-
stat models with random nutrient supplying rate or random input nutrient concentration, with or without
wall growth. The results arises from this study proved the existence of a unique random attractor to
the random chemostat models, by constructing sufficient conditions for extinction and persistence of the
microorganism [5]. Sun and Zhang showed that the solutions of a stochastic chemostat model with time
delay will oscillate around the equilibriums of the corresponding deterministic model and under small
noise, when the time delay is small, microorganism is persistent; when the time delay is large, microor-
ganism will be extinct [24]. Also in [6] by simplifying the chemostat models, the authors investigated
the existence and uniqueness of solutions and existence of a random attractor by the random dynamical
system via the solution.

In [20], Luo and Guo investigated the stability and bifurcation of a two-dimensional stochastic dif-
ferential equations with multiplicative excitations. They provided some conditions on drift and diffusion
coefficients of a two-dimensional nonlinear stochastic system to obtain P-bifurcation and D-bifurcation.

In this paper, we study stability and bifurcation stochastic chemostat model. In Section 2, an overview
of dynamical behaviour in two-dimensional stochastic systems with multiplicative excitations, which
provided by Luo and Guo in [20], is presented. Particularly, this section focused on sufficient condi-
tions on drift and diffusion coefficients for stability, D-bifurcation and P-bifurcation in two dimensional
stochastic dynamical systems. Then, we consider deterministic and stochastic chemostat model. Sec-
tions 3 and 4 are the main part of our paper that are devoted to study stability of stochastic chemostat
model by largest Lyapunov exponent, D-bifurcation and P-bifurcation. We consider several conditions
on diffusion and drift coefficients that the model undergoes P-bifurcation. Also, using Euler-Maruyama
method, we demonstrate some numerical simulation to validate the theoretical results.

2 Preliminaries

In this section firstly, we present the general form of a stochastic differential equation and the types of
it’s stability adopted from [1]. Consider the following stochastic differential equation

dXt = f (t,Xt)dt +g(t,Xt)dWt , (2)
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where Wt = (W 1
t , . . . ,W

m
t )T is a m dimensional standard Brownian motion where (W (0) = 0), f =

( f1, . . . , fn) is an Rn valued function, g = (gi j) a n×m real matrix and t denote the time t ≥ 0. The
functions f and g satisfy the conditions of the existence of the solutions of this SDE with initial condi-
tions X0 = x0 ∈ Rn, and also f (t,0) = 0 and g(t,0) = 0. The process Xt is centered and the aim is to
study the stability of this process in the neighborhood of the zero solution.

The zero solution is stochastically stable if for every pair of ε > 0 and r > 0, there exists a δ =
δ (ε,r)> 0 such that

P{ω : |X(t,x0)|< r for all t ≥ t0} ≥ 1− ε,

whenever ‖x0‖< δ . Otherwise, it is said to be stochastically unstable.
The zero solution is said to be stochastically asymptotically stable if it is stochastically stable and,

moreover, for every ε > 0, there exists a δ = δ (ε)> 0 such that

P{ω : lim
t→∞

X(t,x0) = 0} ≥ 1− ε,

whenever ‖x0‖< δ .
The zero solution is said to be global stochastically asymptotically stable if it is stochastically stable

and, moreover, for all x0 ∈ Rd

P{ω : lim
t→∞

x(t,x0) = 0}= 1.

Secondly, as we mentioned before, in this paper we focus on the following two-dimensional stochas-
tic differential equations with multiplicative excitations{

dx = f1(x,y)dt +g1(x,y)dW1(t),
dy = f2(x,y)dt +g2(x,y)dW2(t),

(3)

where fi ∈ C3(R×R,R), gi ∈ C1(R×R,R) (i = 1,2) and dWi(t) (i = 1,2) are mutually independent
standard real-valued Wiener processes on the complete probability space (Ω,F,P).

In [20] using Taylor expansion, polar coordinate transformation and stochastic averaging method,
a general framework for the stability and bifurcation analysis of the stochastic System (3) is provided.
Suppose that fi(0,0) = 0 and gi(0,0) = 0 (i = 1,2). If in the Taylor expansion of fi and gi at the point
O(0,0) we ignore the terms higher than third order and rescaling the system as presented in [12], then
we obtain the following system

dx = ε[a110x+a101y+a120x2 +a111xy+a102y2 +a130x3 +a121x2y
+a112xy2 +a103y3]dt +

√
ε[b110x+b101y]dW1(t),

dy = ε[a210x+a201y+a220x2 +a211xy+a202y2 +a230x3 +a221x2y
+a212xy2 +a203y3]dt +

√
ε[b210x+b201y]dW2(t).

(4)

In [21], by combining polar coordinate transformation, the authors rewrote System (4) to Ito stochas-
tic differential equations {

dr = [(ϕ1 +
1
16 ϕ2)r+ 1

8 ϕ3r3]dt +(ϕ4
8 r2)

1
2 dWr(t),

dθ = [1
4 ϕ5 +

1
8 ϕ6r2]dt +(ϕ2

8 )
1
2 dWθ (t),

(5)
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with the following notations

ϕ1 =
1
2
(a110 +a201), (6)

ϕ2 =b2
110 +b2

201 +b2
101 +3b2

210,

ϕ3 =3a130 +a112 +a221 +a203,

ϕ4 =3b2
110 +b2

101 +b2
210 +b2

201,

ϕ5 =−2a101 +2a210 +b110b101−b210b201,

ϕ6 =−a103 +a212−a121 +3a230.

Taking account of the existence of random factors, we assume that ϕ2 and ϕ4 are positive numbers, in
the sequel. Since the modulus equation is uncoupled with the phase equation, we only need the averaging
modulus equation

dr = [(ϕ1 +
1
16

ϕ2)r+
1
8

ϕ3r3]dt +(
ϕ4

8
r2)

1
2 dWr(t), (7)

to investigate the stability and bifurcation of System (5).
In the following theorems, by using Eq. (7), we investigate the stability conditions of the equilibrium

point of System (3).

Theorem 1 ([20]). When 16ϕ1 +ϕ2−ϕ4 < 0 and 2ϕ3 < ϕ4, the stochastic system (7) is globally stable
at the equilibrium point O.

These theorems describe the changes in qualitative behavior of the stochastic system, depend on drift
and diffusion parameters changes. The next two theorems, investigate some conditions that System (7)
undergoes stochastic phenomenological bifurcation or P-bifurcation.

Theorem 2 ([20]). If ϕ3 < 0 and ϕ4 > 0, System (7) undergoes stochastic phenomenological bifurcations
as the parameter ϕ4 passes through the values of 8ϕ1 +

1
2 ϕ2, 16ϕ1+ϕ2

3 and 16ϕ1+ϕ2
4 .

2.1 Stochastic chemostat model

In mathematical biology models, noise can be arose from by different reasons and it may appears by
various sources. There are a lot of different ways to vary deterministic chemostat model into stochastic
one and investigating the dynamical behaviour of it (see [3, 4, 16, 25]).

The dynamical model (1) has two equilibriums e1 = (0,c) and

e2 = (
a(K + qK

R−q)(c−
qK

R−q))(R−q)

RK
,

qK
R−q

).

In order to investigate of stability and bifurcation of stochastic version it, we change coordinates to
transfer the equilibriums e1 and e2 into origin. By taking u = x,v = y− c the equilibrium e1 change into
(0,0) and System (1) becomes {

u̇ =−qu+ Ru(v+c)
K+v+c ,

v̇ =−vq− Ru(v+c)
a(K+v+c) .

(8)
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Similarity by taking

u = x−
a(K + qK

R−q)(c−
qK

R−q))(R−q)

RK
, and v = y− qK

R−q
,

the equilibrium e2 vary into (0,0) and System (1) becomes{
u̇ =− (R−q)(Kaq−Rac+acq−Ru+qu)v

(KR+Rv−qv) ,

v̇ =− (Kaq2v+R2acv−2Racqv+Raqv2+acq2v−aq2v2+KRqu+R2uv−Rquv)
(KR+Rv−qv)a .

(9)

Firstly, we consider the stochastic model of System (8) by the following form{
du = (−qu+ Ru(v+c)

K+v+c )dt +σ1u dW1(t),
dv = (−qv− Ru(v+c)

a(K+v+c))dt +σ2v dW2(t),
(10)

where, σ1,σ2 measure the noise intensity in the system due to the environment and W1(t),W2(t) denote
the independent standard Wiener processes.

By considering Taylor expansions of deterministic parts of System (10) at origin, the following equiv-
alent system is obtained{

du =
(
(−q+ Rc

(K+c))u+( RK
(K+c)2 )vu− ( RK

(K+c)3 )uv2 +o(4)
)
dt +σ1udW1(t),

dv =
(
−qv− Rcu

a(K+c) +( RK
a(K+c)2 )vu+( RK

a(K+c)3 )uv2 +o(4)
)
dt +σ2vdW2(t),

(11)

where o(4) show the high order terms. We consider truncated equations of System (11) and assume
u = u,v = v, t = t and a jis = εa jis, b jis =

√
εa jis for all j, i,s. For simplicity that we drop the bars from

the scaled variables. Then obtain{
du = ε[

(
(−q+ Rc

K+c)u+( RK
(K+c)2 )vu− ( RK

(K+c)3 )uv2
)
]dt +

√
εσ1udW1(t),

dv = ε[
(
−qv− Rcu

a(K+c) +( RK
a(K+c)2 )vu+( RK

a(K+c)3 )uv2
)
]dt +

√
εσ2vdW2(t).

(12)

Now, by Khasminskii limiting theorem, System (12) can be transformed into the following limiting Ito
averaging equations via polar coordinate x = r cosθ and y = r sinθ with the Ito formula, we have{

dr = [(ϕ1 +
1

16 ϕ2)r+ 1
8 ϕ3r3]dt +(ϕ4

8 r2)
1
2 dWr(t),

dθ = [1
4 ϕ5]dt +(ϕ2

8 )
1
2 dWθ (t),

(13)

where the parameters ϕi arises from Equations (6) and given as follows:

ϕ1 =−q+ 1
2

Rc
(K+c) , ϕ2 = σ2

1 +σ2
2 ,

ϕ3 =
−RK

(K+c)3 , ϕ4 = 3σ2
1 +σ2

2 ,

ϕ5 =
−2Rc

a(K+c) , ϕ6 =
−RK

a(K+c)3 .

As we mentioned in Section 2 for investigating the stability and bifurcation of System (10), the following
averaging modulus equation is considered.

dr = [(−q+
1
2

Rc
(K + c)

+
σ2

1 +σ2
2

16
)r− RK

8(K + c)3 r3]dt +(
(3σ2

1 +σ2
2 )r

2

8
)

1
2 dWr(t). (14)
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In similar way, the stochastic version of System (9) is in the following form{
du = (− (R−q)v(Kaq−Rac+acq−Ru+qu)

KR+(R−q)v )dt +σ1udW1(t),

dv = (− (Kaq2+R2ac−2Racq+acq2)v+(Raq−aq2)v2+KRqu+(R2−Rq)uv
(KR+(R−q)v)a )dt +σ2vdW2(t),

(15)

By considering Taylor expansions of deterministic parts of System (15) at origin, we have the following
system 

du =
(−v(R−q)(Kaq−Rac+acq)

RK − (R−q)(−R+q)vu
RK + (R−q)2a(Kq−Rc+cq)v2

R2K2

− (R−q)3uv2

R2K2 − (R−q)3(Kaq−Rac+acq)v3

R3K3 +o(4)
)
dt +σ1udW1(t),

dv =
(−qu

a −
(Kaq2+R2ac−2Racq+acq2)v

RKa − (R2−Rq−q(R−q))vu
RKa

− (Raq−aq2− (Kaq2+R2ac−2Racq+acq2)(R−q))v2
KR

KRa + (KR3−2KR2q+KRq2)(R−q)uv2

R3K3a

+ (KR2aq−2KRaq2+Kaq3−R3ac+3R2acq−3Racq2+acq3)(R−q)v3

R3K3a +o(4)
)
dt +σ2vdW2(t).

Hence, we obtain the following system{
dr = [(ϕ1 +

1
16 ϕ2)r+ 1

8 ϕ3r3]dt +(ϕ4
8 r2)

1
2 dWr(t),

dθ = [1
4 ϕ5]dt +(ϕ2

8 )
1
2 dWθ (t),

(16)

where

ϕ1 =−1
2

Kaq2+R2ac−2Racq+acq2

RKa ,
ϕ2 = σ2

1 +σ2
2 ,

ϕ3 =
(KR2aq−2KRaq2+Kaq3−R3ac+3R2acq−3Racq2+acq3)(R−q)

(R3K3a) − (R−q)3

R2K2 ,

ϕ4 = 3σ2
1 +σ2

2 ,

ϕ5 =
2(R−q)(Kaq−Rac+acq)

RK − 2q
a ,

ϕ6 =
(R−q)3(Kaq−Rac+acq)

R3K3 + (KR3−2KR2q+KRq2)(R−q)
R3K3a .

In order to investigate the stability and bifurcation of System (15), we consider the following averaging
modulus equation

dr = [((
−1
2
)
Kaq2 +R2ac−2Racq+acq2

RKa
+

σ2
1 +σ2

2
16

)r+(−(R−q)3

R2K2

+
(KR2aq−2KRaq2 +Kaq3−R3ac+3R2acq−3Racq2 +acq3)(R−q)

R3K3a
)
r3

8
]dt

+[(
σ2

1 +σ2
2

8
)r2]

1
2 dWr(t). (17)

3 The dynamic behavior of the stochastic system

In this section, we focus on System (10) and investigate its stability and stochastic bifurcation.
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Figure 1: Largest Lyapunov exponent of System (10) where q = c = K = 1,R = 8 and 0≤ σ1 ≤ 10.

3.1 Largest Lyapunov exponent and stability

Let λ be the largest Lyapunov exponent of System (3). Oseledec multiplicative ergodic theorem [1]
shows that λ < 0 implies the asymptotically stability of the trivial solution of linearized equation and
λ > 0 implies that our stochastic system is unstable at the equilibrium (0,0). In Theorem 3.1 of [20], the
authors prove that

λ = lim
t→+∞

1
t

ln‖r(t)‖= ϕ1 +
1
16

ϕ2−
1
16

ϕ4,

where r(t) is solution of Eq. (13). Then we have the following theorem

Theorem 3. (i) If 8[−q+ (1
2)

Rc
(K+c) ] < σ2

1 , the trivial solution of the linear Ito stochastic differential
equation (14) is asymptotically stable with probability 1, then the stochastic System (10) is stable at the
equilibrium point O.
(ii) If 8[−q+(1

2)
Rc

(K+c) ]>σ2
1 , the trivial solution of the linear first Ito stochastic differential equation (14)

is unstable with probability 1, which implies that the stochastic system (10) is unstable at the equilibrium
point O.

In Figure 1 we plot the largest Lyapunov exponent of System (10), where σ1 is variable and q = c =
K = 1,R = 8. Then for every σ1 > 2

√
2, the largest Lyapunov exponent is negative. Due to Theorem 3

the stochastic system (10) is stable at the equilibrium point O. In Figure 2 we plot the largest Lyapunov
exponent where q and σ1 are variable.

Remark 1. Because ϕ3 = −
RK

(K + c)3 and ϕ4 = 3σ2
1 +σ2

2 , Theorem 1 implies that if
4Rc

K + c
< σ2

1 + 8q,

then the stochastic system (10) is globally stable at the equilibrium point O.

3.2 Stochastic bifurcation

In this section, by using concepts and theorems in Section 1, we investigate dynamical bifurcation and
phenomena bifurcation of System (10). The definitions of D and P bifurcations are presented.

Definition 1 ([11]). (D-bifurcation) Dynamical bifurcation is concerned with a family of random dy-
namical systems which is differential and has the invariant measure ϕθ . If there exists a constant θ0
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Figure 2: Largest Lyapunov exponent of System (10) where c = K = 1,R = 8 and 0 ≤ σ1 ≤ 10, 0.1 <
q < 1

satisfying in any neighbourhood of θ0, there exists another constant θ and the corresponding invari-
ant measure νθ 6= ϕθ satisfying νθ → ϕθ as θ → θ0. Then, the constant θ0 is a point of dynamical
bifurcation.

Base on Theorem 4.1 of [20] and Section 3 of [11], when ϕ4 = 16ϕ1+ϕ2, i.e., Rc=
1
4
(K+c)σ2

1 +8q,
the stochastic system (14) undergoes a D−bifurcation.

The stochastic P-bifurcation is a type of stochastic bifurcation that occurs in a stochastic system. This
bifurcation describes the mode of the stationary probability density function or the invariant measure of
the stochastic process. Stochastic systems undergoes the stochastic P-bifurcation when the mode of
the stationary probability density function changes in nature. It indicates the jump of the distribution
of the random variable in probability sense. There is no direct relation between D-bifurcation and P-
bifurcation [27]. To investigate the P-bifurcation of stochastic System (10) and its polar coordinate
transformation (14), we use probability density functions.

According to Section 4 of [20], the stationary probability density function p(r) of random variable r
can be given by

P(r) =



δ (r), when Rc≤ 1
4(σ

2
1 +8q)(K + c),

r

−2(Kσ2
1 +cσ2

1 +8Kq−4Rc+8cq)

(K+c)(3σ2
1 +σ2

2 ) exp( −RK
(3σ2

1 +σ2
2 )(K+c)3

r2)

Γ(
−(Kσ2

1 +cσ2
1 +8Kq−4Rc+8cq)

(K+c)(3σ2
1 +σ2

2 )
)(

(3σ2
1 +σ2

2 )(K+c)3

RK )

−(Kσ2
1 +cσ2

1 +8Kq−4Rc+8cq)

(K+c)(3σ2
1 +σ2

2 )

, when Rc > 1
4(σ

2
1 +8q)(K + c),

(18)

This is clear that the extreme value point of p(r) is r0 = 0 or

r1 =

√
−[5σ2

1 +σ2
2 +16q− 8Rc

K+c ](K + c)3

2RK
,

when 5σ2
1+σ2

2
2 <−8q+ 4RC

K+C . Consequently, we have the following three type of conditions
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(i) If −8q + 4Rc
K+c < 1

2(5σ2
1 + σ2

2 ) < −16q + 8Rc
K+c +

σ2
1 +σ2

2
2

, then lim
r→0+

P(r) = ∞ and the random

trajectories of System (14) centralized in a neighborhood of the point r0 = 0.

(ii) If 1
3(−16q+ 8Rc

K+c)<
1
3(8σ2

1 +2σ2
2 )<−8q+

4Rc
K + c

+
σ2

1+σ2
2

6 , then P(r) has the minimum value at

the point r0 and the maximum value at the point r1, but the derivative of P(r) at r0 does not exist.
Moreover, the random trajectories of System (14) centralized in a neighborhood of the point r1.

(iii) If 8σ2
1 +2σ2

2 < −16q+ 8Rc
K+c , then P(r) has the minimum value at the point r0 and the maximum

value at the point r1. In this case, the probability density function P(r) becomes a smooth function
at the point r1.

We can summarize these results to the following theorem.

Theorem 4. (I) System (14) undergoes stochastic phenomenological bifurcations as the parameter q
passes through the values of

Rc
2(K + c)

− 5σ2
1 +σ2

2
16

, and
Rc

2(K + c)
− 4σ2

1 +σ2
2

2
.

(II) System (14) undergoes stochastic phenomenological bifurcations as the parameter R passes through
the values of

(
K + c

4c
)(8q+

5σ2
1 +σ2

2
2

) and
(K + c)3(16q−σ2

1 −σ2
2 )

K[3σ2
1 +σ2

2 +
8Kc(K+c)3

K+c ]
.

Remark 2. It is note that when the parameters q and R passes through the value of Rc/(2(K + c)−
σ2

1
8 ) and ((K + c)(2σ2

1 +16q))/8c, respectively, the probability density function P(r) varies from Dirac
function δ (r) to the other function in (18), which means that System (14) undergoes a P-bifurcation in a
generalized sense.

Example 1. As an example, we take σ1 = σ2 =
1
2 , R = K = c = 1. By varying parameter q, we can see

qualitative changes of density function P(r). Simple calculation implies that

(i) If −8q+2 < 3
4 <−16q+ 17

4 , then lim
r→0+

P(r) = ∞.

(ii) If −16q+4
3 < 5

6 <−8q+ 23
12 , then P(r) has the minimum value at the point r0 = 0 and the maximum

value at the point r1, but the derivative of P(r) at r0 does not exist.

(iii) If 5
2 <−16q+4, then P(r) has the minimum value at the point r0 = 0 and the maximum value at

the point r1. (see Figure 3 from left to right respectively).

Example 2. In this example, we plot the effect of noise on probability density P(r) of System (14) by
fixed parameters q = 1

5 ,R = K = c = 1 and it is considered σ1 = σ2. (see Figure 4)



384 M. Fatehi Nia, N. Khajoei

Figure 3: Variations of probability density P(r) of System (14) by changing q for parameters σ1 = σ2 =
1
2 ,R = K = c = 1

Figure 4: The effect of noise on probability density P(r) of System (14) for q = 1
5 ,R = K = c = 1 and

σ1 =
1

10 ,
1
4 ,

1
3 from left to right.

By transforming P(r) to the probability density ρ(u,v) of the stationary distribution in terms of
Cartesian coordinates u and v (for more details see [20]), we have

P(u,v) =



δ (
√

u2 + v2), when Rc≤ 1
4(σ

2
1 +8q)(K + c),

(u2+v2)

−2(Kσ2
1 +cσ2

1 +8Kq−4Rc+8cq)

(K+c)(3σ2
1 +σ2

2 ) exp( −RK
(3σ2

1 +σ2
2 )(K+c)3

(u2+v2))

πΓ(
−(Kσ2

1 +cσ2
1 +8Kq−4Rc+8cq)

(K+c)(3σ2
1 +σ2

2 )
)(

(3σ2
1 +σ2

2 )(K+c)3

RK )

−(Kσ2
1 +cσ2

1 +8Kq−4Rc+8cq)

(K+c)(3σ2
1 +σ2

2 )

, when Rc > 1
4(σ

2
1 +8q)(K + c).

Similar to the above argument for P(r), the extremal value point of ρ(u,v) may be obtained. In this
way we need to calculate the gradient of ρ(u,v) in R2. Hence, we reach the following results

(i) If

2σ
2
1 +

1
2

σ
2
2 ≥−4q+

2Rc
K + c

,

then ρ(u,v) tends to infinite as u→ 0 and v→ 0.

(ii) If

−4q+
2Rc

K + c
+

σ2
1 +σ2

2
4

< 3σ
2
1 +σ

2
2 <
−16

3
q+

8Rc
3(K + c)

+
σ2

1 +σ2
2

3
,
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Figure 5: Variations of probability density P(u,v) of System (10) by changing q for fixed parameters
σ1 = σ2 =

1
2 ,R = K = c = 1 and q = 1

5 ,
1
8 ,

1
16 from left to right.

then ρ(u,v) has a minimum value point at the origin, but its partial derivatives at the origin is not
continuous. Moreover, It has a maximum value at the points of the stable limit cycle

u2 + v2 =
8σ2

1 +2σ2
2 +16q− 8Rc

K+c

2(σ2
1 +σ2

2 )
.

(iii) If
11
4

σ
2
1 +

3
4

σ
2
2 <−4q+

2Rc
K + c

,

then ρ(u,v) has a minimum value point at the origin, and a maximum value at the points of the
stable limit cycle

u2 + v2 =
8σ2

1 +2σ2
2 +16q− 8Rc

K+c

2(σ2
1 +σ2

2 )
.

Moreover, ρ(u,v) has continuous partial derivatives.

We can summarize these results to the following theorem.

Theorem 5. The stochastic system (10) undergoes phenomenological bifurcations as the parameter q
passes through the values of

Rc
2(K + c)

− 4σ2
1 +σ2

2
8

and −11σ
2
1 −3σ

2
2 +

Rc
2(K + c)

.

Example 3. Similar to Example 1, we take σ1 = σ2 =
1
2 , R = K = c = 1. By varying parameter q, we

can see qualitative changes of density function P(u,v), (see Figure 5).

Example 4. To see the effect of noise on probability density P(u,v) of System (10) we choose parameters
and noise the same as Example 2 (see Figure 6).

Remark 3. The line graphs and surface graphs in Figure 3 and Figure 5 represent the changes of
probability density P(r) and P(u,v) of System (14) respectively for parameters σ1 = σ2 =

1
2 , R = K =

c = 1 by varying parameter q. For instance, the probability density P(r) in the left line graph has its
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Figure 6: Variations of probability density P(u,v) of System (10) for q = 1
5 ,R = K = c = 1 and σ1 =

1
10 ,

1
4 ,

1
3 from left to right.

maximum when r is near the origin. On the other hand, this density of probability is completely visible in
the left surface graph in Figure 5 near origin. For middle and right graphs the Figures 3 and 5 depict the
same probability density as well. Also by considering q = 1

4 ,R = K = c = 1 and changing σ1 =
1
10 ,

1
4 ,

1
3 ,

the effect of noise on probability density P(r) and P(u,v) of System (10) is shown in Figures 4 and 6
respectively. As we can see from left graphs in both Figure 4 and 6 the probability density P(r) and
P(u,v) has its minimum near the origin and for others, the probability density P(r) and P(u,v) behave
similarly.

3.3 Numerical simulation of the stochastic chemostat model

In order to confirm the analytical results, we numerically simulate the solution of stochastic chemostat
model.

We apply the Euler-Maruyama method to System (10) and obtain discrete system [8]
u(i+1) = u(i)+ [−qu(i)+

Ru(i)(v(i)+ c)
K + v(i)+ c

]∆t +σ1u(i)
√

∆tN(0,1);

v(i+1) = v(i)+ [−qv(i)− Ru(i)(v(i)+ c)
a(K + v(i)+ c)

]∆t +σ2v(i)
√

∆tN(0,1);
(19)

where N(0,1) denotes a normally distributed random variable with zero mean and unit variance. Ac-
cording to Theorem 3, if q > 1

2
Rc

K+c −
1
8 σ2

1 , then the origin is stable and if q < 1
2

Rc
K+c −

1
8 σ2

1 , it is unstable.

Here, we choose a = c = K = R = 1,σ1 = σ2 =
1
2

. So, if q > 7
32 , the origin is stable.

In Figure 7, we plot the phase portrait of System (10). This figure shows that for q = 1
4 and initial

condition (u0,v0) = (0.1,0.1) the random trajectory goes to the origin. For q = 1
32 origin is unstable

because the Lyapunov exponent is positive. This fact, verifies the Theorem 3.
In Figure 8, we investigate the effect of the noise in System (10) with the fixed parameters q = 1

4 ,c =
R = K = a = 1 and initial condition (u0,v0) = (0.1,0.1). This figure shows that if the intensity of the
noise be increased, then the trajectories tend to chaotic behavior. If Figure 9, we plot the time series of
System (10) for fixed parameters q = 1

4 ,c = R = K = a = 1 and initial condition (u0,v0) = (0.1,0.1). We
consider σ1 = σ2 = 0,0.1,0.25 and 0.33 in figures (a),(b),(c) and (d), respectively.
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Figure 7: Phase portrait of System (10) for a = c = K = R = 1,σ1 = σ2 = 1
2 with initial condition

(u0,v0) = (0.1,0.1).

Figure 8: Phase portrait for System (10) for q = 1
4 ,c = R = K = a = 1 and initial condition (u0,v0) =

(0.1,0.1).

Remark 4. By comparing Figure 8 with Figure 9, it is clear when there are no noise System (10) behave
almost linear. When the noise increases more and more the behavior of System (10) is not predictable.

Also, we plot 20 trajectories of System (10) in Figure 10 for q= 1
4 , c= R=K = 1 and σ1 = σ2 = 0.1.

4 The dynamic behavior of the chemostat stochastic system

In this section we consider System (15) and investigate its stability and stochastic bifurcation by similar
procedures in Section 3. The following theorem determines the stability of System (15) at the equilibrium
point O.

Theorem 6. Suppose a > 0. The trivial solution of the linear Ito stochastic differential Eq. (17), is
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Figure 9: Time series of System (10) for q = 1
4 , c = R = K = a = 1 and initial condition (u0,v0) =

(0.1,0.1).

Figure 10: 20 trajectories of System (10) for q = 1
4 , c = R = K = a = 1 and initial condition (u0,v0) =

(0.1,0.1) which shows the random trajectory goes to the origin that confirms the stability of the origin.

asymptotically stable with probability 1, for all parameters K,R,q,c and a. Then the stochastic System
(15) is stable at the equilibrium point O.

Proof. The largest Lyapunov exponent equal to

λ =−1
2
[
(Kaq2 +R2ac−2Racq+acq2)

RKa
]− 1

8
σ

2
1 .
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Figure 11: Largest Lyapunov exponent of System (15) where a = q = c = K = 1,R = 8 and 0≤ σ1 ≤ 10.
For every σ1 the Largest Lyapunov exponent is negative and then the stochastic System (15) is stable at
the equilibrium point O. The larger σ1 gets, the more the Largest Lyapunov exponent is negative.

We assume R 6= q. So

(R−q)2 > 0 ⇒ R2 +q2 > 2Rq

⇒ c(R2 +q2)> 2Rqc

⇒ Kq2 + c(R2 +q2)> 2Rqc

⇒ aKq2 +R2ca+q2ca > 2Rqca

⇒ aKq2 +R2ca+q2ca−2Rqca > 0

⇒ λ < 0,

for all parameters K,R,q,c and a > 0. If R = q the proof is clear.

In Figure 11, we plot largest Lyapunov exponent of System (15), where σ1 is variable and a = q =
c = K = 1,R = 8. In Figure 12, we plot largest Lyapunov exponent where q and σ1 are variable. As it is
seen in Figure 13 the random trajectory goes to the origin.

Remark 5. Assume a > 0. Due to Theorem 1 for global stability of System (15) at the equilibrium O,
the following conditions must be satisfied
(i) −4(Kaq2+R2ac−2Racq+acq2)

KRa −σ2
1 < 0, and

(ii) (KR2aq−2KRaq2+Kaq3−R3ac+3R2acq−3Racq2+acq3)(R−q)
R3K3a <

3σ2
1+σ2

2
2 + (R−q)3

R2K2 .
The condition (i) is satisfied for all parameters K,R,q,c and a.

4.1 Stochastic bifurcation

In this subsection, we investigate some conditions which System (17) undergoes D-bifurcation and P-
bifurcation. As a matter of fact for System (17) neither D-bifurcation nor P-bifurcation happens if a > 0.
We mentioned in Section 3 when ϕ4 = 16ϕ1 +ϕ2 System (17) possesses D-bifurcation. So by simple
computation we obtain

−8(Kaq2 +R2ac−2Racq+acq2)

RKa
= σ

2
1 ,
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Figure 12: Largest Lyapunov exponent of System (15) where a = c = K = 1,R = 8 and 0 ≤ σ1 ≤ 10,
0.1 < q < 1.

Figure 13: Phase portrait of System (15) for q= 1
16 ,a= c=K =R= 1,σ1 =σ2 =

1
2 with initial condition

(u0,v0) = (0.1,0.1). For 0 < u < 0.35 and −0.1 < v < 0 there is the most density of trajectories.

which is a contradiction. Because Kaq2 +R2ac− 2Racq+ acq2 > 0 for all parameters K,R,q,c and
a > 0. Hence D-bifurcation does not happen for System (17).

In order to investigate P-bifurcation, we should compute probability density function p(r) of random
variable r. But it is not possible, since the domain of Gamma function equal to

−4(Kaq2 +R2ac−2Racq+acq2)+RKaσ2
1

3σ2
1 +σ2

2
,

which is negative for all parameters K,R,q,c and a > 0.
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Figure 14: Phase portrait for System (15) for q = 1
16 ,c = R = K = a = 1 and initial condition (u0,v0) =

(0.1,0.1).

Figure 15: Time series of System (15) for q = 1
16 ,c = R = K = a = 1 and initial condition (u0,v0) =

(0.1,0.1).
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Figure 16: 20 trajectories of System (15) for q = 1
16 ,a = c = R = K = 1 and σ1 = σ2 = 0.1 and initial

condition (u0,v0) = (0.1,0.1).

4.2 Numerical simulation of the stochastic chemostat model model

By applying the Euler-Maruyama method to System (15) the following discrete system is obtained.
u(i+1) = u(i)+ [− (R−q)v(i)(Kaq−Rac+acq−(R+q))u(i)

KR+(R−q)v(i) ]∆t +σ1u(i)
√

∆tN(0,1),

v(i+1) = v(i)+ [− (Kaq2+R2ac−2Racq+acq2)v(i)+(Raq−aq2)v(i)2+KRqu(i)+(R2−Rq)u(i)v(i)
(KR+(R−q)v(i))a ]∆t

+σ2v(i)
√

∆tN(0,1),

(20)

where N(0,1) denotes a normally distributed random variable with zero mean and unit variance. In
Figure 13, we plot the phase portrait of System (15) for a = c = K = R = 1,σ1 = σ2 =

1
2 and q = 1

16 .
Figs. 14, 15 and 16 show the effect of the noise, time series and 20 trajectories of System (15) for fixed
parameters q = 1

16 , c = R = K = a = 1 and initial condition (u0,v0) = (0.1,0.1) respectively. In Figure
15 we take σ1 = σ2 = 0,0.1,0.25 and 0.33 in figures (a),(b),(c) and (d).
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